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Optimized Population Monte Carlo

Vı́ctor Elvira, Senior Member, IEEE, and Émilie Chouzenoux, Senior Member, IEEE

Abstract—Adaptive importance sampling (AIS) methods are
increasingly used for the approximation of distributions and
related intractable integrals in the context of Bayesian inference.
Population Monte Carlo (PMC) algorithms are a subclass of AIS
methods, widely used due to their ease in the adaptation. In this
paper, we propose a novel algorithm that exploits the benefits
of the PMC framework and includes more efficient adaptive
mechanisms, exploiting geometric information of the target distri-
bution. In particular, the novel algorithm adapts the location and
scale parameters of a set of importance densities (proposals). At
each iteration, the location parameters are adapted by combining
a versatile resampling strategy (i.e., using the information of
previous weighted samples) with an advanced optimization-based
scheme. Local second-order information of the target distribution
is incorporated through a preconditioning matrix acting as a
scaling metric onto a gradient direction. A damped Newton
approach is adopted to ensure robustness of the scheme. The
resulting metric is also used to update the scale parameters of the
proposals. We discuss several key theoretical foundations for the
proposed approach. Finally, we show the successful performance
of the proposed method in three numerical examples, involving
challenging distributions.

Index Terms—Importance sampling, Monte Carlo methods,
population Monte Carlo, Newton algorithm, covariance adap-
tation, stochastic optimization, Langevin dynamics.

I. INTRODUCTION

Intractable integrals appear in countless problems of science

and engineering. For instance, in Bayesian inference the in-

terest is in estimating a posterior distribution of an unknown

parameter given a set of related data. For most realistic models,

the posterior distribution cannot be obtained in a closed form,

and even more, it is not possible to simulate samples from it.

Therefore, obtaining moments of interests (e.g., the mean, the

variance, the probability of a certain event) is unfeasible either

via an exact closed form or through approximations involving

direct sampling. Importance sampling (IS) is a popular type

of Monte Carlo methods [1], [2], [3] for the approximation of

intractable distributions and related integrals. In its standard

procedure, IS requires the simulation of samples from another

distribution (called proposal). The samples receive an impor-

tance weight that takes into account the mismatch between

target and proposal distributions. IS is a theoretically solid

mechanism with strong guarantees, such as consistency, central
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Université Paris-Saclay, Inria, CentraleSupélec, Centre de Vision Numérique
(France).
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limit theorems, and explicit error bounds [3], [4]. The perfor-

mance in IS strongly depends on the adequacy of the proposal

distribution. Intuitively, a proposal is good when it is close to

the integrand in the targeted integral. However, it is usually

impossible to know in advance where the probability mass of

the target distribution is located (e.g., in Bayesian inference,

one only has access to the evaluation of an unnormalized

version of the posterior distribution). Therefore, advanced

strategies must be employed, usually involving more than one

proposal, which is called multiple importance sampling (MIS)

[5], combined with the adaptation of the multiple proposals,

leading to adaptive importance sampling (AIS) schemes [6].

The literature of AIS is vast, including methods based

on sequential moment matching such as AMIS [7], [8], that

comprises a Rao-Blackwellization of the temporal estimators,

and APIS that incorporates multiple proposals [9]. Other recent

methods have introduced Markov chain Monte Carlo (MCMC)

mechanisms for the adaptation of the IS proposals [10], [11],

[12]. The family of population Monte Carlo (PMC) methods

also falls within AIS. Its key feature is arguably the use of

resampling steps in the adaptation of the location parameters of

the proposals [13], [14]. The seminal paper [15] introduced the

PMC framework. Since then, other PMC algorithms have been

proposed, increasing the resulting performance by the incor-

poration of stochastic expectation-maximization mechanisms

[16], non-linear transformation of the importance weights [17],

or better weighting and resampling schemes [18]. The method

we propose in this paper falls within the PMC framework.

The state-of-the-art AIS methods, and particularly those

belonging to the PMC family, suffer from several limitations

that prevent a wider application of IS to more challenging

problems. First, in the case of PMC, the resampling step

provokes the well-known path degeneracy (see for instance

[18, Fig. 4]), endangering the diversity of the proposals in

the subsequent iterations. Some attempts have been recently

done to attenuate this problem, e.g., the LR-PMC in [18]

first forms a partition of the samples and then performs

independent resampling step in each subset. However, this

is at the expense of worsening the local exploration, since

each partition approximates the target with less samples (see

more details in [18]). The second limitation, not only in PMC

but also in AIS in general, is that most existing methods

only adapt the location parameters of the proposals, while

the scale parameter remains fixed from the beginning. This

is a clear limitation, since it is well known that the scale

parameters of the proposals can make a significant difference

in the efficiency of the AIS algorithm. Moreover a fine manual

tuning requires a prior knowledge about the scale of the

posterior distribution. Finally, even if such optimal fine tuning

was possible, there is a clear advantage in adapting the scale

http://arxiv.org/abs/2204.06891v1
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parameter over the iterations, depending where the proposals

are placed. Moreover, this represents an extra challenge when

the dimensions of the posterior are of different order of

magnitude and/or present strong correlations.

Some families of AIS methods use geometric information

about the target for the adaptation of the location parame-

ters, yielding to optimization-based adaptation schemes. For

example, the GAPIS algorithm [19] is an AIS method that

exploits the gradient and the Hessian of the logarithm of

the target, and also introduces an artificial repulsion among

proposals to promote the diversity (without any resampling

step). Other methods such as [20], [21] adapt the location

parameters by performing at each sample several steps of the

unadjusted Langevin algorithm (ULA) [22], which can also be

seen as an instance of a stochastic gradient descent method.

The covariance is also adapted in those methods by either com-

puting the sample autocorrelation [20] or using second-order

information [19], [21]. A covariance adaptation has been also

explored via robust moment-matching mechanisms in [23],

[24]. We refer the interested reader to the survey [6]. The use

of optimization techniques within PMC framework remains

however unexplored. It is worth mentioning that optimization

inspired schemes have also shown to be an efficient strategy to

improve practical convergence rate in MCMC algorithms (see

the survey paper [25] and references therein). In particular, the

works [26], [27], [28], [29], [30] fall in the framework of the

so-called Metropolis adjusted Langevin algorithms (MALA),

where the ULA scheme is combined with a Metropolis-

Hastings step. The Langevin-based strategy yields proposed

samples that are more likely drawn from a highly probable re-

gion, with the consequence of a larger acceptance probability.

MALA can be further improved by rescaling the drift term by

a preconditioning matrix encoding local curvature information

about the target density, through the Fisher metric [31], the

Hessian matrix [32], [33], [29] or a tractable approximation

of it [34], [35], [36], [37]. Optimization-based methods for

accelerating MCMC sampling of non-differentiable targets

have also been considered, for instance in [27], [38].

In this work, we propose a new Optimized PMC (O-

PMC) approach.1 To the best of our knowledge, the proposed

algorithm is the first within the relevant PMC family to

incorporate explicit optimization steps in order to enhance the

resampling-based adaptation by exploiting the geometry of the

target. In O-PMC, the proposals are adjusted using a stochastic

Newton-based step adapted to the sample values resulting from

a suitable resampling strategy. In contrast to the aforemen-

tioned works, here the mean and covariance adaptation are

performed jointly, with the advantage of fitting the proposal

distributions locally, boosting the exploration and increasing

the performance. A damped Newton strategy, incorporating

two stabilization features is proposed for the mean adaptation,

and the retained scale matrix is per-used for the covariance

adaptation. We show on three sets of numerical examples that

this novel methodology catalyzes the local adaptation without

endangering the diversity of the proposals nor the stability of

1A limited version of this work was presented by the authors in the
conference paper [39].

the trajectories.

