
HAL Id: hal-03136309
https://hal.science/hal-03136309

Submitted on 9 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AMAK - A Framework for Developing Robust and Open
Adaptive Multi-agent Systems

Alexandre Perles, Fabrice Crasnier, Jean-Pierre Georgé

To cite this version:
Alexandre Perles, Fabrice Crasnier, Jean-Pierre Georgé. AMAK - A Framework for Developing Robust
and Open Adaptive Multi-agent Systems. 16th International Conference on Practical Applications
of Agents and Multi-Agent Systems (PAAMS 2018), Antonio Fernández Caballero, University of
Castilla-La Mancha; Javier Bajo, Technical University of Madrid, Jun 2018, Toledo, Spain. pp.468-
479, �10.1007/978-3-319-94779-2_40�. �hal-03136309�

https://hal.science/hal-03136309
https://hal.archives-ouvertes.fr

AMAK - A Framework for Developing Robust
and Open Adaptive Multi-Agent Systems

Alexandre Perles1, Fabrice Crasnier1, Jean-Pierre Georgé1

IRIT, University of Toulouse, Toulouse, France
{Alexandre.Perles,Fabrice.Crasnier,Jean-Pierre.George}@irit.fr

Abstract. Multi-agent systems are commonly used in various research
fields such as artificial intelligence, operational research, simulation, biol-
ogy, ... However, this diversity often requires that the system and agents
in it are created from scratch for each new research project. In addition
to the fact that this forces the developers to code similar elements anew
each time, this can introduce non-negligible biases (e.g. an information
accessible to every agent which shouldn’t be or a scheduler executing
twice due to a user interface design failure). To avoid this, we propose
in this paper AMAK, a framework developed in Java™ to facilitate the
design and development of a multi-agent system. First, we present the
particularity of Adaptive Multi-Agent Systems. Secondly, a state of the
art of the main tools and software aiming at facilitating the development
of such systems is discussed. Then, we develop the architecture of the
framework and the main features. The use of the framework is illustrated
with an application for socio-technical ambient systems. And finally, we
conclude with the perspectives of this work.

Keywords: Multi-Agent System; Cooperation; Framework; Development; Java

1 Introduction

Today, companies develop ad-hoc Artificial Intelligence solutions often based
on machine-learning with methods such as Gradient Boosting, Random Forest,
Deep Learning and Genetic Algorithms. These methods show really great perfor-
mance when the problem is well-defined and data are numerous and centralized.

But in modern society, we tend to have dynamic problems that are not com-
pletely identified/specified and involving numerous interacting entities. To solve
these types of complex problems, it is necessary to reconsider the way we handle
problems, notably by decentralizing the control and by adapting the solving pro-
cess during time. This motivates the Multi-Agent Systems (MAS) approaches
and more specifically the ones aiming for self-adaptation.

An Adaptive Multi-Agent System is a MAS in which agents interact with
their neighborhood in a cooperative way [1] so as to adapt their behavior to
disturbances they perceive. The main idea is that when agents are all cooperative
at the microlevel, the global system solves the problem at the macrolevel [6].

2

These kinds of approaches tend to be more and more used in private and
public research. The development of these systems requires to follow a bottom-
up approach. It means that the focus is put on the behavior of agents [5].

To avoid common errors in the development of Adaptive Multi-Agent Sys-
tems and given the fact that the only differences between this kind of systems is
in the architecture of agents and their behavior, we propose a framework inte-
grating the common bricks useful for all adaptive multi-agent system projects.

This paper presents the framework we developed and highlights its charac-
teristics. In the first part, more details are given on the Adaptive Multi-Agent
System theory. Secondly, a state of the art of the main tools and software aiming
at facilitating the development of such systems is discussed. Then, the charac-
teristics of the framework are presented. And finally, the use of the framework
is illustrated with an application for socio-technical ambient systems.

2 Adaptation in Multi-Agent Systems

The need for adaptation comes from the fact that complex problems are generally
not completely specified. Indeed, complex problems or systems involve numer-
ous entities interacting dynamically and are therefore hard to solve, control or
predict.

As agents are autonomous and have a limited perception (they can only per-
ceive a small part of their environment), the adaptation in Multi-Agent Systems
can come from three factors:

– The tuning of parameters: Agents can change the way they act by modifying
their internal parameters based on their perception;

– The changes of interaction: An agent initially interacting with another can
decide to break this link and interact with other agents;

– The addition/removal of an agent: If an agent is useless, it can decide to
remove itself. Conversely, an agent can decide to create another agent if it
thinks it will benefit the system.

