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Abstract
This paper investigates the link between the Maximum Principle and

the sign of the (generalized) principal eigenvalue for elliptic operators in
unbounded domains. Our approach covers the cases of Dirichlet, Neu-
mann, and (indefinite) Robin boundary conditions and treat them in a
unified way. For a certain class of elliptic operators (including the class
of selfadjoint operators), we establish that the positivity of the principal
eigenvalue is a necessary and sufficient condition for the validity of the
Maximum Principle. If the principal eigenvalue is zero, no general answer
holds; instead, under a natural condition on the domain’s size at infinity,
we show that the operator satisfies what we call the Critical Maximum
Principle. We also address the question of the simplicity of the principal
eigenvalue, and a series of counterexamples is proposed to disprove some
possible misconceptions. Our main results are new even for the more
classical cases of Dirichlet boundary conditions and selfadjoint operators.
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1 Introduction
The Maximum Principle is the cornerstone property of elliptic operators and
is related to several fundamental questions such as the existence of positive
solutions, stability analysis, Liouville property, spectral analysis, the symmetry
of solutions, etc. When the domain is bounded, it is classical that the positivity
of the principal eigenvalue of an elliptic operator is a necessary and sufficient
condition for the validity of the Maximum Principle. When the domain is
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unbounded, one can introduce some notions of generalized principal eigenvalue
and study whether their signs provide necessary or sufficient conditions for the
validity of the Maximum Principle [7,28]. Important literature is devoted to this
question in under Dirichlet boundary conditions (see [7,10,19,21,22]). The study
of the Neumann and Robin cases in unbounded domains have been initiated in
a recent article of Rossi [28] but appears to be more incomplete. Yet, these
boundary conditions arise in various contexts (for instance, in the literature on
reaction-diffusion equations and population dynamics [4, 6]) and therefore the
question of the validity of the Maximum Principle in these cases has important
implications.

In this paper, we consider a classical generalization of the principal eigenvalue
in unbounded domains and show that, under certain conditions, its positivity is
a necessary or a sufficient condition for the validity of the Maximum Principle.
Our approach covers the cases of non-selfadjoint elliptic operator under Dirich-
let, Neumann, and Robin boundary conditions and addresses them all together
in a unified way.

Let us introduce our framework and notations. Let Ω ⊂ Rn be a possibly
unbounded domain and L be a linear elliptic operator of the form

Lu(x) := −∇ · (A(x) · ∇u(x))−B(x) · ∇u(x)− c(x)u(x), ∀x ∈ Ω, (1)

where, c : Ω→ R, B : Ω→∈ Rn, and A : Ω→ Rn×n. We associate the operator
L with boundary conditions

Bu = 0, ∀x ∈ ∂Ω,

which can be either of the Dirichlet type

Bu = BDu(x) := u(x), ∀x ∈ ∂Ω,

or of the indefinite Robin type

Bu = Bγu(x) := ν(x) ·A(x)∇u(x) + γ(x)u(x), ∀x ∈ ∂Ω, (2)

with γ(·) : ∂Ω→ R and where ν(x) is the outer normal direction of the domain
at x ∈ ∂Ω. The term indefinite indicates that we make no sign assumption on
γ. Neumann boundary conditions are obtained by taking γ ≡ 0 in (2). Our
standing assumptions are the following:

Assumptions (H).
• A ∈ C1,α

loc ∩ L∞(Ω), B, c ∈ C0,α
loc ∩ L∞(Ω), γ ∈ C1,α

loc ∩ L∞(∂Ω) for some
α ∈ (0, 1),

• the domain Ω is Cnloc, or C
2,α
loc if n = 2,

• the operator L is elliptic, i.e., A is symmetric positive definite (not nec-
essarily uniformly in x ∈ Ω), i.e., A ≥ a(x)In for some function a : Ω →
(0,+∞).

The regularity assumptions are required to apply some technical results from [28].
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We define the notions of subsolutions, supersolutions and the Maximum Prin-
ciple as follows.

