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Abstract 

 

The conformational fluctuations of proteins can be described by structural ensembles. To ad-

dress the major challenge of determining these ensembles accurately, a wide range of strategies 

have recently been proposed to combine molecular dynamics simulations with experimental da-

ta. Quite generally, there are two ways of implementing this type of approach, either by apply-

ing structural restraints during a simulation, or by reweighting a posteriori the conformations 

from an a priori ensemble. It is not yet clear, however, whether these two approaches can offer 

ensembles of equivalent quality. The advantages of the reweighting method are that it can in-

volve any type of starting simulation and that it enables the integration of experimental data af-

ter the simulations are run. A disadvantage, however, is that this procedure may be inaccurate 

when the a priori ensemble is of poor quality. Here, our goal is to systematically compare the 

restraining and reweighting approaches and to explore the conditions required for the re-

weighting ensembles to be accurate. Our results indicate that the reweighting approach is com-

putationally efficient and can perform as well as the restraining approach when the a priori 

sampling is accurate. More generally, to enable an effective use of the reweighting approach by 

avoiding the pitfalls of poor sampling, we suggest metrics for the quality control of the re-

weighted ensembles. 
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Introduction 

 

It is increasingly recognized that proteins populate different conformations while performing 

their functions (Mittermaier, Anthony, and Lewis E. Kay. "New tools provide new insights in 

NMR studies of protein dynamics." Science 312.5771 (2006): 224-228).1-2 For instance, mem-

brane channels open and close to transport ions, enzymes twist to incorporate substrates and re-

lease products, and receptors adapt to bind signaling molecules.3-5 Moreover, many proteins are 

intrinsically disordered, as they adopt large ensembles of heterogeneous conformations in their 

native states.6-8 To understand the molecular basis of protein function, it is thus often critical to 

not only determine a single structure, but also to accurately characterize a set of conformational 

states along with their probabilities of occupation.9(Bonomi and Vendruscolo, Determination of 

protein structural ensembles using cryo-electron microscopy. Curr. Op. Struct. Biol. in press) 

 

A major problem, however, is that experimental measurements cannot directly determine these 

structural ensembles (Fig. 1a, green curve) for a variety of technical reasons, including that in 

many cases these measurements yield data averaged over the ensembles themselves (Fig. 1a, 

black dashed line).9-10 Molecular dynamics (MD) simulations provide a complementary tool for 

characterizing these ensembles, although one should consider that their accuracy is limited by 

the quality of the force fields, or ‘prior’ (Fig. 1a, red curve and red dashed line) (Bonomi and 

Vendruscolo, Determination of protein structural ensembles using cryo-electron microscopy. 

Curr. Op. Struct. Biol. in press). By incorporating simulations and experiments into integrative 

models, one can generate ensembles more consistent with experimental data while remaining 

close to the force fields (Fig. 1a, blue curve). 

 

Various methods have emerged for integrating experimental information with MD simulations.9, 

11-13 (Bonomi and Vendruscolo, Determination of protein structural ensembles using cryo-

electron microscopy. Curr. Op. Struct. Biol. in press) Maximum entropy approaches have been 

designed to minimally modify MD force fields to match experimental data.14-15 To induce a bet-

ter agreement with experimental data, some maximum entropy approaches known as ‘restrain-

ing’ methods include additional forces during the simulations.16-17 Some of these approaches 

such as the metainference method include also error models that help prevent overfitting to 

noisy experimental data.18-19  
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As an alternative strategy, it is possible to first produce an ensemble from unrestrained simula-

tions, and to change the statistical weights of the resulting configurations to obtain ensemble 

averages that better match experimental data. This ‘reweighting’ strategy has been recently im-

plemented in some ensemble refinement methods20-22, providing important advantages. In par-

ticular, it can be computationally impractical to run simulations of multiple replicas, as required 

by some restraining methods.18 In addition, restraining methods based on Lagrange multipliers 

require a careful choice of the learning parameters to converge quickly.19 Furthermore, re-

weighting methods allow for the incorporation of additional experimental data after a simulation 

has finished. In addition, reweighting methods can also enable the use of more complex and 

computationally expensive forward models, which are used to approximate experimental data 

given a protein conformation. In particular, since restraining methods involve evaluating the 

forward model during a simulation, they are restricted to models that are computationally tracta-

ble with gradients that are reasonable to evaluate. However, the reweighting approach has limi-

tations when the prior and the true ensembles overlap poorly (Fig. 1b).9, 23 

 

Here, we compare the restraining and reweighting approaches, and we investigate the conditions 

in which the reweighting approach can improve an MD ensemble. To carry out a systematic 

analysis we applied a reweighting method on two systems, dialanine with interatomic distances 

for reweighting, and a peptide from the binding region of the oncogenic protein c-Myc (residues 

402 to 412, referred to as c-Myc402-412) with NMR chemical shifts for reweighting. 

 

 

 

Methods 

 

Derivation of reweighting linear biasing potential. We use the restraining method of Cesari et 

al.19 in a reweighting mode24, as it allows for the specification of an error model for the data. 

Importantly, in this approach a maximum entropy ensemble can be derived, while requiring that 

the reweighted ensemble matches the experimental data when including an error term. Here we 

discuss how the biasing potential for reweighting a conformational ensemble with experimental 

data arises from the maximum entropy principle, as introduced by Jaynes25.  