The adequate functioning of a multi-agent system requires a cooperative
behavior of agents. Cooperation is a social attitude in which agents coordinate
and help each other. An agent is considered as cooperative if he tries to reduce
the criticality in its neighborhood. The criticality of an agent can be defined
as “the state of dissatisfaction of an agent regarding its local goal”[11]. This
information can be seen as the main motivator for an agent to act, leading to
a continuous self-organizing process between the agents, which is the engine for
self-adaptation at the system level.

3 Existing tools

The development of adaptive multi-agent systems can be made with almost any
programming language. However, a code basis can be useful as it allows to focus

3

on the specific features and to avoid common errors. The most used tools or
frameworks are Jade (Java Agent DEvelopment Framework), GAMA (Gis &
Agent-based Modelling Architecture), NetLogo, SARL and MadKit.

Jade is a Java™ framework first released in 2000. This framework allows to
distribute agents in various containers. Basically, the Jade framework contains a
class named Agent that must be extended by any developed agent. These agents
are then controlled by two special agents with a global view of the system: The
DF Agent which provides a directory with the full list of available agents and the
AMS Agent which controls the platform. The main advantages of this framework
are that it has been used in many projects, that it generalized the concept of
behaviors and that it is compliant with the FIPA standards [2]. However, the
development of systems using Jade may not be intuitive. Moreover, even if it
seems adapted to the development of multi-agent systems, adaptive multi-agent
systems require a more decentralized control and is notably incompatible with
agents with a global view.

GAMA is a platform dedicated to agent-based modeling and simulation. The
development is high-level and therefore allows to focus on the behaviors of agents.
However, it requires to learn a specific programming language called GAML [15].

NetLogo is particularly useful for teaching. Packaged as a full-featured Inte-
grated Development Environment, it provides a really simple way to experiment
with multi-agent systems. It differentiates from other by its simplicity and has
been used for many scientific articles. However, despite its simplicity, it also
requires to learn a specific programming language [16].

SARL is a statically-typed agent-programming language. It is a specific lan-
guage aiming at filling in the gaps of the Java™ language. It is based on events
and has a syntax similar to a mix between Java™ and Python. However, it lacks
easy rendering capacities and forces its user to learn a new language [14].

MadKit is a generic multi-agent system platform based on a organizational
model. It has been developed in Java™ and has a clear structure. It is relatively
easy to use however it is not really intuitive [10].

4 The AMAK framework

The framework AMAK is an all-in-one Java™ library aiming at facilitating the
development of Adaptive Multi-Agent Systems. It is presented as a jar file that
must be added to Java™ projects [12]. The programming language Java™ has
been chosen as it is widely used in both research and education fields. In addition
to this, this language is object-oriented and programs developed with it are
portable [9].

During the design and development of Adaptive Multi-Agent Systems, the
focus should be made on the agents’ behaviors. However, to be able to code the
behavior of an agent, it is necessary to code all the related concepts which are the
scheduling of agents, the plotting of data and specific algorithms (for example,
determining the most critical agent). Given the bottom-up approach used in
the development of such system, one small change in any part of the code can

4

have non-negligible impact on the system overall functioning and can notably
introduce biases and therefore lead to wrong results. The use of a framework
allows to avoid common errors and also to save time.

By providing a set of inheritable classes and methods, the framework AMAK
gives a solid basis to develop such systems. The three main abstract classes are
AMAS, Agent and Environment. These concepts present in every multi-agent
system have specific characteristics and comply with the Adelfe methodology
designed to assist the development of adaptive multi-agent systems[4]. The Fig-
ure 1 represents the relations between the main classes. Inheriting the AMAS
class allows to develop a multi-agent system compliant with the scheduler given
in AMAK. It also supports the addition and removal of agents safely at runtime.
The abstract class Agent mainly contains three overridable methods: onPerceive,
onDecide and onAct. These methods are common to all kind of agents as de-
fined in [7]. Also, it can be necessary to execute specific code on each agent for
example when all agents have finished their cycle. The framework contains such
methods. It can be used for example to debug or to log agent states. Finally,
the class Environment is abstract and must be extended by the environment of
the multi-agent system. The extended class must provide direct access to any
information the agents may require. Each agent belonging to the multi-agent
system has a pointer to this environment and use it to perceive its part of the
environment.