Definition 1 (sub/supersolutions and Maximum Principle).

• We say that u ∈ C2,α
loc (Ω) is a subsolution (resp. supersolution) of (L,B)

in Ω if and only if {
Lu ≤ 0 (resp. ≥ 0) in Ω,
Bu ≤ 0 (resp. ≥ 0) on ∂Ω.

• We say that (L,B) satisfies the Maximum Principle in Ω if every subso-
lution with finite supremum is nonpositive.

When the domain is bounded, Krein-Rutman theorem implies the existence
of what is called the principal eigenvalue of (L,B) [8], that we denote by λ1.
This eigenvalue is real and has the lowest real part among all eigenvalues. It is
then classical that the sign of λ1 is equivalent to the validity of the Maximum
Principle. Namely, if the domain Ω is bounded, then

(L,B) satisfies the Maximum Principle in Ω ⇔ λ1 > 0. (3)

This result is essentially classical, at least for Dirichlet or positive Robin bound-
ary conditions (see e.g. [12, 27]). When there is no sign hypothesis on γ, the
analysis often gets more difficult, mainly because in this case, the Laplace op-
erator is not positive. However, it is noted by Daners [8] that any (indefinite)
Robin problem can be re-written as a positive Robin problem while preserving
the structure of the operator. The results of Daners therefore entail the study
of indefinite Robin boundary conditions using classical methods. In particu-
lar, they imply that the equivalence (3) holds in the case of indefinite Robin
boundary conditions.

When the domain is unbounded, Krein-Rutman theorem is not applicable,
however, one can still extend the definition of the principal eigenvalue and in-
vestigate the link between its sign and the validity of the Maximum Principle.
The most standard and general definition of the principal eigenvalue in the
unbounded setting is as follows.

Definition 2 (generalized principal eigenvalue). We call generalized principal
eigenvalue of (L,B) the quantity

λ1 := sup {λ ∈ R : (L − λ,B) admits a positive supersolution} . (4)

This definition coincides with the classical notion of principal eigenvalue
given by Krein-Rutman theorem when applicable. In addition, it is knwon that
λ1 is associated with a positive eigenfunction [7, 28]. If the operator is self-
adjoint, i.e., if B ≡ 0 in (1), the generalized principal eigenvalue defined in (4)
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can also be expressed through the Rayleigh-Ritz variational formula, namely,
under Robin boundary conditions

λ1 = inf
ψ∈H1(Ω)
‖ψ‖L2 =1

∫
Ω
|∇ψ|2A − cψ2 +

∫
∂Ω
γψ2, (5)

where |∇ψ|2A := ∇ψ ·A∇ψ, and under Dirichlet boundary conditions

λ1 = inf
ψ∈H1

0 (Ω)
‖ψ‖L2 =1

∫
Ω
|∇ψ|2A − cψ2, (6)

where H1
0 (Ω) is the space of H1 functions which vanishes at the boundary ∂Ω.

Definition (4) has been used in many papers to study the validity of the
Maximum principle under Dirichlet boundary conditions when the domain is
nonsmooth [5,23,26] or unbounded [7,21,28], and coincides with previous varia-
tional caracterizations [1,9,10,13,19,26].. Recently, Rossi [28] used definition (4)
for Robin boundary conditions in unbounded domains and laid the groundwork
by proving important results, including the technical question of the existence
of a positive eigenfunction associated with λ1, see Lemma 1 below. Yet, the case
of Robin boundary conditions is less understood than the Dirichlet case. We
also mention the articles [24,25] in which an equivalent definition of the princi-
pal eigenvalue is considered for very general boundary condition, and also [20]
which studies the Maximum Principle for fully nonlinear elliptic operator with
Neumann boundary conditions.

In general, if the domain is unbounded, it is known that (3) does not hold,
i.e., the positivity of the generalized principal eigenvalue λ1 is neither a nec-
essary nor a sufficient condition for the validity of the Maximum Principle,
see Example 1 below and [7, 28]. Alternative notions of generalized principal
eigenvalues have therefore been proposed to provide, through their signs, such
necessary and sufficient conditions.

