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Abstract. Numerical schemes based on the Boundary Element Method are proposed to perform

Nonsmooth Modal Analysis. The latter aims at finding continuous families of periodic orbits

of mechanical systems featuring unilateral contact constraints. In this contribution, a simple

one-dimensional rod system is targeted. The frequency response, in the form of backbone-

curve diagrams, and displacement field are presented. The proposed results compare well with

existing studies on this topic.
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1 INTRODUCTION

Within the framework of structural dynamics, linear modal analysis is a daily used tool in

industry, aiming at predicting vibratory resonances of periodically forced mechanical systems by

searching for continuous families of periodic solutions exhibited by the underlying autonomous

(i.e. unforced) system. However, various challenges arise when possibly large-scale nonlinear

dynamical systems are targeted and for which nonlinear modal analysis is needed instead [7].

Nonlinearity has commonly two forms: smooth or nonsmooth function of the state. The

nonlinearity is said to be smooth when the governing equation involves a function of the state

which is differentiable. Such functions are commonly polynomial. The nonlinearity is said to be

nonsmooth otherwise, as for instance, unilateral contact conditions. Nonsmooth Modal Analysis

(NSM) is a version of modal analysis dedicated to such systems. A few numerical schemes exist

to perform NSM, with inherent limitations [11, 12]. In the present work, it is proposed to explore

the numerical capabilities of two numerical schemes grounded on the Boundary Element Method

(BEM) to perform NSM.

2 SYSTEM OF INTEREST

The system of interest, shown in Figure 1, is a one-dimensional bar of length L with a

unilateral contact condition at its right tip. The unknown displacement field is u.x; t/, where

g.t/

x u.x; t/

L

Figure 1: System of interest

x is the space coordinate and t is time. Wave speed c is space-independent and the classical

one-dimensional wave equation governs the dynamics, that is

u;t t � c2u;xx D 0; 8x 2 �0 ILŒ: (1)

Unilateral contact on the right tip is expressed as a Signorini boundary condition

g.t/ � 0; u;x.L; t/ � 0; g.L; t/u;x.L; t/ D 0: (2)

where g.t/ D g0 � u.L; t/. Also, since the bar is clamped on the left, u.0; t/ D 0 applies.

In context of nonlinear modal analysis [7], families of periodic solution forming modal

manifolds are computed through a numerical scheme which assumes that no impact law is

required as the contact interface but instead, a switch between free-flight and sticking phases

occurs.

3 METHODOLOGY

In this paper, two numerical schemes based on the Boundary Element Method are imple-

mented. The BEM forms a family of methods for which the boundary of the domain of interest

is the main ingredient of the formulation and full domain discretization is not required when

initial condition and body force vanish [6]. It has the notable benefit of reducing the dimension

of the formulation. Among the various incarnations of BEM, the Time Domain BEM (TD-BEM)
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and Frequency Domain BEM (FD-BEM) are selected to perform nonsmooth modal analysis.

The first strategy combines TD-BEM and a simplified shooting method, while the second one

combines FD-BEM to Harmonic Balanced Method (HBM).

3.1 Time Domain Boundary Element Method and Shooting Method

TD-BEM is a version of BEM which requires the discretization of both time and space. By

pre-multiplying the governing equation (1) with its fundamental solution [4] and performing

integration in time and space and then integration by parts, the formulation can be transformed

into Boundary Integral Equation (BIE), which here reads [3]

u.x; t/ D

Z t
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0
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1

c2
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0

@u�.x; t; �; 0/
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ˇ

ˇ

ˇ

ˇ

ˇ

�D0

u.�; 0/ d� (3)

where p represents traction on the boundary ; u�.x; t; �; �/ and p�.x; t; �; �/ are the displacement

and stress fundamental solutions. Any internal state for x 2 �0 ILŒ at time t is dependent on

the boundary displacement and traction at past times as well as initial states. In order to use

TD-BEM, space and time are first discretized. Space integration of the initial states (last two

terms in (3)) is performed by discretizing space into n elements and nC1 nodes with�x D L=n

such that xk D k�x for k D 0; : : : ; n. Time step is set to �t D �x=c to guarantee stability of

TD-BEM, such that t i D i�t for i D 0; : : : ; n. Equation (3) is discretized by reading it on the

boundary, that is x D 0 and then x D L for all t i for all i D 0; : : : ; n; it now becomes

Hi iui D Gi ipi C

i�1
X

j D0

.Gij pj � Hij uj /C Uiu0 C Viv0; i D 1; : : : ; n (4)

where ui � Œu.0; t i/; u.L; t i/�> and pi � Œp.0; t i/; p.L; t i/�> are displacement and traction

vectors on boundary, with size of 2�1. The quantities Hi i , Gi i , Hij , and Gij are 2�2 coefficients

matrices, evaluated from time-domain integration in (3) of fundamental solutions u� and p�.