 

A molecular dynamics simulation can be viewed as producing a distribution 𝑷𝟎(𝒙) of confor-

mations x. In a reweighting approach the goal is to reweight the ensemble 𝑷𝟎(𝒙) to a new en-
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semble 𝑷𝟏(𝒙) that better matches the experimental data 𝒇𝒊
𝒆𝒙𝒑 for each experiment i, which is 

expected to result from an ensemble average over the underlying true ensemble. To determine 

the fit to experimental data, we use a forward model 𝒇𝒊(𝒙) which predicts the value of the ob-

servable i for each conformation x. In the method that we implemented here, we require that 

𝑷𝟏(𝒙) satisfies the ensemble-averaged experimental observables and minimizes the Kullback-

Leibler (KL) divergence of 𝑷𝟏(𝒙) to 𝑷𝟎(𝒙), causing a minimal shift of the prior to match the 

experimental data. This strategy leads to the following constrained optimization problem, where 

we maximize S when constraints 𝒄𝒊	are set to zero: 

 

𝑆 = −+𝑃'(𝑥) ln 0
𝑃'(𝑥)
𝑃((𝑥)

1 𝑑𝑥 

𝑐) = +𝑃'(𝑥)𝑓)(𝑥)𝑑𝑥 − 𝑓)
*+, 

With Lagrange multipliers and normalization, we arrive at the ensemble 𝑷𝟏(𝒙) that shifts the 

ensemble 𝑷𝟎(𝒙) with a biasing potential linear in the experimental observables.14, 19, 24 

𝑃'(𝑥) =
𝑃((𝑥)𝑒-∑ /!0!(+)!

∫𝑃((𝑥)𝑒-∑ /!0!(+)! 𝑑𝑥
 

 

To find the Lagrange multipliers, we can enforce the constraints 𝒄𝒊, finding the parameters 𝝀𝒊 

such that the ensemble average ⟨𝒇𝒊(𝒙)⟩ on the new ensemble equals the experimental value. As 

described by Cesari, et al.19, we can incorporate experimental and forward model errors into the 

linear biasing potential by modifying 𝒄𝒊 to include error terms 𝜺𝒊 with a distribution 𝑷(𝜺𝒊). 

Then, we must find 𝝀𝒊 with ⟨𝒇𝒊(𝒙)⟩ +	 ⟨𝜺𝒊⟩ = 	𝒇𝒊
𝒆𝒙𝒑 where ⟨𝜺𝒊⟩ is the average of the error terms 

𝜺𝒊 on distribution 𝑷(𝜺𝒊)𝒆-∑ 𝝀𝒊𝜺𝒊𝒊 .  

 

The reweighting approach that we use here is closely related to the Bayesian ensemble refine-

ment method.22 In that method, an additional parameter is introduced to take into account the 

confidence in the prior distribution; this parameter enters as a global scaling factor in the errors 

for each data point. The errors used here can similarly be used to modulate both our confidence 

in the experimental data and our confidence in the original force field. Cesari, et al.24 include 

further discussion on the relationship between the Bayesian ensemble refinement method and 

the reweighting approach presented in this paper. 
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Evaluation of the error terms for the reweighting algorithm. We explore two error models for 

the experimental data. First, we use a Gaussian error model with 𝑷(𝜺𝒊) ∝ 𝑵𝒐𝒓𝒎(𝟎, 𝝈𝒊). This 

error model is especially useful when the variance of the experimental measurement and for-

ward model is known. In this case, the error term becomes 

 

⟨𝜺𝒊⟩ = 	−𝝀𝒊𝝈𝒊𝟐 

 

We also try using an uninformative prior, Jeffreys prior, as an error model. We treat the observa-

bles as having Gaussian error as before, with distribution 𝑵𝒐𝒓𝒎(𝟎, 𝝈𝒊). However, rather than 

specifying the variance 𝝈𝒊 explicitly for each observable, we model the variance as arising from 

Jeffreys prior with 𝑷(𝝈𝒊) ∝
𝟏
𝝈𝒊

. This prior is useful for situations in which we have no prior 

guess for the experimental error on the observables.  

 

When using Jeffreys prior on the variance directly, the average error diverges. We therefore 

bound the prior to act on the domain 𝝈𝒎𝒊𝒏 and 𝝈𝒎𝒂𝒙. We then have the following form for 𝜺𝒊, 

where 𝑬𝒊 is the exponential integral function 

 

⟨𝜺𝒊⟩ = −
𝟐
𝝀𝒊

𝒆
𝝀𝒊
𝟐𝝈𝒎𝒂𝒙𝟐

𝟐 − 𝒆
𝝀𝒊
𝟐𝝈𝒎𝒊𝒏

𝟐

𝟐

𝑬𝒊0𝝀𝒊
𝟐𝝈𝒎𝒂𝒙𝟐

𝟐 1 − 𝑬𝒊0𝝀𝒊
𝟐𝝈𝒎𝒊𝒏𝟐

𝟐 1
 

 

We can use these closed form expressions for ⟨𝜺𝒊⟩ to find 𝝀𝒊 with ⟨𝒇𝒊(𝒙)⟩ +	⟨𝜺𝒊⟩ = 	𝒇𝒊
𝒆𝒙𝒑. 