Fig. 1. Relations between the main classes

The scheduling is ensured by a specific class Scheduler which enables to exe-
cute the cycle of the AMAS and therefore the cycle of each agent synchronously
(or not) with the environment. Adaptive Multi-Agent Systems have specific char-
acteristics. Notably the fact that agents have a criticality and often use it to
determine which agent should be helped. This criticality value is computed at
various times directly by the framework to ensure that the value complies with
the real state of the agent and that the computation is made as few often as
possible. Moreover, specific algorithms are added. For example, it exists a pre-
defined method which allows any agents to directly know which agent in its
neighborhood is the most critical.

5

During the design and development of multi-agent systems, it is often nec-
essary to visualize data and notably agents locations and interaction links. The
module DrawableUI is an abstract class that must be extended by any rendering
class you may have. This class contains a method called at each cycle (synchro-
nized with the multi-agent system scheduler or not) that must be implemented.

The framework AMAK is also packaged with various tools generally used
in such projects. The tool AVT (Average Value Tracker), developed by Sylvain
Lemouzy [11] for the SMAC team, is a tool aiming at finding a potentially-
dynamic value in a specific range given simple feedback (smaller, bigger and
almost good). The problems faced by Adaptive Multi-Agent Systems are often
dynamic and not completely specified. Such tool is particularly adapted.

Fig. 2. Screenshot of the LxPlot tool used in AMAK

The second integrated tool is LxPlot (https://bitbucket.org/perlesa/
lx-plot). It exists multiple libraries for plotting data in Java™. The most used
is probably JFreeChart (http://www.jfree.org/jfreechart/). However, it re-
quires to write a lot of code to manage to display simple points. The library Lx-
Plot integrates the library JFreeChart and simplifies it to allow to draw points
or lines using one simple line of code. The Figure 2 presents a screenshot of the
tool LxPlot used in a socio-technical ambient system presented later.

6

Sometimes, simple piece of code can be executed a lot of times. If this code
is not optimized, it can have non-negligible impact in term of computation time.
To face this problem, the framework includes a simple tool called Profiler which
allows to measure the exact time in nanoseconds taken by the execution of a
piece of code.

Java™ natively includes convenient classes to read or write files. However, as
for the plotting library, this requires to write a lot of code to read or write a
simple file. The tool FileHandler allows to simply read or write text, CSV and
JSON files.

Finally, a multi-agent system can handle an important amount of agents
(for example, the drone application is able to handle thousands of agents on a
computer with a medium configuration). It, therefore, can be hard to observe
what is happening during the execution. AMAK integrates convenient tools to
display data and a logging system with various log levels and a tag system to
filter and display only some information based on a regular expression. Moreover,
by default, the logging system writes to the standard output but it can easily
be rerouted to write log to a file or even send logging data through the network.

Fig. 3. Main classes of the proposed framework

The Figure 4 represents the execution time of the system over the number
of agents in the system. For this evaluation, agents do random actions at each

7

Fig. 4. Evolution of the execution time of a system developed with AMAK over the
number of agents

cycle. It can be seen in this figure that the complexity in time evolves linearly
with the number of agents in the system. The complexity of communication can’t
be observed as it mainly depends on the agent behavior. However, following the
AMAS theory, agents are cooperative. Therefore, they are not supposed to send
useless messages.

The framework AMAK provides an easy way to develop and maintain a
multi-agent system. Such developed systems are open (agents can be added or
removed at runtime), efficient, reliable and monitorable. The Figure 3 presents
the main classes. The framework is provided for free under the LGPL (Lesser
General Public License) license [8].

5 Application to Socio-Technical Ambient Systems

Since the beginning of its development in 2017, AMAK has been used in various
projects. First of all, AMAK is used in education in last year of multiple master’s
degrees. Given its simplicity of use and the fact that it is based on the commonly
used language Java™, it is particularly adapted to education. It has been used in
education on two examples: the solving of the philosopher’s dinner problem [12]
and the adaptive management of a drones fleet [13]. It allows to easily understand
concepts related to the design and development of multi-agent systems. Secondly,
each year, new internships and PhD students integrate the IRIT laboratory. To
avoid losing too much time understanding the process of conceiving multi-agent
systems, AMAK gives a robust and clear structure to start with [3].

8

AMAK has been used for the development of a socio-technical ambient sys-
tem aiming at making emerge an ambient welfare.