Nevertheless, the definition of λ1 through (4) is usually considered as the
most natural generalization of the principal eigenvalue, firstly, because λ1 is
associated with an admissible eigenfunction (i.e. the “sup” in (4) is actually
a max), secondly, because this definition matches with the Rayleigh-Ritz for-
mula (5)-(6) in the case of a selfadjoint operator. It is therefore important
to investigate the conditions under which the positivity of λ1 ensures that the
Maximum Principle holds.

Outline. In this paper, we study the links between the sign of λ1 and the
validity of the Maximum Principle. Our results are stated and discussed in
Section 2 and the proofs are given in Section 3.

Our first result (Theorem 1) establishes that, if the elliptic operator satisfies
a certain condition (7) (which is automatically satisfied if the operator is selfad-
joint), then the strict sign of the generalized principal eigenvalue is a sufficient
and necessary condition for the validity of the Maximum Principle.
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Then, we deal with the critical case where the generalized principal eigen-
value is zero. We show (Theorem 2) that under an additional condition on
the growth of the domain (9), the operator satisfies what we call the Critical
Maximum Principle (Definition 4). From this, we derive a useful necessary and
sufficient condition for the validity of the Maximum Principle in the critical case
(Proposition 1) and deduce that no general answer holds. We also address the
question of the simplicity of the principal eigenvalue (Proposition 2) and show
that no general answer holds.

Finally, Theorem 3 provides a necessary and sufficient condition for the
validity of the Maximum Principle for general elliptic operators that do not
satisfy condition (7). The sufficient condition involves the sign of an alternative
notion of generalized principal eigenvalue.

2 Statement of the results
Many of our statements deal with a certain class of elliptic operator whose drift
term derives from a bounded potential, namely, we may assume that

∃η : Ω→ R ∈ C1 ∩ L∞, ∇η = −A−1 ·B. (7)

Before stating our results, let us point out some important cases where assump-
tion (7) holds.

• Assumption (7) is automatically satisfied if the operator is self-adjoint,
i.e., if B = 0 in (1) (simply take η ≡ 0).

• In dimension n = 1, if BA has a bounded primitive, then (7) is satisfied.

• If A−1 ·B is constant, then (7) reduces to

sup
x∈Ω

∣∣A−1 ·B · x
∣∣ < +∞.

This assumption is not satisfied if Ω = Rn and B 6= 0, but it is satisfied if,
for example, the domain is a cylinder Ω =

{
(x1, x

′) ∈ R× Rn−1 : |x′| < 1
}

and A−1 ·B is orthogonal to the x1 direction.

It was pointed to us by Professor Y. Pinchover (see also [26, Remark 2 p. 103])
that under assumption (7), we can write Lu = −e−η∇ · (eηA∇u) + cu, which
implies that L is a selfadjoint operator in L2 (Ω, eηdx). This fact is somehow
used in our proofs, see Lemma 2 below.

Our first result states that, under assumption (7), the strict sign of λ1 gives
a necessary and sufficient condition for the validity of the Maximum Principle.

Theorem 1. Assume that the standing assumptions (H) hold.

1. Assume (7). If λ1 > 0 then (L,B) satisfies the Maximum Principle in Ω.
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2. If λ1 < 0 then (L,B) does not satisfy the Maximum Principle in Ω.

The first statement of Theorem 1 is new and seems not known even for the more
classical case of a selfadjoint operator with Dirichlet boundary conditions.1 The
second statement of Theorem 1 is already contained in [28, Theorem 2.9, (ii)]
for the case of Robin boundary conditions, and in [7, Theorem 1.7, (ii)] for the
case of Dirichlet boundary conditions.

If assumption (7) is not fulfilled, the first statement of Theorem 1 may not
hold, as can be seen with the following example.