 

 

Reweighting as an optimization problem. The problem of calculating the Lagrange multipliers 

to satisfy ⟨𝒇𝒊(𝒙)⟩ +	⟨𝜺𝒊⟩ = 	𝒇𝒊
𝒆𝒙𝒑 can be formulated as an optimization problem, which can be 

tackled with any available minimization method. As the objective function, we use the following 

function, which depends on all the Lagrange multipliers 

 

𝚪(𝝀) = 𝐥𝐧 KL 𝑷𝟎(𝒙)+𝒅𝜺𝑷(𝜺)𝒆-∑ 𝝀𝒊(𝒇𝒊(𝒙);𝜺𝒊)𝒊

𝒙
N +L 𝝀𝒊𝒇𝒊

𝒆𝒙𝒑

𝒊
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The gradient of 𝚪(𝝀) is ⟨𝒇𝒊(𝒙)⟩ +	⟨𝜺𝒊⟩ −	𝒇𝒊
𝒆𝒙𝒑, such that minimizing 𝚪(𝝀) leads to an optimal 

setting of the Lagrange multipliers. Furthermore, with analytical solutions for each error model, 

it is tractable to evaluate this objective function for both the Gaussian error model with known 

variance and the Gaussian error with a bounded uninformative Jeffreys prior.  

 

This objective function behaves in a particularly convenient manner for optimization. It is strict-

ly convex in the cases of uncorrelated observables without error, and it is also strictly convex in 

the case with Gaussian error even with correlated observables.19 Furthermore, even when the 

experimental observables are correlated and an error is not added, all minima of the objective 

function satisfy ⟨𝒇𝒊(𝒙)⟩ +	 ⟨𝜺𝒊⟩ = 	𝒇𝒊
𝒆𝒙𝒑 and remain equally far from the prior 𝑷𝟎(𝒙).19 All min-

ima in this case are thus equally valid solutions for the reweighted ensemble. In the case of cor-

related observables without error, we are not guaranteed to be able to find a set of Lagrange 

multipliers that achieves this optimal value. In practice, this situation is essentially never en-

countered, as in all real systems one should model some amount of error, and thus the convexity 

in the error case leads the objective function to be convex in essentially all practical applica-

tions. Examples showing what would be the result of such a procedure when the trajectory is not 

consistent with the data are reported in Cesari, et al.24 

 

With a convex objective function, it is not necessary to use techniques such as genetic algo-

rithms and simulated annealing, which are meant to help the optimization procedure explore be-

yond the current local minimum. Instead, a gradient descent approach is guaranteed to approach 

a unique minimum. In this approach, we begin with a random guess for parameters 𝝀𝒊, evaluate 

⟨𝒇𝒊(𝒙)⟩ +	⟨𝜺𝒊⟩, and update our guess for	𝝀𝒊 to 𝝀𝒊 − 𝛈P𝒇𝒊
𝒆𝒙𝒑 − ⟨𝒇𝒊(𝒙)⟩ −	⟨𝜺𝒊⟩Q for learning the 

parameter 𝜼. When the Lagrange multipliers converge, this iterative procedure is complete, 

yielding a reweighted ensemble 𝑷𝟏(𝒙).  

 

Despite the guarantee of convexity, gradient descent methods can be very slow to reach a mini-

mum. For instance, if the Hessian is not well conditioned, these procedures can oscillate around 

the optimal Lagrange multiplier setting, with step sizes too large to converge on the minimum. 

For this reason, we use the conjugate gradient approach as an alternative for determining the 

Lagrange multipliers.  
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We note that it is possible to pursue other minimization strategies to achieve further conver-

gence, such as methods that require the calculation of the Hessian like Newton's method. Fur-

thermore, techniques such as mini-batch gradient minimization26 can aid computational efficien-

cy by operating on randomly chosen smaller batches of the dataset in each iteration, taking in 

more data for tuning the Lagrange multipliers in further iterations as the parameters approach 

their optimal value. Depending on the particulars of the ensemble being reweighted and the 

number of available experimental observables, improving efficiency using these methods may 

be desirable. 

 

Molecular dynamics simulations of dialanine. As a first test system, we evaluated reweighting 

on dialanine. By systematically altering the free energy (FE) landscape of dialanine and generat-

ing data from these altered FE landscapes, we can assess the ability for reweighting to correctly 

shift the simulation ensembles towards the true one. Furthermore, we can readily generate long 

trajectories with this system to test the computational efficiency of reweighting. 

 

To generate a converged ensemble for dialanine in vacuo, we ran an MD simulation with a bias 

potential from a well-tempered metadynamics simulation.27 We used GROMACS 5.1.428 for all 

simulations, and we accelerated sampling for our first simulation with well-tempered metady-

namics (WT-MetaD)27 as implemented in PLUMED 2.3.129. We used the Amber99SB-ILDN30 

force field, running in vacuo. For both simulations, we ran for 20 ns with a time step of 2 fs, 

generating ~200,000 frames. We used no van der Waals or Coulomb force cutoffs as our system 

was very small. We kept the temperature of the system at 300 K using temperature coupling 

with the v-rescale thermostat31. 

 

For the initial WT-MetaD simulation, we used the backbone dihedrals 𝝓	and 𝝋	as collective 

variables, depositing Gaussians of height 1.2 kJ/mol and width 0.35 every 500 time steps, using 

a bias factor of 8. These parameters were chosen to match those used by Bonomi, et al.32 We 

used the resulting WT-MetaD potential to bias our second simulation, in which we calculated 

the free energy curve projected onto 𝝓, and we calculated the 36 distances between non-bonded 

heavy atoms as a dataset for reweighting. To generate shifted ensembles for testing reweighting, 

we added Gaussians of the form −𝒌𝒆-(𝝓-𝟏)𝟐 to the free energy projected onto 𝝓 at 𝝓 = 𝟏, and 

we measured ensemble averages of the 36 non-bonded heavy atom distances on these shifted 

ensembles.  
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Reweighting of the dialanine simulations. To assess the ability of the reweighting procedure to 

improve incorrect ensembles, we reweighted the prior dialanine ensemble with synthetic data 

from the shifted ensembles, using 36 distances between non-bonded heavy atoms. To generate 

the reweighted ensemble, we initially used gradient descent minimization with step sizes of 0.5, 

initializing Lagrange multipliers to 0. The MetaD bias potential was included with the prior en-

semble. For these initial tests, we incorporate no error into our dataset or in the reweighting al-

gorithm, and we generated data from an ensemble shifted by a Gaussian of magnitude 15 

kJ/mol.  