An ambient environment consists of a multitude of devices, some of which
measure its physical characteristics such as heat sensors, light sensors, olfactory
sensors and hearing sensors while others act directly on it to modify its state
such as the electric motors of the shutters to control the opening and closing
of the curtains, or the switches to control the switching “on” and “off” of the
ceiling or fixture. AMAK has been used for the development of the ambient
socio-technical system aimed at bringing out the notion of ambient well-being of
immersed humans in this environment. By simulating connected devices such as
sensors and effectors, the framework allows such a system to discover the optimal
combination to maximize user comfort and bring out our goal of well-being. In
this research framework, learning about the environment linked to well-being is
carried out using multi-agent systems related to the four characteristics of human
physical comfort i.e. thermal comfort, visual comfort, olfactory comfort or the
acoustic comfort we will call “MAS Comforts”. The latter ones are initially re-
sponsible for learning the thermal, luminous, olfactory or auditory environments
and in a second phase for providing their criticality levels to the multi-agent
systems representing the ambient socio-technical system consisting of sensors
and effectors scattered in the environment we call “MAS Devices”. To meet
the socio-economic objectives and to realize a functionality of eco-citizenship, a
multi-agent system that we call “MAS Conso” must meet this objective. The
Figure 5 presents the overall architecture of the presented system.

Fig. 5. Ambient system architecture

In this article, we will show the use of the AMAK framework to meet the goal
of learning the power consumption of the environment using the construction of
a “MAS Conso”. The class “Environment” allows to build the world in which

9

the multi-agent system will operate. Here we can set up all the elements that will
interact with the system, in our case we have built a simulator to generate the
necessary inputs to the system such as the power consumption of the environ-
ment as well as the states of devices present in the environment. In addition, it
is easy to be able to connect graphical output interfaces to evaluate or compare
the work of the “MAS Conso”. The Figure 6 presents a screenshot of a graphical
output interface developed for the project.

Fig. 6. Multi-Agent system state

The class “AMAS” allows to define the elements of our multi-agent system
and to create the agents that will intervene. Using the method “onInitialA-
gentsCreation()”, we create our “Estimation” agent and the “Device” agents
that represent the devices of the environment. The Figure 7 presents the archi-
tecture of the “MAS Conso” and notably the links between agents. The “AMAS”
class is scheduled using a “Scheduler” class that provides the ability to track the
life cycles of the system, the beginning of cycles using the method “onSystem-
CycleBegin()” and the end using the method “onSystemCycleEnd()”.

Fig. 7. MAS Conso architecture

10

Finally, each “Agent” is independent and respond to a schema of coopera-
tive multi-agent systems, the class has an onPerceive() perception method that
allows the agent to perceive a part of its environment, an onDecide() decision-
making method making it possible to forge its decision on the solicitation of the
neighborhood but also according to its own needs, and finally an action method
onAct() allowing to act on its environment. In our “MAS CONSO”, the “Esti-
mation” agent aims at evaluating the power consumption of the environment. To
maintain a cooperative state, he memorizes the states of the world he perceives
at each change and looks for the most critical state to improve the predictions.
To fulfill this objective, it perceives the total electricity consumption of the envi-
ronment and solicits the device agents to obtain their prediction of consumption.
It is then able to evaluate the tendency to take for Device Agents to improve
their prediction. Considering these, they perceive the request of the Agent Esti-
mate but, according to their own knowledge of their tendency, they will follow
his recommendation or decide not to answer his request.

The flexibility of the framework makes it possible to develop these different
agents while keeping them coherent. Also, this system requires to observe the
evolution of different values such as the instantaneous energy consumption that
is made possible thanks to the built-in tools LxPlot. Figure 2 is a screenshot of
the data displayed using LxPlot. We evaluate here an environment composed of
10 devices, with each cycle of perception it is possible to observe the cooperating
devices with a background of green color, those which do not follow the demand
of the agent Estimation with a background of orange color and those who are
not in working condition during this observation of the environment. In addition,
the graphs show the consumption to be achieved for each device (red line) and
the evolution of the predictions (blue line). In addition, the first graph allows
the observation of the criticality defined by the distance between the actual
consumption and the estimated consumption, as for the second graph, it shows
the general evolution of the system on electricity consumption.