Vectors u0 D Œu.xk; 0/kD0:::;n� and v0 D Œv.xk; 0/kD0:::;n� are the discretized initial displacement

and velocity fields, with size nC 1. The corresponding coefficient matrices of size 2 � .nC 1/

are Ui and Vi stemming from space integration of fundamental solutions in (3). For systems

without Signorini boundary conditions, Equation (4) can be solved at every time step starting

at i D 1 where half of the quantities in ui and pi are unknown, that is .u.0; t i/; u.L; t i// or

.u.0; t i/; p.L; t i// or .u.L; t i/; p.0; t i// or .p.0; t i/; p.L; t i//.

In order to account for unilateral contact conditions, TD-BEM is coupled with the float-

ing boundary method [8]. It sees Signorini boundary condition as a switch between non-

homogeneous Dirichlet and homogeneous Neumann boundary conditions. This technique does

not require an impact law in the BEM format, thus avoiding the chattering or energy dissipation

that might exist in other methods [1].

To perform NSM, a shooting method is used. It calculates, here in the discretized framework,

the difference between the initial state q0 D .u0; v0/ and the corresponding final state q.q0; T /

after a yet unknown period T assumed to exist. For a periodic motion, the equality q.q0; T / D q0
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holds. In this work, v0 D 0 is assumed [11], and the problem to be solved thus reduces to: Find

vector u0 and strictly positive integer m, where T D m�t , such that

um D OGp � OHu C OUmu0 D u0 (5)

with the notations

OG D Œ OGm1 OGm2 � � � OGmm�; p D

2
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6

4
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:::
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5
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4
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u2

:::

um

3

7

7

7

5

where OGmj and OHmj are .n C 1/ � 2 coefficient matrices and OUm is a .n C 1/ � .n C 1/

coefficient matrix. Also, um D Œu.xk; m�t/kD0:::;n�. Since some pj and uj in (5) are unknown,

Equation (4) is invoked, that is:

Hu D Gp C Uu0 (6)
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:

Combining linear systems (5) and (6) yields

�

H �U
OH I � OU

� �

u

u0

�

D

�

G
OG

�

p (7)

where I is a .nC 1/ � .nC 1/ identity matrix. In the floating boundary method, the Signorini

condition is considered as a switch between Dirichlet and Neumann conditions. As soon as

the contact duration Tc is set, the time step at which the switch happens is known, so does the

boundary condition (Dirichlet or Neumann) at each time step at x D L. Thus Equation (7) can

be solved by reorganizing the known and unknown entries in u and p, according to the boundary

condition at x D L at each time step. Accordingly, by first assuming only one contact switch per

period, such a strategy systematically skim through given intervals of values on period T and

contact duration Tc (for a chosen �t ). However, physically unacceptable solutions can be found.

Accordingly, admissibility is systematically checked to ensure complementary conditions (2)

are satisfied. Non-admissible solutions with non-admissible penetration or contact forces are

discarded. Such way of Signorini boundary condition enforcement is similar in spirit with a

precedent scheme [12], but also shows differences in detail.

3.2 Frequency Domain Boundary Element Method

Frequency Domain Boundary Element Method (FD-BEM) is a frequency-domain form of

BEM which targets periodic solutions. Via a Fourier transform in time at frequency !

Qu.x/ D
1

2�

Z 1

�1

u.x; t/ exp.�i!t/ dt (8)
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the wave equation (1) becomes the well-known one-dimensional Helmholtz equation

d2 Qu.x/

dx2
C �2 Qu.x/ D 0 (9)

where � D !=c is the frequency number. Similar to TD-BEM, FD-BEM is based on a weighted

residual form of (9), where the weight function is the fundamental solution to the Helmholtz

equation [2] with the corresponding BIE

2 Qu.x/ D Qu.0/ cos �x C Qu.L/ cos.�.L � x// �
1

�
. Qp.0/ sin �x � Qp.L/ sin.�.L � x/// (10)

where Qp is the Fourier Transform of p. Reading (10) on the boundary leads to

�

� 0 �� cos �L sin �L

�� cos �L sin �L � 0

�

2

6

6

4

Qu.0/

Qp.0/

Qu.L/

Qp.L/

3

7

7

5

D 0; � ¤ 0 (11)

Through (11), Qu at frequency ! can be solved for a combination of Dirichlet and/or Neumann

boundary conditions. The time domain solution is then recovered through an inverse Fourier

Transform. However, such a formulation is not well adapted when u.L; t/ and p.L; t/ are both

constrained by the complementary condition (2) expressed in time domain. This complementarity

condition can be equivalently recast into the equality [9]

r.t/ � p.L; t/C max.0; �.u.L; t/ � g0/ � p.L; t// D 0; 8t (12)

where � 2 R
C. In the remainder, the residual r.t/ will be made to vanish in an integral sense

only. To insert (12) into FD-BEM with the aim of finding periodic solutions, Fourier expansions

are considered, that is

p.L; t/ D
1

2
a0 C

1
X

nD1

an cosn!0t C bn sinn!0t (13)

where !0 D 2�=T is the base frequency. The corresponding base frequency number is �0 D

!0=c. Knowing that u.0; t/ D 0, it follows from (11) that

u.L; t/ D
L

2
a0 C

1
X

nD1

tann�0L

n�0

.an cosn!0t C bn sinn!0t / (14)

Since initial velocity is assumed to be zero [11], all sin terms vanishes. Only constant and cos

terms remain in equation (13) and equation (14).