 

We measured convergence levels by measuring the current data error, taking the L1 norm of the 

deviation between the data from the expected curve and the current 36 average distances on the 

reweighted ensemble. If the data from the true ensemble is given by 𝒇𝒊, with 𝒊 ranging from 1 to 

36, and the data from the current ensemble is 𝒇𝒊∗, then the data error is 

 

𝒅𝒂𝒕𝒂	𝒆𝒓𝒓𝒐𝒓 =L |𝒇𝒊 − 𝒇𝒊∗|
𝒊

 

 

We found that it was challenging to reach convergence with a gradient descent approach, with 

the data error reaching a plateau above 𝟑 ∗ 𝟏𝟎-𝟒. Even after scanning for alternative step sizes 

for gradient descent, this challenge remained. As discussed previously, gradient descent methods 

may fail to converge even in the case of a unique minimum, as the Lagrange multipliers may 

oscillate around an optimal setting.  

 

Thus, we used a conjugate gradient descent strategy as an alternative minimization technique, 

finding that the data errors converged more quickly with this approach. We terminated the min-

imization procedure once the data error was below 𝟏. 𝟔𝟕 ∗ 𝟏𝟎-𝟓, finding that the magnitude of 

the deviation of Lagrange multipliers between iterations fell to less than 1% of their magnitude 

after this threshold was reached. 

 

To evaluate the reweighted ensembles, we used two measures to compare the deviation between 

the prior ensemble and the true ensemble with the deviation between the reweighted ensemble 

and the true ensemble. Both measures were made after aligning all FE curves at the left of the 

two energy basins for backbone dihedral 𝝓, at 𝝓 = -2.6.  
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First, we computed the RMSD FE error between two ensembles as follows. We projected the 

free energy onto the backbone dihedral 𝝓, binning the dihedral angles into 51 bins; this proce-

dure yielded free energy values 𝒇𝒆𝒋𝒊	for each ensemble 𝒊 and each 𝝓 bin 𝒋. Then the RMSD FE 

error is defined as follows 

𝑹𝑴𝑺𝑫	𝑭𝑬	𝒆𝒓𝒓𝒐𝒓 = 	e
∑ P𝒇𝒆𝒋𝟏 − 𝒇𝒆𝒋𝟐Q

𝟐
𝒋

𝒏𝒖𝒎_𝒃𝒊𝒏𝒔  

 

We also compared ensembles using a weighted RMSD FE error, which weights errors by the 

population in that 𝝓 bin. Varying the temperature in the weighted RMSD FE error calculation 

can alter the influence of bin populations; indeed, at low temperature, only the free energy min-

ima of the system would contribute to the weighted RMSD FE error, whereas in the large tem-

perature limit the weighted RMSD FE becomes equivalent to the unweighted RMSD FE error. 

Note that the population in bin 𝒋 of ensemble 𝒊 is given by 

 

𝒘𝒋
𝒊 = 	𝒆-𝒇𝒆𝒋

𝒊/𝒌𝒃𝑻 L𝒆-𝒇𝒆𝒋
𝒊/𝒌𝒃𝑻

𝒋
m  

 

Then the weighted RMSD FE error can be computed as 

 

𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅	𝑹𝑴𝑺𝑫	𝑭𝑬	𝒆𝒓𝒓𝒐𝒓 = 	eL 𝒘𝒋
𝒊P𝒇𝒆𝒋𝟏 − 𝒇𝒆𝒋𝟐Q

𝟐

𝒋
 

 

 

Molecular dynamics simulations of c-Myc402-412. We next examined the performance of re-

weighting on c-Myc402-412 in the presence of the small molecule 10058-F4. This system provides 

a biologically relevant33 and computationally tractable case for evaluating reweighting. Fur-

thermore, NMR chemical shifts of the peptide in the presence 10058-F4 are available.34-35 

 

Using GROMACS 5.1.428, we simulated c-Myc402-412 and 10058-F4 with three force field set-

tings: Amber9436 with the TIP3P37 water model, Amber03w38 with the TIP4P/200539 water 

model, and Amber03ws40 with the TIP4P/200539 water model. For 10058-F4, we used the force 

field parameterization determined in previous work.35 These parameters were meant to better 
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model the compound, particularly the potential energy function of the dihedral angle of the mol-

ecule, which was observed to be poor when using the GAFF force field parameters41.  

 

We used the following steps to set up the systems for simulation: We placed N-terminally acety-

lated and C-terminally amidated c-Myc402-412 in a 5.86 nm cubic box with one molecule of 

10058-F4. We then solvated the system with water, yielding 6791 water molecules for the 

TIP4P/2005 and 6661 water molecules for the TIP3P. We added one sodium ion to each simula-

tion to neutralize the net charge of the system. We then ran an energy minimization until the 

maximum force applied on the system per step was less than 1000 kJ/mol/nm. To generate ve-

locities for the system, we ran a 500 ps NPT simulation with a Berendsen barostat42 maintaining 

the pressure at 1 atm and generating temperatures at 300 K with v-rescale themostat31. We con-

strained bonds with the LINCS constraint algorithm43.  