Example 1 (Counterexample to Theorem 1 if (7) does not hold). Set Lu =
−u′′ + δu′ in Ω = R for some parameter δ ∈ R \ {0}. By solving the equation
−ϕ′′+ δϕ′ = λϕ on R for any λ ∈ R, we deduce that λ1 = δ2

4 > 0. However, the
constant u ≡ 1 is a positive bounded subsolution, thus the Maximum Principle
does not hold.

Nervertheless, we give in Theorem 3 below a positive result dealing with general
elliptic operators which do not satisfy (7).

We recall that the Maximum Principle deals with subsolutions with finite
supremum (see Definition 1). Without this condition, Theorem 1 does not hold:

Example 2 (Counterexample to Theorem 1 when considering unbounded sub-
solutions). Set Lu = −u′′ + u on Ω = R. Classicaly, we have that λ1 = 1.
However, the function x 7→ ex is a positive (unbounded) subsolution of the
operator.

Theorem 1 does not deal with the case where λ1 = 0. We will see in the
sequel that, in this case, no general answer holds for the validity of the Maximum
Principle. However, let us mention already that one way to deal with the case
λ1 = 0 is the observation that the assumption “λ1 > 0” in the first statement
of Theorem 1 can be replaced by a weaker assumption on the rate of convergence
of the sequence of principal eigenvalues on truncated domains, see Theorem 4
in Section 3.2.

Let us now introduce the notion of principal eigenfunction.

Definition 3 (principal eigenfunction). We call principal eigenfunction any
function ϕ which is positive on Ω and satisfies{

Lϕ = λ1ϕ in Ω,
Bϕ = 0 on ∂Ω.

(8)

1In the case of a selfadjoint operator with Dirichlet (resp. Robin) boundary conditions,
we deduce from [7, Theorem 1.7, (i)] (resp. [28, Theorem 2.9, (iii)]) that “λ1 > 0” implies
that there exists no bounded positive subsolution of (L,B). The first statement of Theorem 1
is therefore more general since it deals with possibly sign-changing subsolutions (with finite
supremum).
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Principal eigenfunctions have been proved to exist by Berestycki and Rossi [7,
Theorem 1.4] for Dirichlet boundary conditions and by Rossi [28, Theorem 2.2]
for Robin boundary conditions, see Lemma 1 in Section 3.1. However, principal
eigenfunctions may not belong to L2(Ω) or to L∞, which is why λ1 is referred
to as the generalized eigenvalue. Also, in contrast with the case of bounded do-
mains, λ1 may not be simple (i.e., several linearly independent principal eigen-
functions may exist, see Example 7). Let us also point out that, if (and only if)
the domain is unbounded, then any λ ∈ (−∞, λ1] is an eigenvalue which admits
a positive eigenfunction, see [7, Theorem 1.4] and [28, Theorem 2.2].

We now define what we call the Critical Maximum Principle.
Definition 4 (Critical Maximum Principle). We say that (L,B) satisfies the
Critical Maximum Principle in Ω if there exists a principal eigenfunction ϕ such
that every subsolution with finite supremum is either nonpositive or a constant
multiple of ϕ.

When the domain Ω is bounded, then (L,B) satisfies the Critical Maximum
Principle in Ω if and only if λ1 ≥ 0 (this is a direct consequence of the classical
Strong Maximum Principle). The following result states that this property
still holds under (7) if the domain is unbounded but satisfies a certain growth
condition at infinity.
Theorem 2. Assume that the standing assumptions (H) hold.

1. Assume that (7) holds and that Ω satisfies

|Ω ∩ {|x| ≤ R}| = O(R2) when R→ +∞. (9)

If λ1 ≥ 0 then (L,B) satisfies the Critical Maximum Principle in Ω.

2. If λ1 < 0 then (L,B) does not satisfy the Critical Maximum Principle
in Ω.

The first statement of Theorem 2 gives a useful sufficient condition for the
Critical Maximum Principle to hold. This result is new even for the case of
Dirichlet boundary conditions and selfadjoint operators. It is nonetheless closely
related to the property of criticality [29] which are known to hold for Schrödinger
operators in Rn if and only if n ≤ 2, see [22, 23, 25, 26] and references therein.
Note that this standard restriction on the dimension translates in Theorem 2 to
condition (9) on the size of the domain.