The truncated Fourier series of u.L; t/ and p.L; t/ with m harmonics only is then substituted

into (12). The Harmonic Balance Method (HBM) [5] is used to solve for the unknown coefficients

.a0; a1; a2; : : : ; am/. As a special case of Galerkin techniques, HBM reads
Z T

0

 i.t/r.t/ dt D 0; 8i (15)

where the following family of functions is selected: (1, cos!0t , cos 2!0t , : : :, cosm!0t).

With m C 1 equations, m C 1 unknown coefficients can be solved for by the (Non-Smooth)

Newton method. The function p.L; t/ is then reconstructed through (13) and so are other

needed functions used to build the Nonsmooth Modes of Vibration. Basic continuation is

implemented [7] in order to construct the desired backbone curves, by increasing !0 by a small

value and solve again, with previous solution as initial guess.
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4 RESULTS

In this section, the following is considered: L D 1, c D 1 and g0 D 0:5. For TD-BEM, the

bar is discretized into n D 50 elements in space with element length �x D L=n and time step

is set accordingly. For FD-BEM, m D 15 is used.

The corresponding backbone curves are shown in figure 2. The backbone curve shows the

1:55 1:6 1:65 1:7 1:75 1:8 1:85 1:9 1:95 2 2:05
10
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10
�1

10
0

10
1

10
2
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3
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b

Frequency !

E
n
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g
y

Figure 2: Backbone curve of the first mode. Red stars: TD-BEM/Shooting; blue circles:

FD-BEM/HBM. Dashed line: linear mode

frequency-dependence of the total energy, and compares well with existing solutions [11], except

for backbone curve near linear mode. Since contact period length decreases as frequency !

decreases [11], short period of contact cannot be evaluated precisely with m D 15 harmonics.

Due to inaccurate Fourier expansion and residual function, HBM struggles converging to useful

periodic solutions. Thus this part of solution is skipped.

It can be observed that TD-BEM captures more than one possible solution for a given

frequency of vibration, which shows similar pattern of nonsmooth modes distribution with

existing results [10]. Two such solutions feature the same frequency but distinct contact durations,

as shown in figure 3 (see points a and b). This is induced by the full internal resonance

in the investigated system [12]. Although solution b shows a low-frequency pattern similar

to solution a, extra energy is introduced due to higher frequency mode. Comparatively FD-

BEM/HBM currently cannot guarantee convergence to internal resonance solutions. More

advanced continuation technique might be required to find internal resonance branches.

Displacement solved by FD-BEM/HBM at point c on backbone curve is depicted in Figure 4.

Overall, the displacement field is similar to solution at point a in Figure 3. It is worth noting

that Signorini conditions in FD-BEM/HBM is enforced in integral sense through (15), unlike in

TD-BEM the complementary condition is met pointwise, ie for every time step. Accordingly,

residual pointwise penetration occurs as shown in figure 5.

In terms of computational efficiency, FD-BEM/HBM is much superior to TD-BEM/Shooting.

With the suggested discretization settings, TD-BEM is about 700 times slower than FD-BEM/HBM

to find the whole backbone curve. When n increases, such difference is expected to increase,

since the total number of combination between T and Tc to be skimmed increases in O.n2/,

while for FD-BEM/HBM the step size of continuation can be arbitrarily controlled.
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Figure 3: TD-BEM admissible displacement fields u.x; t/ at ! D 1:848 with different energy

levels. Left: point a in Figure 2, Tc D 0:6; Right: point b in Figure 2, Tc D 0:75

Figure 4: Displacement field found by FD-

BEM/HBM at point c in Figure 2
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Figure 5: Zoom on displacement u.L; t/

found by FD-BEM/HBM at point c in Figure 2

5 CONCLUSIONS

In this paper, two methods have been introduced to perform nonsmooth modal analysis on

a simple academic system. Both methods have shown capability to converge to admissible

solutions.

The TD-BEM/shooting methodology has shown good capability of capturing highly-detailed

step-wise admissible solutions. However, its challenging implementation leads to high computa-

tional costs. Although it has shown no numerical energy dissipation in this one-dimensional case,

this might be untrue for higher dimensional systems, in which case it would become ineligible

for such modal investigations.

Comparatively, FD-BEM/HBM features a much lower computational cost, at the cost of

solving Signorini conditions in an integral sense only. This formulation is also energy preserving

by construction and could be extended to problems in two or three dimensions. More advanced

continuation techniques, such as pseudo-arclength [7], are expected to be coupled into existing

FD-BEM/HBM scheme.
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