 

To generate a set of varied configurations across the free energy landscape of c-Myc402-412 for 

starting 128 separate trajectories, we ran an NVT simulation at 600 K for 2 ns to generate a 1000 

frame trajectory. Again, we used the v-rescale thermostat in GROMACS for temperature cou-

pling, generating velocities at 600 K. We chose 128 frames randomly from the resulting trajecto-

ry as a starting point for the production simulation replicas.  

 

In the final production c-Myc402-412 simulations using these starting configurations, we generated 

5.0 μs of aggregated simulation time across 128 simulation replicas at 300 K. We also ran a re-

straining simulation for each force field for 5.0 μs of aggregated simulation time, with multiple 

replica restraints as implemented in metainference18 applied to the 128 replicas, using the chem-

ical shift data and the forward model discussed below (section c-Myc402-412 Forward Model and 

Reweighting). To further enhance sampling for the unrestrained simulation, we also ran a replica 

exchange molecular dynamics (REMD)44 simulation for each force field for 8.5 μs of simulation 

time across 128 replicas, yielding 66.047 ns of simulation in 83,009 frames for the 300 K repli-

ca. For each simulation setting, we ran with 2 fs timesteps, using Particle Mesh Ewald calcula-

tions45 for Coulomb forces with a cutoff of 0.9, and cutting off van der Waals forces at 0.9. We 

constrained bonds with the LINCS algorithm43. We generated velocities on each replica to 

match the temperature of that replica. 
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Enhanced sampling of c-Myc402-412. With PLUMED 2.3.129, MetaD was used to encourage the 

system to sample more efficiently across the energy landscape. The nine collective variables that 

were chosen match those used previously.35 In the description below, we include the abbrevia-

tions used for these collective variables. 

 

As a first collective variable, we used the number of 𝝓	and 𝝋 angles that matched the expected 

angles for a right a-helix (ahelixright). Our second, third, and fourth collective variables were 

designed similarly, measuring β-sheet content (betasheet), left a-helix content (ahelixleft), and 

polyproline helix content (polypro), respectively. These first four collective variables encour-

aged exploration of various distributions of secondary structure in the peptide. As a fifth collec-

tive variable, we used the radius of gyration (rgyr), or the RMSD distance between atoms in the 

peptide to its center of mass, encouraging the peptide to explore varying extended states. For the 

final collective variable for the peptide, we used the number of backbone hydrogen bonds 

(ohbond), counting the number of relevant hydrogen and electronegative atoms less than 2.5 Å 

apart. The final three collective variables measured the distance between sections of the peptide 

and the small molecule. The first of these measured the distance between c-Myc402-405 and the 

small molecule (fstdr), the next between c-Myc406-408 and the small molecule (scddr), and the 

final between c-Myc409-412 and the small molecule (trddr). These distances ensured that the sim-

ulation explored the variety of potential interactions between 10058-F4 and the peptide. 

 

To determine the desired Gaussian sizes for these collective variables, we ran a short 1 ns ver-

sion of the production simulation, computing the collective variables’ values across the resulting 

frames. Half the standard deviation of each collective variable after this short simulation was 

used as the sigma value for deposited Gaussians in MetaD. We deposited Gaussians with height 

1.2 every 500 time-steps, running with a bias factor of 10. 

 

We ran additional simulations that used REMD44 to enhance the sampling of our c-Myc402-412 

system, with a low temperature of 300 K and a high temperature of 600 K, and 128 total repli-

cas. The temperatures chosen for each replica were in a geometric series from 300 K to 600 K. 

Exchanges were attempted between neighboring replicas every 500 time-steps. Upon observing 

exchange frequencies during the simulation, we found that it was unnecessary to include addi-

tional replicas. 
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Convergence of the c-Myc402-412 REMD simulations. We performed various checks to ensure 

that the REMD simulations were sufficiently converged before applying reweighting. First, we 

ensured that the full domain of each collective variable had been explored sufficiently during the 

simulation (Fig. S3). 

 

As another check for convergence, we assessed whether the simulation had reached a regime in 

which sections of the simulation were uncorrelated with one another. To determine if given sec-

tions, or blocks, of the simulation are correlated, we estimated an observable from the simula-

tion by measuring this value across blocks of simulation, and we viewed how the error of this 

estimate varies with the block size. For the observable, we used the free energy curves projected 

onto each collective variable. The average error reached by every collective variable is relatively 

low, and we observed that the block errors reach a plateau in all cases, indicating that the corre-

lation between blocks is no longer present at larger block sizes (Fig. S4). 

 

Additionally, we estimated whether sampling in coordinate space is complete by clustering the 

trajectory’s configurations, checking whether blocks of the simulation have similar distributions 

of populations in these clusters, and determining if simulation blocks are uncorrelated with re-

spect to cluster populations. We clustered the trajectory frames using the Gromos algorithm46, 

considering frames as neighbors if the backbone Cα atoms were less than 2 Å RMSD away. 

With the Amber03ws force field, 335 clusters were generated; and with Amber94, 257 clusters 

were generated. For each block size, we computed the number of frames belonging to each clus-

ter, weighted by the MetaD bias, and we computed the average error of these cluster sizes across 

blocks. We can see that as in the previous section, the block errors level off with increasing 

block size, indicating convergence (Fig. S5). 