The rest of the paper is structured as follows. Section 2

introduces the problem setting, the AIS framework, and

optimization-based proposal adaptation rules. In Section 3,

we present the proposed method. We discuss its rationale

and theoretical foundations in Section 4, including also a

toy example. Finally, we show three numerical examples in

Section 5 and conclude in Section 6.

II. BAYESIAN INFERENCE VIA IMPORTANCE SAMPLING

In this section, we describe the Bayesian inference frame-

work, the generic importance sampling methodology, and the

standard PMC, which is an adaptive IS (AIS) algorithm. Note

that, as stated in the introduction, the range of applicability

of O-PMC goes beyond Bayesian inference (e.g., in the first

two examples presented in Section V, the target distribution

is available in a closed form and not necessarily coming from

a Bayesian inference problem).

A. Bayesian inference

We consider the estimation problem of a vector of unknowns

x ∈ R
dx that is statistically connected through a probabilistic

model to the vector y ∈ R
dy that contains the available

data. The observation model is embedded into the likelihood

function ℓ(y|x). The Bayesian approach allows for the incor-

poration of available prior information about x in the so-called

prior distribution p0(x). The so-called posterior distribution

of the unknowns given the data (a.k.a. target distribution) can

then be expressed thanks to the Bayes rule:

π̃(x|y) =
ℓ(y|x)p0(x)

Z(y)
. (1)

Very often, the interest lies in the computation of a specific

moment of the posterior distribution which amounts to solving

integrals under the generic form

I =

∫
h(x)π̃(x)dx =

1

Z

∫
h(x)π(x)dx, (2)

where h is any integrable function w.r.t. π̃(x). Unfortunately,

in most cases of interest, Eq. (2) cannot be computed, either

because the integral is intractable or because the posterior

distribution is rarely available in a closed form, mostly because

of the impossibility of computing the normalizing constant

Z(y) ,
∫
π(x|y)dx (a.k.a. model evidence, marginal likeli-

hood, or partition function). Hence, it is useful to define the

non-negative function π(x|y) , ℓ(y|x)p0(x) = Z(y)π̃(x|y).
From now on, in order to ease the notation, we drop y in

Z , π(x), and π̃(x). In order to overcome this limitation,

approximate methods must be employed.

B. Importance sampling

Importance sampling (IS) is a Monte Carlo methodology

that allows for the approximation of distributions and integrals

as those of previous section. Unlike the raw (or standard)

Monte Carlo technique, the basic IS method simulates all

samples from the so-called proposal distribution q(x). The

samples are weighted accordingly in such a way consistent
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estimators can be built. More precisely, IS is composed of the

two following steps:

1) Sampling. Simulate K samples as

xk ∼ q(x), k = 1, ...,K.

2) Weighting. Assign an importance weight to each sample

as

wk =
π(xk)

q(xk)
k = 1, ...,K.

i.e., the ratio between the unnormalized target and the

proposal distribution, evaluated at the specific sample.

This basic sampling-weighting procedure allows for the con-

struction of the both next estimators:

• Unnormalized IS (UIS) estimator:

Î =
1

KZ

K∑

k=1

wkh(xk). (3)

• Self-normalized IS (SNIS) estimator:

Ĩ =
K∑

k=1

w̄kh(xk). (4)

Both UIS and SNIS are consistent with K , while only UIS is

unbiased. However, UIS can be used only if Z is known. The

key of success in IS is an appropriate choice of the proposal

q in such a way that the aforementioned estimators have a

low variance. The variance of the UIS estimator is minimized

when the proposal is q(x) ∝ |h(x)|π(x), while the optimal

proposal of the SNIS estimator is q(x) ∝ |h(x)|π(x) [1],

[2], [3]. However, in most of cases it is impossible to design

such proposal because it does not have a known form where

sampling is possible. Hence, adaptive methods are required in

order to iteratively improve the proposal.

C. Multiple importance sampling

Multiple importance sampling (MIS) refers to the case

where several proposals {qn(x)}Nn=1 are used instead of just

one, as in the previous section. It is known that in MIS, many

possible sampling and weighting schemes are possible, and

we refer the interested reader to an exhaustive comparison

and analysis in [5]. Let us consider the case where K = N
samples are simulated from the set of N proposals. One can

proceed as follows:

1) Sampling: Each sample is simulated from each of the

proposals as

xn ∼ qn(x), n = 1, ..., N

2) Weighting: Among all possible weighting options, we

describe two possibilities:

• Option 1: Standard MIS (s-MIS):

wn =
π(xn)

qn(xn)
, n = 1, . . . , N

TABLE I
STANDARD PMC ALGORITHM.

1) [Initialization]: Set σ > 0, (N, T ) ∈ N+. For n = 1, . . . , N ,

select the initial adaptive parameters µ
(1)
n ∈ Rdx and Σ = σ2

Idx .

2) [For t = 1 to T ]:

a) Draw one sample per each proposal pdf,

x
(t)
n ∼ q

(t)
n (x;µ

(t)
n ,Σ) (5)

with n = 1, . . . , N .
b) Compute the importance weights,

w
(t)
n =

π(x
(t)
n )

q
(t)
n (x

(t)
n )

. (6)

with n = 1, . . . , N .

c) Resample N location parameters {µ
(t+1)
n }Nn=1 from the set of

N weighted samples of iteration t.

3) [Output, t = T ]: Return the pairs {x
(t)
n , w

(t)
n }, for n = 1, . . . , N

and t = 1, . . . , T .

• Option 2: Deterministic mixture MIS (DM-MIS):

wn =
π(xn)

ψ(xn)
=

π(xn)
1
N

∑N
j=1 qj(xn)

, n = 1, . . . , N,

where ψ(x) = 1
N

∑N
j=1 qj(x) is the mixture pdf.

We recall that more sampling options are also possible. In the

two MIS schemes presented below, it is possible to build the

UIS estimator and also to normalize the weights to create the

SNIS estimator. It is important to note that, while Option 1

(s-MIS) seems a natural extension of IS to MIS, it has been

shown to provide always worse performance than Option 2

(DM-MIS), quantified in the variance of the UIS estimator. In

very simple examples, the difference of this variance in both

cases can be of several orders of magnitude (see [5] for more

details).

D. Adaptive Importance Sampling and Population Monte

Carlo

Adaptive importance sampling (AIS) is an iterative pro-

cedure for the adaptation of one or several proposals. The

literature of AIS is vast, specially in the last decade, and

we refer to [6] for an exhaustive review. Here we focus on

population Monte Carlo (PMC), a family of AIS algorithms

where the adaptation is based on resampling previous weighted

particles. Table I describes the standard PMC algorithm [15].

In Step 1), the algorithm is initialized with N proposals

where the location parameter is set to µ
(1)
n (or could be chosen

randomly) and the scale parameter is also set to Σ = σ2Idx
,

with σ > 0. Then, the algorithm runs for T iterations as

follows. In Step 2a), exactly one sample is simulated from each

proposal. An importance weight is assigned to each sample in

Step 2b). In Step 2c), the location parameters of next iteration

are chosen by resampling the population of samples with

probability proportional to the importance weight. Finally,

the set of NT weighted samples is returned so the classical
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unnormalized or self-normalized IS estimators can be built

similarly to Eqs. (3)-(4).