If condition (7) is not fulfilled, the first statement of Theorem 2 does not
hold in general, as can be seen through Example 1. Let us give the following
other example which shows that condition (7) is actually sharp in dimension
n = 1. We recall that, in dimension n = 1, condition (7) reduces to assuming
that −BA has a bounded primitive.
Example 3 (Sharpness of (7) in Theorem 2). Let us consider Lu = −u′′+ 2

xu
′

in (1,+∞) with the Neumann boundary condition −u′(1) = 0. Since ϕ ≡ 1
is a positive (super)solution, we have that λ1 ≥ 0. However, the function
v(x) = 1− ε− 1

x is a subsolution which changes sign provided 0 < ε� 1, hence
the Critical Maximum Principle does not hold.
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Condition (9) on the domain’s size at infinity echoes with the assumptions
of a celebrated Liouville theorem from [3]. This condition turns out to be
essentially sharp in our context, see the discussion at the end of Section 3.4 for
more details. Let us simply show here that the first statement of Theorem 2
does not hold for the Laplace operator in the entire space when the dimension
is strictly greater than two.
Example 4 (Counterexample to Theorem 2 when (9) is not fulfilled). Assume
n ≥ 3, set Ω = Rn, L = −∆, and let ρ : Rn → R be a smooth function which
is nonnegative, non identically zero, and compactly supported. Let φ(x) =
C‖x‖2−n (with C > 0) be the fundamental solution of the Laplacian in Rn, and
set u := −φ ? ρ+K where ? denotes the usual convolution product and where
K > 0 is a suitably large constant so that u ≥ 0. Then we have Lu = −ρ ≤ 0,
therefore u is a positive bounded subsolution of the Laplace operator in Rn
for which λ1 = 0. This shows that one can construct positive non-colinear
subsolutions, and so that Theorem 2 is not satisfied.

We point out that if the Critical Maximum Principle holds but not the
Maximum Principle, then we necessarily have λ1 = 0. To see this, simply note
that, in this case, the second statement of Theorem 2 implies λ1 ≥ 0, while
the existence of a nontrivial subsolution which is also a multiple of a principal
eigenfunction implies λ1 ≤ 0.

As a consequence of Theorem 2, we show that, in the critical case when
λ1 = 0, the existence of a bounded principal eigenfunction is a necessary and
sufficient condition for the validity of the Maximum Principle.
Proposition 1. Assume that (H), (7), (9) hold, and that λ1 = 0. Then (L,B)
satisfies the Maximum Principle if and only if there exists an unbounded prin-
cipal eigenfunction.

This result implies that no general answer holds for the validity of the Max-
imum Principle when λ1 = 0. This is illustrated on the following examples.
Example 5 (Non-validity of the Maximum Principle when λ1 = 0).
• if the domain is bounded, it is classical that the Maximum Principle does
not hold if λ1 = 0. Indeed, the principal eigenfunction (given by Krein-
Rutman theorem) is a positive bounded (sub)solution of (L,B).

• the principal eigenvalue of Lu = −u′′ in R is λ1 = 0 and the principal
eigenfunctions are the constant functions, therefore Proposition 1 implies
that the Maximum Principle does not hold in this case.

Example 6 (Validity of the Maximum Principle when λ1 = 0). Consider the
operator Lu = −u′′ in Ω = (0,+∞) associated with the boundary condition
Bu = −u′(0) + γu(0) for some positive constant γ. We see that λ1 = 0 and
that any eigenfunction is a positive multiple of ϕ(x) = x + 1

γ . The principal
eigenfunction ϕ is unbounded, therefore Proposition 1 implies that the Maxi-
mum Principle holds. The case of Dirichlet boundary conditions is also covered
by this example by taking ϕ(x) = x.
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Another consequence of Theorem 2 is the following sufficient condition for the
simplicity of λ1.