 

For the REMD simulations, additional checks are necessary to ensure convergence, as it may be 

the case then that the simulations never actually explore the full free energy landscape, but ra-

ther exchange configurations in separate free energy basins across replicas, giving the appear-

ance of exploration on a single replica. To check for this potential artefact, we produced alterna-

tive demuxed trajectories that followed one starting configuration across temperatures as it was 

exchanged across replicas. For each collective variable, we plotted the average histogram across 

the 128 demuxed trajectories, along with the minimum and maximum bin population for each 

position across all the replicas.47 We saw that the distributions of collective variables across de-

muxed trajectories is conserved, with the minimum and maximum value in each histogram bin 
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deviating minimally from the mean distribution (Fig. S6). Thus, individual demuxed trajectories 

are not contributing distinct sections of configuration space. 

 

 

Forward model and reweighting of the c-Myc402-412 simulations. As a forward model to predict 

chemical shifts from a configuration of the system, we used CamShift48. We ran reweighting on 

the ensembles from Amber94 with TIP3P, Amber03w with TIP4P/2005, and Amber03ws with 

TIP4P/2005, using the 12 Cα and Cβ chemical shifts as experimental observables. The restrain-

ing simulations also used these 12 Cα and Cβ chemical shifts. For the determination of the La-

grange multipliers, we used conjugate gradient optimization. The MetaD bias potential from 

each simulation was used as its prior ensemble. The search for Lagrange multipliers was termi-

nated once reaching a convergence threshold of 𝟐. 𝟏𝟖 ∗ 𝟏𝟎-𝟓. To avoid overflow errors with the 

exponents in the objective function and gradient, it was critical to shift the linear bias potential 

with an additive constant, which does not alter the correctness of the reweighted ensemble. 

 

For both restraining and reweighting simulations, we used the Gaussian error model for the data, 

taking the typical error of the Camshift predictor48 as an approximation of the standard deviation 

of the error. In particular, we used the reported error for CamShift on a 28-protein test set, com-

puted as an RMSD between experimental and predicted chemical shifts (1.3 for Cα shifts, 1.36 

for Cβ shifts, and 0.28 for Hα shifts).48 

 

 

Details of the sampling experiment. To test reweighting in the setting of poor sampling, we 

generated ensembles of varying qualities by shifting and subsampling the simulation ensembles 

for dialanine and c-Myc402-412. Analysis of these trials is presented in Fig. 4, S8, and S9. 

 

For dialanine, we began with the free energy curve generated from simulation, and we shifted 

this landscape with Gaussians at 𝝓 = 𝟏 as discussed previously. We ran experiments with 

Gaussians of magnitude between 15 and 40 in increments of 5. For each ensemble, we subsam-

pled the trajectory frames using weights computed from the simulation bias, thus generating 

samples that ergodically sampled from the initial simulation ensemble. We generated ensembles 

of sizes between 10,000 and 100,000 frames in increments of 10,000. For each sample size and 

shift size, we generated 5 trials. Then, we used the dataset of 36 distances as collected on the 

original simulation ensemble to reweight each prior, using for the error model Gaussian error 
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with fixed standard deviation 0.01. We measured the quality of the reweighted ensemble by 

computing the free energy error to the original simulation ensemble. 

 

For c-Myc402-412, we again shifted the ensemble from simulation with Gaussians to generate pri-

ors of varying quality. In particular, we began with the free energy landscape projected onto the 

β-sheet content (number of dihedral angles with angles corresponding to β-sheet structure), and 

added Gaussians to this landscape of the form −𝒌𝒆-𝟏.𝟓(𝜷𝒔𝒉𝒆𝒆𝒕-𝟔)𝟐 with 𝒌 ranging from 15 to 40 

in increments of 5. Again, we generated ensembles of sizes between 10,000 and 100,000 in in-

crements of 10,000 by ergodically sampling from the original simulation, and we conducted 5 

trials for each shift size and ensemble size setting. We ran reweighting on these ensembles using 

the 12 Cα and Cβ chemical shifts, and we tested the quality of the resulting ensembles by meas-

uring the match to the 9 Hα chemical shifts not used for reweighting. 

 
 

Indicators for the robustness of the reweighted ensemble. We explored various metrics that can 

be easily computed to help assess the reliability of the reweighted ensemble when additional 

validation data are unavailable.  

 

As a basic first check, it is useful to ensure that the range of forward model predictions for an 

experimental observable from an ensemble frames actually overlaps with the observed experi-

mental value. We term ‘domain failures’ cases in which this overlap does not occur. While none 

of the c-Myc402-412 ensembles tested had a domain failure with the measured 12 Cα and Cβ 

chemical shifts, domain failures were observed for some of the larger ensemble shifts tested for 

the dialanine system did. These domain failures mapped to cases in which the reweighting pro-

cedure led to a worse match with the true dialanine ensemble (Fig. S8).  

 

If further analysis of a system depends on some experimental observable, the error of this ob-

servable in the reweighted ensemble is a useful measure for whether it is reasonable to use the 

reweighted ensemble. We explored how the quality of the prior ensemble tracked with the error 

in an experimental observable: the experimentally measured 9 Hα chemical shifts for this sys-

tem. We computed the average Hα chemical shift measurement in each of 10 blocks of the re-

weighted ensemble, and we computed the error of this measurement across blocks. In Fig. S9, 

we see that this block error increases when the prior quality is lower, either when the prior has a 
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smaller number of frames or deviates more from the true ensemble. This result supports the ex-

pectation that the reweighted ensemble should be less reliable with poor sampling.  