Several PMC-based algorithms have been proposed since

the publication of [15]. For instance, the M-PMC in [16]

adapts a mixture proposal, including the weight, location, and

scale parameter of each kernel of the mixture. The recent

DM-PMC [18], adapts the location parameters of N proposals

while the scale parameters remain static (e.g., with Gaussian

proposals, the means are adapted but not the covariance

matrices). The algorithm runs also over T iterations, where

at each of them, K samples per proposal are simulated and

weighted. The N adapted location parameters are resampled

from the population of the NK samples at time t.

E. Optimization-based samplers

The choice of a suitable proposal distribution is a key

challenge in sampling algorithms and have major conse-

quences in their performance. While algorithms where the

proposals are parametrized by static parameters might be

easier to set up, this is often suboptimal. The reason is

that the properties of the sought target are rarely known a

priori, particularly in challenging applications. Many iterative

schemes for proposal adaptation have been proposed in the

literature of MC samplers, with the aim of a better and

faster target exploration, especially at large dimension. One

of the most relevant strategies within this recent trend is

the Langevin-based sampling methods. Let us assume that

log π is continuously differentiable on R
dx . Langevin samplers

are derived from discrete approximations of the continuous

diffusion initially introduced in [40]. They use a gradient

descent step to move the samples location in the direction of a

local increase of the target. This leads to an iterative strategy

called unadjusted Langevin algorithm (ULA) [22]:

(∀t ∈ N) x(t+1) = x(t) +
ǫ2

2
∇ log π(x(t)) + ǫω(t), (7)

where, for every t ∈ N, ω
(t) ∈ R

dx is a realization of a

standard Gaussian distribution and ǫ > 0 is the discretization

stepsize. Note that the above scheme can also be interpreted as

a gradient descent method perturbed with an i.i.d. stochastic

error. Convergence analysis of the ULA sampler can be found

for instance in [41], [22]. As emphasized in the aforemen-

tioned works, except in very specific situations, the Markov

chain generated by the ULA scheme has a unique stationary

distribution which differs from the target π (see in particular

[42] for a quantification of this discrepancy). This undesirable

effect is a consequence of the discretization procedure, as it

is not present for the continuous Langevin diffusion [43]. To

overcome this limitation, the ULA can be combined with a

Metropolis-Hasting (MH) strategy, based on an acceptance-

reject procedure, leading to the so-called Metropolis adjusted

Langevin algorithm (MALA) [26]. The latter method has

proved ergodic convergence, under milder assumptions on π.

Moreover, its nice stability opens the door to the introduction

of acceleration strategies. In particular, more sophisticated

scale matrices, integrating more information (e.g., curvature)

about the target [34], [31], [30], [29], [44], [26], [45], can be

TABLE II
O-PMC ALGORITHM.

1) [Initialization]: Set σ > 0, (N,K,T ) ∈ N+, {νn}Nn=1. For n =

1, . . . , N , select the initial adaptive parameters µ
(1)
n ∈ R

dx and

Σ
(1)
n = σ2

Idx .

2) [For t = 1 to T ]:

a) [Sampling]: Simulate NK samples as

x
(t)
n,k

∼ q
(t)
n (x;µ

(t)
n ,Σ

(t)
n , νn) (9)

with n = 1, . . . , N , and k = 1, . . . ,K .
b) [Weighting]: Calculate the normalized IS weights as

w
(t)
n,k

=
π(x

(t)
n,k

)

1
N

∑N
i=1 q

(t)
i (x

(t)
n,k

)
. (10)

c) [Adaptation]: Adapt the location and scale parameters of the
proposal

i) [Resampling step] Resample N proposals densities from
the pool of NK weighted samples at the iteration t. The
means and scales of the resampled proposals are denoted as

µ̃
(t)
n and Σ̃

(t)
n , respectively. See Section III-C for explicit

definitions of the notations.
ii) [Optimization step] Adapt the proposal parameters

{(µ
(t+1)
n ,Σ

(t+1)
n )}Nn=1 according to (11)-(12).

3) [Output, t = T ]: Return the pairs {x
(t)
n,k

, w
(t)
n,k

}, for n =
1, . . . , N , k = 1, . . . , K and t = 1, . . . , T .

adopted. Let us in particular mention the Newton MH strategy

[30], [29], which consists in combining an MH procedure with

the stochastic Newton update:

(∀t ∈ N) x(t+1) =

x(t) +A(x(t))∇ log π(x(t)) +A1/2(x(t))ω(t), (8)

where A(x(t)) is the inverse (or an approximation of it,

when undefined or too complex) of the Hessian matrix

∇2 log π(x(t)). In the next section, we present our main

contribution, that is a new adaptive importance sampling

algorithm that integrates such Newton-based strategy within

the proposal adaptation rule of an advanced PMC scheme.

III. NEWTON POPULATION MONTE CARLO

In this section, we present the novel algorithm optimized

population Monte Carlo (O-PMC), an AIS algorithm that

belongs to the family of PMC algorithms (see Table I). O-

PMC incorporates several features for an efficient adaptation

of the IS proposals with the goal of approximating Eq. (2). The

O-PMC is presented in Table II. The algorithm is initialized

with N proposals whose location and scale parameters are

denoted with µ
(1)
n ∈ R

dx and Σ
(1)
n = σ2Idx

, respectively,

with σ > 0, i.e., the initial scale matrices are isotropic. We

denote the static parameters of the N proposals as {νn}
N
n=1.

Then, the algorithm runs for T iterations, each of them divided

in three steps: sampling in Step 2a), weighting in Step 2b), and

adaptation in Step 2c). Finally the set of weighted samples is

returned, so IS estimators can be built. In the following, we

detail the steps.
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A. Sampling and weighting

In Step 2a), at iteration t, each proposal is used to simulate

exactly K samples from it. Note that it would be possible to

have a different number of samples per proposal,Kn, although

this variation should be accordingly done with the resampling

step of previous iteration t−1. For simplicity in the description

of the algorithm, we stick to a fixed K .

The weighting scheme is applied in Step 2b) according to

Eq. (10), and in particular, those are based on the deterministic

mixture weighting scheme (DM-MIS) of Section II-C. Note

that these weights have been shown to provide a lower variance

in UIS estimator compared to those of Eq. (6) of the original

PMC method. We can call these weights spatial DM-MIS

weights, since the proposals involved in the mixture of the

denominator belong to the iteration t (see other options with

temporal or spatial-temporal mixtures in [6], [10]).

B. Resampling

The resampling step is the first adaptive procedure (Step 2c)

in Table II) which is then followed by the optimization step. In

the resampling step, we select a set of N proposals, including a

set of new location parameters {µ̃
(t)
n }Nn=1 and the associated

(inherited) scale parameters {Σ̃
(t)
n }Nn=1. The resampling can

be interpreted as a sampling procedure from one or several

particle approximations of the target distribution.

Here we present a novel resampling framework, for which

existing resampling schemes are particular cases, while novel

schemes can be derived (we propose one new scheme). Note

that in all existing resampling schemes, only the location

parameters are resampled, while here we also resample the

associated scale parameters (which is equivalent to resam-

pling the proposals). In our novel framework, the set of N

resampled proposals with location parameters µ̃
(t)
n , x

(t)

i
(t)
n ,j

(t)
n

and scale parameters Σ̃
(t)
n , Σ

(t)

i
(t)
n

are obtained by sampling

(randomly) or choosing (deterministically) N pairs of indexes

{i
(t)
n , j

(t)
n }Nn=1. The index i

(t)
n ∈ {1, ..., N} points to the

ancestor proposal which generated the sample that has been re-

sampled, while the index j
(t)
n ∈ {1, ...,K} selects the specific

sample in the set {x
i
(t)
n ,k

}Kk=1. Note that the resampled scale

parameter is selected by using only the ancestor index i
(t)
n .