6 Conclusion

Table 1. Comparison with Existing Tools

Known language Intuitive Flexible Rendering capacities

Jade +++ - ++ -

GAMA - ++ + ++

NetLogo - ++ - +

SARL - ++ ++ -

MadKit +++ + + +

AMAK +++ ++ + -

The Table 1 shows the differences between the main existing tools and
AMAK. As it can be seen, AMAK is less adapted to rendering data. However,

11

it is as much (or more) intuitive as the others thanks to its simple structure,
the simplicity of the method names and the use of Java™. It is also flexible and
doesn’t require to learn a new language.

Despite the large choices of tools and frameworks to assist the development
of Adaptive Multi-Agent Systems, the proposed framework seems relevant as it
provides an effective and intuitive way to develop such systems. However, it lacks
the possibility to reliably execute agent simultaneously. Moreover, the rendering
capacities are currently limited. Also, it has been shown that the framework
respects major generic concepts of multi-agent systems development and that it
maintains a linear complexity evolution over the number of agents which means
that multi-agent system developed with AMAK are scalable. The perspective of
this work will be to improve the rendering capacities of the framework and to
use it on various projects with different natures and requirements.

References

1. Axelrod, R., Hamilton, W.: The evolution of cooperation. Science 211(4489),
1390–1396 (mar 1981), http://www.ncbi.nlm.nih.gov/pubmed/7466396http://

www.sciencemag.org/cgi/doi/10.1126/science.7466396

2. Bellifemine, F., Poggi, A., Rimassa, G.: JADE – A FIPA-compliant
agent framework (1999), https://pdfs.semanticscholar.org/19f5/

4048201ce8e416b74f3325266c34ae203f74.pdf

3. Blanc-Rouchossé, J.B.: Régulation auto-adaptative de réseau électrique intelligent.
Tech. rep. (2017)

4. Bonjean, N., Mefteh, W., Gleizes, M.P.P., Maurel, C., Migeon, F.: Adelfe 2.0 pp.
1–45 (2012)

5. Crespi, V., Galstyan, A., Lerman, K.: Top-down vs bottom-up methodologies in
multi-agent system design. Autonomous Robots 24(3), 303–313 (2008), https:

//link.springer.com/content/pdf/10.1007{\%}2Fs10514-007-9080-5.pdf

6. Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organising Soft-
ware. From Natural to Artificial Adaptation (2011), http://link.springer.com/
chapter/10.1007/978-3-642-17348-6{_}5

7. Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, vol. 222 (1999), http://jasss.soc.surrey.ac.uk/4/2/reviews/

rouchier.html

8. GNU: GNU Lesser General Public License, https://www.gnu.org/licenses/

lgpl-3.0.en.html

9. Gosling, J., McGilton, H.: The Java TM Programming Language Environment. No.
May (1996), http://www.oracle.com/technetwork/java/intro-141325.html

10. Gutknecht, O., Ferber, J.: MadKit: A generic multi-agent platform. Proceedings
of the fourth international conference on Autonomous agents - AGENTS ’00 pp.
78–79 (2000), http://portal.acm.org/citation.cfm?id=336595.337048{\%

}5Cnpapers2://publication/doi/10.1145/336595.337048{\%}5Cnhttp:

//portal.acm.org/citation.cfm?doid=336595.337048

11. Lemouzy, S.: Systèmes interactifs auto-adaptatifs par systèmes multi-agents auto-
organisateurs: application à la personnalisation de l’accès à l’information (2011),
http://thesesups.ups-tlse.fr/1303/

12. Perles, A.: AMAK, https://bitbucket.org/perlesa/amak

12

13. Perles, A.: AMAS Exercises, https://bitbucket.org/perlesa/amas-exercises
14. Rodriguez, S., Gaud, N., Galland, S.: SARL: A general-purpose agent-oriented pro-

gramming language. In: Proceedings - 2014 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology - Workshops,
WI-IAT 2014. vol. 3, pp. 156–165. IEEE (aug 2014), http://ieeexplore.ieee.
org/document/6928174/

15. Taillandier, P., Vo, D.A., Amouroux, E., Drogoul, A.: GAMA: A simulation
platform that integrates geographical information data, agent-based modeling
and multi-scale control. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). vol. 7057 LNAI, pp. 242–258. Springer, Berlin, Heidelberg (nov 2012),
http://link.springer.com/10.1007/978-3-642-25920-3{_}17

16. Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling com-
plexity. Conference on Complex Systems pp. 1–10 (2004), http://ccl.sesp.

northwestern.edu/papers/netlogo-iccs2004.pdf