 

We finally explored the Kish effective sample size49 as a metric to assess whether a reweighted 

ensemble is reliable. After reweighting, say each frame of the simulation is given a weight 𝒘𝐢. 

Then the Kish effective sample size is computed as: 

 

Kish	effective	sample	size =
(∑𝑤))K

∑𝑤)K
 

 

Note that when the reweighting algorithm preferences a single frame over all the rest, the Kish 

effective sample size takes the value 1; when the reweighting algorithm preferences all frames 

equally, the Kish effective sample size is the size of the original ensemble. We normalize this 

metric by the original size of the ensemble. The log-normalized Kish effective sample size, 

termed the Kish score, then takes lower values when the reweighting algorithm leads to a small 

ensemble relative to the original ensemble; when this is the case, we expect further analysis of 

the ensemble to be less robust.  

 

 

Results 

 

The dialanine simulation yielded approximately 200,000 frames, producing the FE landscape in 

Fig. 2a. Following previous work on this system32, we considered a modified ensemble with the 

FE shifted by an added Gaussian shift of 15 kJ/mol at ϕ=1, altering the balance between the two 

FE minima (Fig. 2b, green curve). We reweighted the prior with synthetic data from this shifted 

ensemble, using 36 distances between non-bonded heavy atoms. 

 

The reweighting algorithm converged in a computationally efficient manner, requiring just 

minutes on a personal computer to reweight the trajectory frames. The procedure shifted the pri-

or FE closer to the true ensemble, reducing the average FE error from 6.70 kJ/mol to 3.87 

kJ/mol. The remaining error can be interpreted by considering intrinsic features of the method. 

The reweighted ensemble converged to an ensemble different from the true one even as the 

match to the data reached RMSD below 10-L nm (Fig. 2d). We note, however, that the error 

was most reduced in highly populated regions of the true ensemble, where data were most in-
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formative (Fig. 2c). Indeed, we can compute an FE error weighted by ensemble population (see 

SI); reweighting shifts the weighted FE error from 13.80 kJ/mol to 0.41 kJ/mol. This weighted 

FE error measurement highlights that the true ensemble and reweighted ensemble are quite simi-

lar, agreeing closely in highly populated regions. We recall that maximum entropy restraints can 

be shown to minimize the KL divergence from the posterior to the experimental ensemble,24, 50 

and that this metric by construction upweights highly populated conformations.  The maximum 

entropy method did not find the true ensemble exactly because, in this case, a different ensemble 

closer to the prior exists that also matches the experimental data; indeed, the KL divergence 

from the reweighted to the prior ensemble (3.03 kJ/mol) is lower than the KL divergence from 

the true to the prior ensemble (3.10 kJ/mol). We would expect a restrained simulation using the 

same dataset to similarly not be able to recover the true ensemble in less populated regions of ϕ 

space. When using a dataset that is also informative for less populated regions of ϕ space, re-

weighting can bring the modelled ensemble closer to the true ensemble in high FE regions as 

well (Fig. S1). The procedure continues to improve the prior in tests with larger Gaussian shifts, 

and when the data are modeled with Gaussian error or with an uninformative Jeffreys prior51 on 

the data variance (Fig. S2, Table S1). 

 

For the c-Myc402-412 system, we ran simulations with parallel bias metadynamics52 (PBMETAD) 

using collective variables chosen based on previous work.35 In order to test reweighting with 

various priors, we ran simulations with three force fields: Amber03ws40, Amber03w38, and Am-

ber9436, using GROMACS28 equipped with PLUMED29. We used 12 previously published Cα 

and Cβ chemical shifts as metainference restraints or for a posteriori reweighting.53 To compare 

the use of data for restraining vs for reweighting with equivalent sampling, for each force field 

we ran a metadynamics metainference simulation18 and an unrestrained PBMETAD simulation, 

both employing 128 replicas for 5 μs of aggregated simulation time. Additionally, we explored 

reweighting replica exchange molecular dynamics (REMD)44 simulations with 8.5 μs of aggre-

gated simulation time for each force field (see Figs. S3-6 for simulation convergence). 

 

To evaluate the results of the restraining and reweighting simulations, we assessed the agree-

ment to 9 Hα peptide chemical shifts not used to generate the ensembles. For each ensemble, we 

computed the deviation of ensemble-averaged predicted Hα chemical shifts from the experimen-

tally measured value (Fig. 3). The Amber94 simulation with no experimental data yielded the 

worst match to the chemical shifts (Fig. 3, red bars). After reweighting, the average deviation 

from the Hα chemical shifts reduced in all force fields to between 0.06 and 0.08 ppm (Fig. 3, 
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blue bars). The reweighting and restraining approaches (Fig. 3, green bars) performed compara-

bly, with Hα chemical shift deviations within simulation statistical error. Reweighting the 

REMD ensemble (Fig. 3, orange bars) provided a similar match to the chemical shifts, indicat-

ing that, for this system, both sampling approaches allowed for successful reweighting.  