Let us now propose three particular and interesting choices

for the resampling strategies, encompassed within our versatile

framework.

Global resampling (GR): The N location parameters

are simulated i.i.d. from a single particle approximation

π̂NK
t (x) =

∑N
n=1

∑K
k=1 wn,kδ (x− xn,k), constructed by the

set of NK weighted samples xn,k obtained from Step 2a),

and the normalized weights w
(t)
n,k =

w
(t)
n,k∑

N
i=1

∑
K
j=1 w

(t)
i,j

. There-

fore the two indexes are simulated jointly (but each pair

is independent from other pairs), leading to n-th pair of

indexes { i
(t)
n , j

(t)
n } = {ℓ, k} with associated probabilities

w
(t)
ℓ,k, ℓ = 1, ..., N and k = 1, ...,K . Note that, for such

choice, the resampled particles are strongly correlated (e.g.,

if one weight wn,k dominates, all resampled particles can be

identical). This scheme is closely related to the resampling

step in the seminal PMC method [15] and it has been recently

proposed in [18], although in both aforementioned works it

only applied to the location parameters.

Local resampling (LR): An alternative strategy consists in

simulating exactly one sample per ancestor (i.e., proposal). In

this case, alternative re-normalized weights w̃n,k =
wn,k∑
K
j=1 wn,j

are required, in such a way that
∑K

k=1 w̃n,k = 1 for all

n = 1, . . . , N . Then, the index of the n-th resampled proposal,

i
(t)
n = n, is chosen deterministically, while the index j

(t)
n = k

is sampled with probability w̃n,k, for each k = 1, ...,K . The

advantage of the LR scheme is that the N resampled parti-

cles are different, preserving the diversity in the exploration

through N paths that interact only due to the denominator in

(10). The drawback is that it also preserves paths that are in

non-relevant parts of the space. The limitations of both GR

and LR strategies are closely linked to the tradeoff between

particle degeneracy and path degeneracy, which is well-known

in particle filtering [46], [47].

‘Glocal’ resampling (GLR): We introduce an original

hybrid resampling approach, particularly tailored for the

optimization-based adaptation that follows after the resampling

step. The resampling step is done by following an LR step (i.e.,

using the w̃n,k weights and preserving the diversity), except

for the iterations with t multiple of a given period parameter

∆ ∈ N
∗, where a GR step is performed instead. The rationale

of this novel scheme is explained in Section IV-B.

Finally, note that other existing schemes, such as the inde-

pendent resampling (IR) of [47], are also encompassed in this

framework.

C. Optimization

1) General rule: The second adaptive feature of our al-

gorithm lies in Step 2c)ii). Here, in order to improve the

exploration performance, we propose to adopt a Newton-based

strategy for the construction of the proposal used to draw the

next KN samples. The proposal density for iteration t+1, is

modified, with a new adapted mean, given by

µ
(t+1)
n = µ̃

(t)
n +A(µ̃(t)

n )∇ log π(µ̃(t)
n ), (11)

where A(µ̃
(t)
n ) is an SDP matrix of Rdx×dx . The scale matrix

of the proposal is also adapted, in order to be consistent with

the above location update, i.e.,

Σ(t+1)
n = A(µ̃(t)

n ). (12)

As can been seen from (11)-(12), the scale matrix parameter

A(·) plays an important role in our scheme, since it drives the

direction and length of the adapted jump. In the following, we

present our simple yet efficient strategy for the setting of this

parameter.

2) Scaling matrix: Newton-based strategy amounts to in-

tegrating information of the inverse of the Hessian of log π,

in the update rule for A(µ̃
(t)
n ). However, in general cases, π̃

may not be log-concave so that numerical issues can arise

in the inversion of the Hessian matrix. Furthermore, even

when the inversion is well defined, one Newton iteration with

unit stepsize does not necessarily yield an increase of log π
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[48]. We thus propose to overcome those issues by adopting a

damped Newton strategy, incorporating two specific features

that aim at enforcing the numerical stability of the proposed

scheme. The scaling matrix is defined as:

A(µ̃(t)
n ) = θ(t)n Γ(µ̃(t)

n ), (13)

with

Γ(µ̃(t)
n ) =





(
−∇2 log π(µ̃

(t)
n )
)−1

, if ∇2 log π(µ̃
(t)
n ) ≻ 0,

Σ̃
(t)
n , otherwise.

(14)

Otherwise stated, the covariance of the n-th proposal is set

by using second order information when it yields to a definite

positive matrix; otherwise, it inherits the covariance of the

i
(t)
n -th proposal that generated the sample. Moreover, we

introduced θ
(t)
n ∈ (0, 1], which is a stepsize tuned according to

a backtracking scheme in order to avoid the degeneracy of the

Newton iteration, and thus of our adaptation scheme. Starting

with unit stepsize value, we reduce it by factor τ = 1/2 until

the condition below is met:

π
(
µ̃

(t)
n +A(µ̃(t)

n )∇ log π(µ̃(t)
n )
)
≥ π

(
µ̃

(t)
n

)
. (15)

D. Related works in the literature

The PMC algorithms perform the adaptation of the pro-

posals via a resampling scheme. This step can be viewed

as a stochastic procedure, since it is based on a multinomial

resampling with replacement. However, since the set of pro-

posals in the next iteration is parametrized by the resampled

particles, this procedure can be alternatively seen as an implicit

optimization procedure (in general, this perspective is not

mentioned in the literature). In this paper, we propose, for

the first time up to our knowledge, an explicit optimization

procedure incorporated within the adaptation part of the al-

gorithm, more precisely after the resampling step is done.

Moreover, we design a suitable resampling step that allows

the optimization step to exploit the benefits of stochastic and

deterministic adaptation.

The introduction of optimization-based rules for improving

the exploration properties of other AIS methods, not belonging

to the PMC family, has been explored in the recent works [19],

[20], [21], [49]. In [20], the authors propose a gradient descent

with decreasing stepsize update for the location parameters,

while the covariance update relies on the calculation of the

empirical covariance of the past samples. Moreover, there is

only one proposal. In GAPIS [19], the location parameters are

updated according to a Newton step, with the stepsize remain-

ing static, while the covariance is adapted using the Hessian

of − logπ. Finally, in NIMIS and LIMIS [21], a temporal

mixture is constructed, in the spirit of AMIS [7] but using

a mixture that increases the number of components with the

iterations (instead of remembering the whole mixture simply

for the calculation of the importance weight). In LIMIS, the

location parameters move along a gradient direction while the

covariance adaptation relies on second-order approximation

of the target, both updates being evaluated using Runge-

Kutta numerical integration. Up to our knowledge, the use

of a Newton-based adaptation for both location/covariance

parameters, has never been considered in PMC literature.

IV. DISCUSSION

In the following, we discuss the key elements of the novel

O-PMC algorithm.