Proposition 2. Assume (H), (7), (9), and that there exists a bounded principal
eigenfunction. Then λ1 is simple, i.e., the solution of (8) is unique up to a
multiplicative constant.

Note that, in Example 6, we see that the principal eigenvalue is simple even
though there exists no bounded eigenfunction. It shows that the existence of a
bounded eigenfunction is a sufficient condition but not a necessary condition for
the simplicity of the generalized principal eigenvalue.

Let us now show that no general answer holds for the simplicity of λ1.
Example 5 exhibits situations where Proposition 2 applies, and thus where λ1 is
simple. The following example, inspired from [7, Proposition 8.1], is an instance
where the principale eigenvalue is not simple.

Example 7 (Non-simplicity of λ1). Assume Ω = R and set Lu := −u′′− c(x)u
with c < 0 in (−1, 1) and c = 0 outside. Let us show that λ1 = 0. On the one
hand, the constant 1 is a supersolution of L in R, thus we have λ1 ≥ 0 from
definition (4). On the other hand, since the mean value of c over R is 0, we
deduce λ1 ≤ 0 from [28, Theorem 2.7]. Let u− and u+ be the solutions to Lu = 0
in R satisfying u±(±1) = 1, u′±(±1) = 0. Using standard ODE arguments, we
have that u− is positive, nondecreasing, nonconstant, and identically equal to 1
in (−∞,−1), whereas u+ is positive, nonincreasing, nonconstant, and identically
equal to 1 in (1,+∞). Therefore u± are two linearly independent principal
eigenfunctions and so λ1 = 0 is not simple.

Let us emphasize that if λ1 is not simple, then one can construct a sign-
changing solution of (8) by a linear combination of two principal eigenfunctions.
Thus, in contrast with the case of a bounded domain, λ1 may admit sign-
changing eigenfunctions.

All the above results deal with the class of elliptic operator that fulfill as-
sumption (7). Let us finally discuss the general case where (7) does not hold.
In this case, the positivity of λ1 is not a sufficient condition for the validity of
the Maximum Principle, as can be seen through Example 1. However, under
Dirichlet boundary conditions, Berestycki and Rossi [7, Theorem 1.6] show that
a sufficient condition is given by the positivity of

λ̃1 := sup {λ ∈ R : (L − λ,B) admits a supersolution with positive infimum} .
(10)

Note that the definition of λ̃ in (10) differs from that of λ in (2) since we
impose that the supersolution has positive infimum rather than assuming that
it is positive. In general, we have λ̃1 ≤ λ1, but whether the equality holds is
an open question, see [7, Conjecture 1]. Note that the existence of a principal
eigenfunction with positive infimum implies λ̃1 = λ1, but the converse is not
true, see [7, Proposition 8.1].
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The following theorem establishes that the positivity of λ̃1 is a sufficient
condition for the Maximum Principle to hold. In turn, the following result
extends [7, Theorem 1.6] which deals with Drichlet boundary conditions to the
case of indefinite Robin boundary conditions.

Theorem 3. Assume Ω ⊂ Rn is uniformly C2, that B, c, γ are uniformly C0,α,
that A is uniformly C1,α and is uniformly elliptic (i.e. A(x) ≥ AIn for some
constant A > 0). Recall λ̃1 defined in (10).

If λ̃1 > 0 then (L,B) satisfies the Maximum principle in Ω.

The assumption that the domain is uniformly C2 is defined as follows: there
exist R,C > 0 such that for all x ∈ ∂Ω, there exists some function g : Rn−1 → R
such that ‖g‖C2 ≤ C and

Ω ∩ {|x| ≤ R} = {(x′, xn) : xn > g(x′)} ∩ {|x| ≤ R}, (11)

in some system of coordinate. In particular, it implies a uniform interior ball
condition.

The proof of Theorem 3 can be adapted without difficulty to the case of
oblique boundary conditions considered in [28].