 

We additionally compared the reweighted and the restrained ensembles on the 9 collective vari-

ables used for metadynamics enhanced sampling. For each simulation approach and prior, we 

computed the FE landscape projected onto these collective variables, which include features 

such as the secondary structure content of the peptide or the distance between the peptide and 

the small molecule (Fig. S7). The reweighting and restraining approaches produced a similar FE 

landscape for each collective variable. Whereas restraining and reweighting yielded a closer 

match to the experimental Hα chemical shifts when applied to the priors from all three force 

fields (Fig. 3), these approaches produced distinct collective variable distributions across force 

fields, remaining close to the corresponding prior ensembles (Fig. S7). For instance, the ensem-

bles based on the Amber94 prior retain a high a-helical content for the peptide compared to the 

ensembles based on the Amber03w and Amber03ws priors. It is possible that other experimental 

data sets can better correct this discrepancy between force fields. 

 

Since reweighting converges within 10 s for each simulation, the procedure in this case is an 

efficient post-processing step for incorporating data into ensembles. When experimental data are 

collected after a simulation has completed, reweighting presents an opportunity to include new 

information without restarting simulations. In some cases, even if data are available before gen-

erating a prior ensemble, it may still be computationally prohibitive to evaluate restraints during 

a simulation. Here, however, including the Cα and Cβ chemical shifts as metainference re-

straints did not substantially increase simulation time when compared to unrestrained simula-

tions (Table S2). 

 

In this case, reweighting with experimental data improved the match of the ensembles to the Hα 

chemical shifts and produced ensembles that agreed with restrained simulations across various 

collective variables. More generally, however, we expect that the procedure might fail in cases 

of poor sampling. It is thus important to develop strategies for evaluating the quality of a re-

weighted ensemble when validation data are limited. To investigate cases with poor sampling, 

we created priors of varying qualities by shifting and subsampling the ensembles for dialanine 

and c-Myc402-412 with Gaussians shifts of varying magnitudes (Fig. 4a,c). For dialanine, we re-
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weighted these ensembles using synthetic data from the original ensemble (Fig. 4a, red curve), 

whereas for c-Myc402-412 we began with the Amber03ws REMD ensemble (Fig. 4c, red curve) 

and reweighted using the 12 Cα and Cβ chemical shifts. Using these priors, we explored metrics 

that signal unreliable reweighting. 

 

We present the following three indications to identify unreliable reweighting. First, for each data 

point, we can determine if the range of predicted values from the prior does not overlap with the 

experimental data. These domain failures are indicative of poor reweighting: in the case of dial-

anine, reweighting worsened the ensemble in 96.7% of trials with domain failures (Fig. S8). 

Second, we can compute the error of an observable of interest across blocks of the reweighted 

ensemble to assess the procedure (Fig. S9). Third, we can compute the Kish effective sample 

size49 using reweighting weights to evaluate ensemble reliability (details in SI). This metric in-

dicates the extent to which reweighting shifts the prior; it is equal to 1 when reweighting favors 

a single ensemble frame, and it is equal to the size of the prior ensemble if reweighting does not 

change the prior. In tests with dialanine (Fig. 4b) and c-Myc402-412 (Fig. 4d), lower log normal-

ized Kish effective sample sizes (Kish scores) correspond to cases in which reweighting per-

forms inconsistently. When the Kish score is below -8 in these cases, reweighting is sharply less 

reliable, and it is preferable to use a more accurate prior.  

 

 

Conclusions 

 

Taken together, our results indicate that reweighting approaches can efficiently improve unre-

strained ensembles and match the quality of restrained ensembles when force fields and sam-

pling are accurate. To enable the correct use of reweighting when validation data are insuffi-

cient, we discussed metrics that can be used for quality control. We anticipate that inventive 

combinations of restraining and reweighting approaches will enable the future development of 

increasingly accurate methods for integrating experiments and simulations, leading to improved 

mechanistic understanding of protein function through the determination of structural ensem-

bles. 
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Figure 1. Schematic illustration of different approaches for determining structural ensem-

bles. (a) The black dashed line indicates an experimental readout and the colored dashed lines 

ensemble averages, corresponding to different cases: the true ensemble (green curve), the prior 

ensemble (red curve) and the ensemble of the simulations combined with experimental data by 

reweighting or by restraining (blue curve); the shaded region indicates the experimental error. 

(b) When the prior (red curve) and true (green curve) ensembles have a poor overlap, re-

weighting (blue curve) does not help much. 
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Figure 2. Reweighting of the free energy landscape of dialanine. (a) Dialanine structure and 

its free energy (FE) projected onto the dihedral ϕ. (b) Reweighted FE using data from the true 

ensemble and conformations from the prior. Curves are shifted to be equal at ϕ=-2.6. (c) Abso-

lute deviation between the prior and true ensemble (red), and between the reweighted and true 

ensemble (blue). Dashed lines indicate RMSD errors over ϕ. (d) RMSD FE error between re-

weighted and true ensemble, and convergence to data over iterations of minimization. When 

converging reweighting with an error model for the data (Table S1), the FE error resembles the 

minimum error obtained at 50 iterations with no data error model. 
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Figure 3. Comparison of the performance of reweighting and restraining methods on c-

Myc402-412. Bars depict the average deviation between predicted and experimental Hα chemi-

cal shifts. Error bars indicate the standard deviation of these errors, calculated with block analy-

sis (SI). 
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Figure 4. Kish effective sample size as a measure for reliable reweighting. (a,b) Dialanine. 

(c,d) c-Myc402-412. (a,c) Ensembles from simulation (red), and shifted priors. (b,d) The Kish 

score is the log normalized Kish effec-tive sample size. The dialanine reweighting error is the 

FE difference between the reweighted and true ensembles. The c-Myc402-412 reweighting error 

is the error of Hα chemical shifts after reweighting; diamonds indicate shift size aver-ages. 
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