A. Importance weights

In O-PMC K samples are simulated from N proposals at

each iteration. Then, the importance weights are computed

in Eq. (10). First, note that these weights do not follow the

standard functional consisting on the ratio between the target

and the proposal distributions, e.g., the sample x
(t)
n,k is simu-

lated from the n-th proposal but in the denominator of w
(t)
n,k,

the whole mixture
∑N

i=1 q
(t)
i (x) is evaluated (instead of just

q
(t)
n ). This alternative choice for the weights, called balance

heuristic [50] or deterministic weights [51], has been shown

to be unbiased and even more, to provide IS estimators with

reduced variance [5]. The benefits of such alternative weights

go beyond the superior performance of the estimators, and

provide advantages in the resampling adaptation, compared

to the standard weights. The reason is that, when evaluating

the whole mixture in the denominator, the importance weight

captures the mismatch between the target and the whole

mixture of proposals at the iteration t (and not only the

particular proposal that generated the sample). The resampling

stage done with these weights allows to over-sample regions

that are under-represented (see next section).

Finally, note that a mixture with the whole set of proposals

{q
(τ)
n }1≤n≤N,1≤τ≤t, could be placed in the denominator of the

importance weight, in the spirit of the AMIS algorithm [7].

We have however discarded this option as it would increase

the computational complexity, particularly when T is large [6].

B. Resampling schemes

PMC algorithms adapt the set of proposals via a resampling

step. In the seminal PMC algorithm from [15], the resampling

is done at each time step using the standard weights. New

resampling schemes have been proposed in [18], [47]. Note

that by resampling scheme, we do not only refer to the way the

sampling of the indexes that will be replicated is done (as in

[13], [14]). In PMC algorithms, the samples are not i.i.d., and

hence it is possible to enforce different adaptation behaviors.

It is important to note that unlike in adaptive MCMC methods,

where modifying the adaptation can endanger the convergence

of the method, in AIS the needed assumptions are milder, since

the validity of the estimators is ensured by the importance

weights.

In O-PMC we propose two possible resampling schemes

that are designed so as to exploit the optimization step (see the

step 2)c)ii) in Table II). The local resampling (LR), proposed

in [18] is particularly suitable for the optimization step that

follows the resampling. As described in Section III-B, the LR

scheme ensures that one (and only one) sample simulated
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from the n-th proposal survives. This is advantageous for

the Newton-based step that follows the resampling, since

in practice there are N chains or threads, corresponding to

the resampled particle among the set {x
(t)
n,k}

K
k=1 for each

n = 1, ..., N , that is later adapted using the geometry of

the target. It is interesting to see that these N chains interact

only in the importance weights calculation (because the whole

mixture is in the denominator, as explained in the previous

section). This interaction is very effective in combination with

the other features of O-PMC, since it can give a lower weight

to specific samples that are in over-populated areas (i.e., other

proposals are covering that region), even if this part of the

target has high probability mass. Therefore, even if the location

parameter of each proposal is independently displaced to a

region of higher probability mass via the Newton step with

the risk of overpopulating the region around the mode(s), the

resampling step re-balances the proposals at each iteration

to approximate the target as a mixture. In O-PMC, we have

discarded the use of the standard global resampling (GR) [15],

[18] since it is known to reduce the diversity, endangering

the exploration of the target (after the GR step, all resampled

particles can come from the same proposal, and even more,

can be exactly the same).

Moreover, in O-PMC we present another variant called

glocal resampling (GLR). The GLR scheme can be seen as

a modified LR scheme, where, at every ∆ ∈ N
∗ iterations, a

GR step is performed instead of an LR one. The rationale is

to preserve for most iterations the diversity in the exploration

of each proposal (with a mild interaction in the denominator

of the importance weights). Periodically, every ∆ iterations,

the GR step enforces a stronger cooperation among paths,

killing those who are in irrelevant parts of the space, and

replicating those who are more promising (which allows for a

more exhaustive local exploration in the next iterations). The

GLR strategy keeps clear ties with the adaptive resampling

[52], allowing to find a good balance between an accurate

local approximation of the target and a global exploration.

C. Newton-based adaptation

1) Improvement w.r.t. Newton scheme: In the optimization

step, a straightforward approach may be simply choosing the

scaling metric by relying on the information of the Hessian of

log π. In this approach, we might set A(µ̃
(t)
n ) as the invert of

∇2 log π(µ̃
(t)
n ). In such a way, (11) would read as one Newton

iteration applied to the maximization of function log π, and

initialized at µ̃
(t)
n . However, there are two drawbacks for the

Newton optimization method, namely (i) the requirement for

convexity of − log π for proper definition of the iteration, (ii)

the local convergence behavior, i.e., convergence only when

initialized “sufficiently close” to a mode. We thus propose

two controlling rules, to avoid these difficulties. First, our

proposed scheme in (14) introduces a test, taking into account

the fact that log π might not be necessarily log-concave at

µ̃
(t)
n , so that ∇2 log π(µ̃

(t)
n ) might be non invertible. We take

here advantage of the trajectory tracking inherent to the AIS

method, by re-using the past scaling matrix from the particle

ancestors. This is particularly advantageous, since the samples

are in general close from the location parameter of the density

where they were simulated. An alternative to this approach

would be inheriting the scale parameter of the proposal (at

iteration t) that is closer to the sample, as it is done for

instance in [21]. This may increase the performance without

increasing the complexity if the proposals are Gaussian pdfs

and the criterion is based on the Mahalanobis distance (since

these distances are implicitly computed in the denominator

of the importance weights). Another more ambitious scheme

would be doing the same, but considering the set of whole

set of Nt present and past proposals. While these alternative

may capture better the second order information of the target

in the neighborhood of the sample, in general they would

translate into an increase of complexity. This is highly related

to the well-known increase of complexity in AMIS algorithm

when the number of iterations grow, with efficient versions of

the algorithm trying to alleviate this issue, e.g., the EAMIS

[53]. Hence, O-PMC either accounts for the second-order

information at the sample location or inherits a more stable

one from a close location. Second, a stepsize is introduced

in (13), which is computed following a simple backtracking

procedure. The idea is to constrain the Newton step within

a region in which we believe that the second order model,

inherent from the Newton approximation on log π is reliable,

using iterative trials for the stepsize. If a notable increase

of log π is gained, then the model is believed to be a good

representation of the original objective function. If there is

not significant improvement, the model is considered invalid,

and a new step is tried. It is worth noting that the fulfillment

of the descent condition (15) in finite time is ensured under

mild assumptions on log π (e.g., Lipschitz differentiability,

see [48]). Moreover, under the same assumptions, the unit

stepsize satisfies (15) as soon as µ̃
(t)
n is sufficiently close

to a local maximum of log π [48]. Otherwise stated, the

classical (fast) Newton move of the location parameters is

retrieved as soon as the particles get close to the modes of

the target. More sophisticated approximations for the Hessian

(or its inverse) may be desirable when exploring very large

scale multimodal distributions. Low-rank [32] or majorizing

[34] approximations, proposed in the context of Langevin-

based MCMC, appear as appealing alternatives. However, it

is not straightforward to incorporate those approaches in the

proposed O-PMC scheme, while keeping the versatility of the

algorithm. The exploration in high-dimensional problems may

be improved by imposing an isotropic/diagonal structure in

the covariance matrix [54], and fitting it through a particle

approximation via importance sampling, at the expense of

reducing the efficiency of the estimators in highly correlated

target distributions.