3 Proofs of the results

3.1 Preliminary – existence of a principal eigenfunction
Denote by BR the ball of radius R > 0 and define λR1 the “classical” principal
eigenvalue of the truncated eigenvalue problem

− LϕR = λR1 ϕ
R in Ω ∩BR,

BϕR = 0 on ∂Ω ∩BR,
ϕR = 0 on Ω ∩ ∂BR.

(12)

Note that imposing Dirichlet boundary conditions on Ω ∩ ∂BR is the only way
to ensure the decreasing monotonicity of R 7→ λR1 .

The following result states the existence of the eigenelements for the trun-
cated problem (12) and their convergence when R → +∞. It implies the exis-
tence of a principal eigenfunction in the whole domain. A complete proof can
be found in [7, Theorem 1.4] for Dirichlet boundary conditions and in [28, The-
orem 2.1] for Robin boundary conditions (actually, the result is proved for more
general oblique boundary conditions).

Lemma 1 ( [7, 28]). Assume that the standing assumptions (H) hold.

1. For almost every R > 0, λR1 is well defined and admits an eigenfunction
ϕR which is positive on Ω ∩BR.

2. R 7→ λR1 is strictly decreasing and

lim
R→+∞

λR1 = λ1.
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3. ϕR converges in C2,α
loc to some ϕ which is a principal eigenfunction in Ω.

3.2 Proof of Theorem 1, first statement
We divide the proof of the first statement of Theorem 1 in several lemmas which
will be useful for the sequel.

The first lemma shows that assumption (7) entails a variational structure
for the operator L even though it is not self-adjoint.

Lemma 2. Assume that (H) and (7) hold, let v be a subsolution of (L,B) and
let λ1 and ϕ be the principal eigenvalue and a principal eigenfunction. Setting
σ := v

ϕ , we have

∇ ·
(
ϕ2eηA∇σ

)
≥ λ1e

ησϕ2, in Ω, (13)

and
σ+ϕ

2ν ·A∇σ = 0, on ∂Ω, (14)

where σ+ = max(0, σ) is the positive part of σ.

Under Dirichlet boundary conditions, the expression in (14) is not defined since
ϕ = 0 on ∂Ω. In this case, (14) must be understood at the limit when approach-
ing the boundary.

Proof. Let us first prove (13). Assumption (7) directly implies the following
identity

∇ · (eηA∇v) = [∇ · (A∇v)−B · ∇v] eη.

Using that v is a subsolution, we deduce

∇ · (eηA∇v)− ceηv ≥ 0.

Similarly, since ϕ is a principal eigenfunction, we have

∇ · (eηA∇ϕ)− ceηϕ = −λ1e
ηϕ.

Inequality (13) is then deduced by a straightforward computation.

Let us now prove (14). We first consider the case of Robin boundary con-
ditions. In this case, applying Hopf’s lemma in the equation for ϕ in (8), we
deduce that ϕ > 0 on Ω. Hence, σ is bounded. A straightforward computation
then gives

ν ·A∇σ = ν ·A∇v
ϕ

− σν ·A∇ϕ
ϕ

≤ −γσ + γσ = 0.

It proves (14) in the case of Robin boundary conditions.
Now, consider the case of Dirichlet boundary conditions. Let x0 ∈ ∂Ω and

set xε := x0 − εA(x0)ν(x0) for all ε > 0. If σ(xε) ≤ 0 as ε becomes small,
then (14) trivially holds. Otherwise, we necessarily have that v(x0) = 0 and
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v(xεn) > 0 for a vanishing sequence (εn), therefore ν(x0) · A(x0)∇v(x0) ≤ 0.
Since ν(x0) ·A(x0)∇ϕ(x0) > 0 from Hopf’s lemma, we deduce that limε→0 σ(xε)
exists and equals ν(x0)·A(x0)∇v(x0)

ν(x0)·A(x0)∇ϕ(x0) . From this, we deduce

ϕ2(xε)σ+(xε)ν(x0) ·A(x0)∇σ(xε)
= v+(xε)

(
ν(x0) ·A(x0)∇v(xε)− σ(xε)ν(x0) ·A(x0)∇ϕ(xε)

)
Since v(x0) ≤ 0, the right member of the above expression vanishes as ε → 0,
which completes the proof of (14).