2) Connection with scaled Langevin dynamics: Our scaled

gradient adaptation scheme (11)-(12) keeps interesting con-

nections with the discretized version of the scaled Langevin

diffusion, mentioned for instance in [26], [34] in the context

of MCMC sampling. This discretized Langevin diffusion can

be expressed as (using similar notations as in (7)):

(∀t ∈ N) x(t+1) = x(t)+ǫ2b(x(t))+ǫA1/2(x(t))ω(t). (16)
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Hereabove, b : Rdx → R
dx is the so-called drift term such

that, for every 1 ≤ i ≤ dx and every x ∈ R
dx ,

bi(x) =
1

2

dx∑

j=1

Ai,j(x)
∂ log π(x)

∂xj
+

|A(x)|
1
2

Q∑

j=1

∂

∂xj

(
Ai,j(x)|A(x)|−

1
2

)
, (17)

with A(x) ∈ R
dx×dx a symmetric definite positive (SDP)

matrix with determinant |A(x)|. A typical approximation,

adopted in [34], consists in ignoring the second term in (17),

leading to the simplified sampling scheme:

(∀t ∈ N) x(t+1) =

x(t) +
ǫ2

2
A(x(t))∇ log π(x(t)) + ǫA1/2(x(t))ω(t), (18)

where ǫ is a positive stepsize and {A(x(t))}t≥0 are pos-

itive symmetric definite positive scale parameters, possibly

varying over the discrete time iterates indexed by t ∈ N.

Ergodicity of the chain generated by (18), combined with a

Metropolis-Hasting step, was established in [34], for a large

class of choices for {A(x(t))}t≥0 and ǫ. It is noticeable that

our optimization-based adaptation scheme in Eq. (11)-(12) is

closely related to (18), identifying θ(t) with ǫ2

2 . Note that no

factor 2 is present in our covariance adaptation rule in Eq. (12),

in a similar fashion as in the Newton MH sampler from [30],

[29]. In this way, the scale parameter of the proposal adapts,

in a robust way, to the curvature of the target distribution, as

we show in the next toy example.

D. Toy example

We illustrate the behavior of O-PMC along iterations on

a simple example where the target is a mixture of bivariate

Gaussian distributions, with means [−5,−5]⊤ and [6, 4]⊤,

covariances [0.25, 0; 0, 0.25] and [0.52, 0.48; 0.48, 0.52], and

mixture weights 0.7 and 0.3, respectively. We run T = 10
O-PMC iterations with (N,K) = (50, 20), and resampling

schemes LR and GLR (with period ∆ = 5). We initialize

the location parameters of the proposals randomly in the

square [−5, 5] × [−5, 5], and the initial covariance is set to

Σ
(1)
n = I2. We also run the GR-PMC and LR-PMC algorithms

[18], the AMIS algorithm [7], and the GAPIS algorithm[19]

algorithms, all with the same parameters for a fair comparison.

We display in Fig. 1 the evolution along the iterations of

the proposals, including the location parameters (black dots)

and scale parameters (green ellipses). We also show the two

marginal pdfs of the target distribution (blue line) and the

equally weighted mixture of proposals (red line). We notice

that O-PMC algorithm moves rapidly the proposal locations

to the two modes. Moreover, it fits the scale parameters of the

proposals to the scale parameters of each mode (depending

on the part of the space where the proposal is located). The

target is thus very accurately estimated, in few iterations, as

can be seen in the 2D plots as well as in the marginals. In

contrast, both GR-PMC and LR-PMC schemes struggle to

reach a reasonably good target approximation. We also observe

the benefits offered by GLR, our novel resampling scheme, as

it can be easily noticed the improved performance of O-PMC

w.r.t. the LR variant. This is particularly visible between t = 5
and t = 6, as t = 6 corresponds to the first (periodic) callback

to the GR resampling (see Sec. III-B for more details). GAPIS

discovers both modes, but since the step-size is not adapted

in this algorithm, after t = 10 iterations the proposals are still

in between the initialization and the asymptotic value (that

would be close to the modes of the targets). Interestingly,

GAPIS incorporates a repulsion behavior between proposals

that has certain parallelism with the resampling step in O-PMC

(due to the DM-MIS weights). The advantage of O-PMC is

that this implicit repulsion does not require extra parameters.

In this example, AMIS fails to discover one of the modes

due to an initialization that was designed to be challenging

for all algorithms. A different initialization (or a much higher

initial variance of the proposals) may help the algorithm at the

expense of being more inefficient and taking more iterations

to converge.

V. NUMERICAL RESULTS

In this section, we present several sets of experiments,

in order to assess the performance of the proposed O-

PMC algorithm. Three examples will be considered for the

target, namely (i) two-dimensional Gaussian mixture, (ii)

multi-dimensional banana-shaped distribution, (iii) posterior

distribution arising in a spectral analysis problem. These

examples are representative as they incorporate challenging

features related to multi-modality and high dimensionality. In

all examples, we compare with competitive state-of-the-art

adaptive importance sampling techniques, namely GR-PMC

and LR-PMC that are two variants of the DM-PMC algorithm

[18] (GR-PMC and LR-PMC), AMIS [7] and GAPIS [19]. Let

us notice that, for the retained settings, the time spent by the

methods are actually very similar, which confirms the fairness

of our comparisons.

A. Mixture of Gaussians

In this first example, we consider a multimodal target which

is a mixture of five bivariate Gaussian pdfs (i.e. dx = 2):

(∀x ∈ R
2) π̃(x) =

1

5

5∑

i=1

N (x; γi,Ci). (19)

Here, we set the means γ1 = [−10,−10]⊤, γ2 = [0, 16]⊤,

γ3 = [13, 8]⊤, γ4 = [−9, 7]⊤, γ5 = [14,−4]⊤, and the covari-

ance matrices C1 = [5, 2; 2, 5], C2 = [2, −1.3;−1.3, 2],
C3 = [2, 0.8; 0.8, 2], C4 = [3, 1.2; 1.2, 0.5] and C5 =
[0.2, −0.1;−0.1, 0.2]. The main challenge in this exam-

ple is the ability in discovering the 5 different modes of

π̄(x) ∝ π(x). We focus in our tests on the approximation of

three quantities, namely the target mean Eπ̃[X] = [2.4, 3.4]⊤,

the second moment Eπ̃[X
2] = [101.04, 98.94]

⊤
, and the

normalizing constant Z = 1. Since we know the ground

truth for these quantities, we can easily assess qualitatively the

performance of the different techniques. Furthermore, since the

problem is low dimensional, it is possible to approximate the
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LR-PMC (t = 2) LR-PMC (t = 5) LR-PMC (t = 6) LR-PMC (t = 10)

GR-PMC (t = 2) GR-PMC (t = 5) GR-PMC (t = 6) GR-PMC (t = 10)

GAPIS (t = 2) GAPIS (t = 5) GAPIS (t = 6) GAPIS (t = 10)

AMIS (t = 2) AMIS (t = 5) AMIS (t = 6) AMIS (t = 10)

O-PMC - LR (t = 2) O-PMC - LR (t = 5) O-PMC - LR (t = 6) O-PMC - LR (t = 10)

O-PMC - GLR (t = 2) O-PMC - GLR (t = 5) O-PMC - GLR (t = 6) O-PMC - GLR (t = 10)

Fig. 1. Toy example. Evolution of the reconstructed target along iterations for LR-PMC, GR-PMC, GAPIS, AMIS, and O-PMC for both LR and GLR (with
∆ = 5). One can notice the fast convergence of the proposed O-PMC. The great impact of GLR can be seen, by comparing both O-PMC variants (LR /
GLR) between time t = 5 to time t = 6, i.e. after and before applying the GR step in the GLR approach.

posterior with a very thin grid, allowing to compare visually

the performance of the different sampling schemes.

Except for AMIS, in all other algorithms we set N = 50
proposals (randomly initialized in the square [−15, 15] ×
[−15, 15]), T = 20 iterations, and K = 20 samples per

proposal and iteration. Since AMIS has a single proposal,

we set N = 1, T = 500 and K = 40, i.e., keeping the

same number of target evaluations for a fair comparison.

For all algorithms we use isotropic Gaussian proposals with

standard deviation σ ∈ {1, 3, 5}, except for O-PMC, where

the proposals are initialized using Σ
(1)
n = σ2I2, with σ = 5

and then adapted over the iterations. In the GLR version of

O-PMC, we set the period ∆ = 5. In Table III we display the

relative mean square error (RMSE) of the AIS estimators. We

build the estimators by averaging all the weighted samples

of the second half of the iterations, which allows to better

determine the adaptive capabilities of each algorithm. We see

that the novel O-PMC outperforms all other algorithms, in

most cases by several orders of magnitude.

B. High-dimensional banana-shaped distribution

The second example focuses on the banana-shaped distri-

bution [55], [56]. This target shape has been widely used in

the past for assessing the performance of sampling methods,

as it is particularly challenging to approximate precisely,

especially when the dimension of the problem increases.

Let us consider a dx-dimensional multivariate Gaussian r.v.

X̄ ∼ N (x; 0dx
,C) with C = diag(c2, 1, ..., 1). The banana-

shaped distribution is defined as the pdf of the transformed

multivariate variable (Xj)1≤j≤dx
such that Xj = X̄j for

j ∈ {1, ..., dx} \ 2, and X2 = X̄2 − b(X̄2
1 − c2). Hereabove,

b and c are shape parameters set in the sequel to be equal to

c = 1 and b = 3. We evaluate the performance of different

AIS methods in estimating Eπ̃[X], for different dimensions
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GR-PMC LR-PMC GAPIS AMIS O-PMC

σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 LR GLR

Z 0.0432 0.0066 0.0073 0.0025 0.0031 0.0161 0.4882 0.0409 0.0481 0.9836 0.9814 0.9487 4 ·10−4 4 ·10−4

Eπ̃[X] 2.4280 0.4846 0.3599 0.2229 0.2291 0.6367 2.5397 1.7318 1.2595 54.5381 51.0631 23.4267 0.03532 0.03583

Eπ̃[X
2] 4.4581 0.4571 0.5014 0.2244 0.2203 0.7778 2.7414 1.4743 2.1444 31.9803 30.1377 21.4783 0.0426 0.0434

TABLE III
EXAMPLE V-A. RELATIVE MSE IN THE ESTIMATION OF Z , Eπ̃[X], AND Eπ̃[X

2] IN GM2D EXAMPLE. FOR O-PMC, WE SET THE INITIAL PROPOSAL

VARIANCE TO σ = 5. THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS, (N,K,T ) = (50, 20, 20) WHILE

(N,K, T ) = (1, 500, 40) FOR AMIS.

dx ∈ {2, 5, 10, 15, 20, 30, 40, 50 }. All algorithms initialize the

location parameters of the proposals randomly and uniformly

within the square [−4, 4] × [−4, 4], and 1000 independent

runs are performed. In all algorithms, except AMIS, we set

N = 50, K = 20, and T = 20. In AMIS, we set N = 1,

K = 500 and T = 40, for a fair comparison in terms of

total number of target evaluations (we recall AMIS imposes a

unique proposal). In O-PMC, the initial proposal covariances

are isotropic, Σ
(1)
n = σ2Idx

, with σ = 3, and we implement

the resampling strategies LR and GLR (with ∆ = 5). The

other algorithms are initialized also with isotropic covariances

with σ ∈ {1, 3, 5}. In Table IV we show the MSE of the

proposed O-PMC and its competitors in the estimation of the

target mean for dimensions dx ∈ {5, 20, 50}. We also display

in Fig. 2 the performance of O-PMC, LR-PMC and GR-

PMC, measured in terms of MSE averaged across dimensions.

In this example, the best performance is reached with the

LR version of the O-PMC, followed by the GLR version of

the same algorithm. AMIS is the second best algorithm in

most cases, possibly due to the covariance adaptation that it

incorporates (unlike the GR-PMC and LR-PMC schemes). The

competitors GR-PMC and LR-PMC degrade when the dimen-

sion decreases. Note that the MSE of our O-PMC decreases

with the dimension. This can be explained by the particular

structure of the target, which is conditionally Gaussian in all

dimensions except one, and hence it represents a challenge for

O-PMC only in that particular dimension.

0 10 20 30 40 50
dimension

10-3

10-2

10-1

100

101

M
S

E

O-PMC (LR)
O-PMC (GLR,  = 5)
GR-PMC
LR-PMC

Fig. 2. Example V-B. MSE in the estimation of Eπ̃[X] of the banana-shaped
distribution versus the dimension dx, with GR-PMC, LR-PMC with σ = 1
and the proposed O-PMC method.

C. Spectral analysis

Our last example addresses the problem of estimated the

parameters of a multi-sinusoidal signal from noisy and un-

dersampled acquisitions of it. We consider the following

observation model:

(∀j ∈ {1, . . . , dy}) yj =
S∑

s=1

as sin(2πωsτj + ϕs) + nj,

(20)

where (τj)1≤j≤dy
defines a discrete uniform time grid,

(nj)1≤j≤dy
a noise assumed to be i.i.d. Gaussian with known

variance σ2
n, and (as, ωs, ϕs)1≤s≤S the amplitude, frequency

and phase parameters, respectively, of S sinusoidal compo-

nents. We focus on the problem of identifying the unknown

frequencies and amplitudes, i.e. dx = 2S, and for all i ∈ {1 ≤
i ≤ dx}, xi = ωs and xi+S = as.

Given the Gaussian model on the noise, the posterior

distribution of x given y reads π(x) ∝ exp(−f(x)) with

f(x) =
1

2σ2
n

J∑

j=1

(
yj −

S∑

s=1

as sin(2πωsτj + ϕs)

)2

−log(p0(x)),

(21)

with p0 the prior distribution on x. This prior factorizes as

p0(x) = pω(x1:S)pa(xS+1:2S), where x1:S contains the first

S dimensions of x (i.e., corresponding to the S unknown

frequencies), and xS+1:2S corresponds to the S unknown

amplitudes. The prior pω is uniform in the support {x1:S :
0 ≤ x1 ≤ x2... ≤ xS ≤ 0.5}, i.e., we restrict the frequencies

to be defined in increasing order. The prior pa factorizes across

all dimensions and is a uniform distribution in [0,+∞[. The

data is generated by simulating dy = 30S points regularly

spaced over [1, dy]. We explore the case with S ∈ {2, 3, 4, 5}
(i.e., dx ∈ {4, 6, 8, 10}). We set the observation noise variance

to σ2
n = 0.52, and the phases ϕs = 0, for s = 1, ..., S.

All algorithms simulate the initial location parameters as

the prior p0, and the initial covariance matrices are chosen

to be isotropic with σ ∈ { 10−3, 10−2, 10−1}, except O-

PMC , where the initialization is done only with σ = 10−2

since the covariance is adapted. Table V shows the median

squared error (medianSE) in the estimation of the target

mean, considering as ground truth the true frequencies and

amplitudes that we have set to generate the data. Note that

the target mean can be significantly different from those

parameters, and for this reason, we also displayed in Table VI

the averaged MSE between the signal reconstructed with the

estimated parameters w.r.t. the noiseless sequence generated

with the true parameters. We observe that with both figures of

merit, O-PMC obtains the best results for most setups. While
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GR-PMC LR-PMC GAPIS AMIS O-PMC

σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 LR GLR

dx = 5 0.2515 0.1350 0.2299 0.3418 0.5289 0.5925 0.3007 0.3631 0.7790 0.1758 0.1783 0.1572 0.0308 0.1014

dx = 20 0.3818 3.1430 11.1921 0.5340 6.4936 23.3693 1.5299 1.6555 1.5640 0.1901 0.1574 0.2673 0.0098 0.0180

dx = 50 1.3134 9.6571 42.6815 2.3963 21.7097 6.3350 2.5524 2.5632 2.8486 0.6074 0.7992 1.5334 0.0051 0.0104

TABLE IV
EXAMPLE V-B. MSE IN THE ESTIMATION OF Eπ̃[X] OF THE BANANA-SHAPED DISTRIBUTION FOR DIMENSIONS dx = 5, 20 AND 50. FOR O-PMC, WE

SET THE INITIAL PROPOSAL VARIANCE TO σ = 3. THE PERIOD FOR GLR IS SET TO 5. IN ALL PMC-BASED METHODS, (N,K,T ) = (50, 20, 20) WHILE

(N,K, T ) = (1, 500, 40) FOR AMIS.

all methods obtain reasonable results for S = 2 (dx = 4),

their performance degrade faster than in O-PMC when the

dimension of the problem is increased.

In Fig. 3, we display the evolution with the number of

iterations of the medianSE in the target mean estimator for

GR-PMC, LR-PMC, and O-PMC (LR, GLR with ∆ = 2,

and GLR with ∆ = 5) algorithms. At each iteration t, we

compute the estimator with all simulated samples from the

beginning, re-normalizing the importance weights to build a

unique estimator as it is done, for instance, in [57]. We use

the same parameters as those of Tables V and VI, setting

σ = 10−2. We observe that all algorithms improve when

the number of iterations grows, and that all versions of our

proposed O-PMC algorithm adapt faster than the competitors.

We observe that the GLR version of O-PMC with ∆ = 5
adapts faster than the case with ∆ = 2, while the best

adaptation for this particular setup is obtained by the LR

version of O-PMC.

Finally, Fig. 4 displays the ground truth and the estimators

obtained by GR-PMC and LR-PMC (left subplots) and the

LR and GLR versions of O-PMC(right subplots). We explore

the cases with S = 2 (dx = 4; top subplot), S = 3
(dx = 6; middle subplot), and S = 4 (dx = 8; bottom

subplot). The vertical bars represent the median estimate ±
the mean absolute deviation (MAD). We observe that in all

dimensions, the O-PMC obtains closer estimates to the ground

truth, both in the frequencies and in the amplitudes. We note

that when the dimension is increased (bottom subplots), the

problem becomes more challenging but O-PMC still performs

successfully unlike GR-PMC and LR-PMC.

0 2 4 6 8 10 12 14 16 18 20
t (iterations)

10-3

10-2

10-1

M
ed

ia
n 

M
S

E GR-PMC
LR-PMC
O-PMC (LR)
O-PMC (GLR,  = 2)
O-PMC (GLR,  = 5)

Fig. 3. Example V-C. Evolution of the medianSE with respect to ground
truth amplitudes and frequencies for dimension dx = 4 as function of the
number of iterations of GR-PMC, LR-PMC, and O-PMC.
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Fig. 4. Example V-C. Ground truth (blue) and estimated values (median ±
MAD of the mean estimator) for frequencies and amplitudes in dimension 4
(top), 6 (middle) and 8 (bottom), for GR-PMC, LR-PMC, and O-PMC using
either LR or GLR scheme.

VI. CONCLUSION

We have proposed the O-PMC algorithm, an AIS sampler

of the family of PMC algorithms that incorporates geometric

information of the target distribution. O-PMC exploits the

benefits of the PMC framework, incorporates suitable resam-

pling schemes, and includes efficient adaptive mechanisms. In

particular, the novel algorithm adapts the location and scale

parameters of a set of proposals. At each iteration, the location

parameters are adapted through a suitable resampling strat-

egy combined with an advanced optimization-based scheme.

The local second-order information of the target is exploited

through a preconditioning matrix that acts as a scaling metric

onto a gradient direction. This metric is also used in order

to adapt the scale parameters of the proposals. We have

discussed the choice of parameters, included an illustrative

toy example, and evaluated numerically the performance of the

novel algorithm in three challenging problems, comparing the

results with state-of-the-art competitive methods. As a future

work, we may explore the implementation of low-complexity

approximations of the Hessian to adapt the scale parameters

of the proposals.
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GR-PMC LR-PMC GAPIS AMIS O-PMC

σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 LR GLR

dx = 4 0.1083 0.0479 0.0249 0.0516 0.0185 0.0299 0.8422 0.4176 0.3342 0.0623 0.0384 0.0504 0.0017 0.0024

dx = 6 0.0929 0.0568 0.0544 0.0808 0.0598 0.0621 3.9936 4.9897 4.0805 0.0881 0.0956 0.0806 0.0076 0.0014

dx = 8 0.1163 0.0906 0.1022 0.1041 0.0718 0.1128 13.0336 10.4020 7.3938 0.1837 0.1459 0.1261 0.0418 0.0343

dx = 10 0.0671 0.0804 0.0671 0.0609 0.0933 0.0757 18.7525 18.5906 14.8404 0.1279 0.1284 0.1811 0.1027 0.0560

TABLE V
EXAMPLE V-C. MEDIAN MSE WITH RESPECT TO GROUND TRUTH AMPLITUDES AND FREQUENCIES PARAMETERS, FOR DIMENSIONS dx = 4, 6, 8 AND

10. FOR O-PMC, WE SET THE INITIAL PROPOSAL VARIANCE TO σ = 10−2 . THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS,
(N,K, T ) = (50, 20, 20) WHILE (N,K,T ) = (1, 500, 40) FOR AMIS.

GR-PMC LR-PMC GAPIS AMIS O-PMC

σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 σ = 10−3 σ = 10−2 σ = 10−1 LR GLR

dx = 4 0.4206 0.1715 0.1122 0.3670 0.2453 0.5379 0.5538 0.3475 0.3810 0.2956 0.2697 0.3185 0.2081 0.3043

dx = 6 0.7301 0.3572 0.2677 0.6632 0.3745 0.4739 0.8761 0.6995 0.6757 0.6480 0.6631 0.6811 0.3859 0.1681

dx = 8 1.3138 0.6910 0.8157 1.2692 0.7238 1.0867 1.5086 1.2156 1.5075 3.9607 3.3690 3.2748 0.5733 0.4259

dx = 10 2.6353 1.0050 2.8790 2.1628 1.1288 2.8382 1.4591 1.5012 1.5146 4.5971 4.5016 4.7863 1.1124 0.7351

TABLE VI
EXAMPLE V-C. RECONSTRUCTED MSE FOR DIMENSIONS dx = 4, 6, 8 AND 10. FOR O-PMC, WE SET THE INITIAL PROPOSAL VARIANCE TO σ = 10−2 .

THE PERIOD FOR GLR IS SET TO ∆ = 5. IN ALL PMC-BASED METHODS, (N,K, T ) = (50, 20, 20) WHILE (N,K, T ) = (1, 500, 40) FOR AMIS.
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[13] R. Douc, O. Cappé, and E. Moulines, “Comparison of resampling
schemes for particle filtering,” in Proceedings of the 4th International

Symposium on Image and Signal Processing and Analysis (ISPA 2005),
(Zagreb, Croatia), pp. 64–69, 15-17 September 2005.

[14] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle
filtering: Classification, implementation, and strategies,” IEEE Signal
Processing Magazine, vol. 32, no. 3, pp. 70–86, 2015.
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