Classically, one can multiply (13) by σ and integrate to derive a variational
inequality. However, since the domain is unbounded, we need to introduce a
cut-off function. For R > 0, we define

χR(x) := χ

(
|x|
R

)
, ∀x ∈ Rn, (15)

with χ a smooth nonnegative function such that

χ(z) =
{

1 if 0 ≤ z ≤ 1,
0 if z ≥ 2,

|χ′| ≤ 2.

Lemma 3. Assume that (H) and (7) holds, let v be a subsolution of (L,B) and
λ1 be the principal eigenvalue. Then, we have

λ1

∫
Ω
χ2
Re

ηv2
+ ≤

∫
Ω
|∇χR|2Aeηv2

+, ∀R > 0,

where |∇χR|2A = ∇χR ·A∇χR, and v+ = max(v, 0) is the positive part of v.

Proof. Multiplying (13) by σ+χ
2
R, integrating over Ω and using the divergence

theorem, we find∫
∂Ω
σ+χ

2
Re

ηϕ2ν ·A∇σ −
∫

Ω
∇
(
χ2
Rσ+

)
·A∇σeηϕ2 ≥ λ1

∫
Ω
eηϕ2σ2

+χ
2
R. (16)

From (14), the boundary integral in (16) equals zero, and so we have

−
∫

Ω
∇
(
χ2
Rσ+

)
·A∇σeηϕ2 ≥ λ1

∫
Ω
eηϕ2σ2

+χ
2
R. (17)

Using that

∇
(
χ2
Rσ+

)
·A∇σ = |∇ (χRσ+)|2A − |∇χR|

2
Aσ

2
+ ≥ −|∇χR|2Aσ2

+,

we find ∫
Ω
|∇χR|2Aσ2

+e
ηϕ2 ≥ λ1

∫
Ω
eηϕ2σ2

+χ
2
R.

We conclude the proof using that σ+ϕ = v+.
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The last ingredient that we need for the proof of the first statement of The-
orem 1 is the following technical lemma.

Lemma 4. Let w 6≡ 0 be a bounded function. Then,

lim inf
R→+∞

R2
∫

Ω |∇χR|
2
Aw

2∫
Ω χ

2
Rw

2 < +∞.

Proof of Lemma 4. By contradiction, assume that there exists R 7→ β(R) posi-
tive increasing such that β(+∞) = +∞ and

R2
∫

Ω |∇χR|
2v2∫

Ω χ
2
Rv

2 ≥ β(R). (18)

Set ΩR := Ω ∩ {|x| ≤ R}. Using that χR ≤ 1, that ∇χR is supported in Ω2R,
and that |∇χR|2 ≤ 1

R2 |∇χ1|2, we deduce from (18) that∫
ΩR

v2 ≤ K

β(R)

∫
Ω2R

v2,

for some constant K > 0 independent of R. Iterating this inequality, we find∫
ΩR

v2 ≤
(

K

β(R)

)j ∫
Ω2jR

v2,

for all integer j ≥ 1. Since v is bounded, we also have that
∫

ΩR v
2 ≤ K ′Rn for

some constant K ′ > 0 independent of R, therefore∫
ΩR

v2 ≤
(

K

β(R)

)j
K ′
(
2jR

)n
.

Taking R > 0 large enough so that β(R) > 2nK, the right member of the
above inequality vanishes as j → +∞. We find

∫
ΩR v

2 ≤ 0, and so v ≡ 0:
contradiction.

We are now ready to complete the proof of the first statement of Theorem 1.

Proof of Theorem 1, first statement. Assume that v is a subsolution of (L,B)
and that v+ 6≡ 0. From Lemma 3, we have that

λ1 ≤
∫

Ω |∇χR|
2
Ae

ηv2
+∫

Ω χ
2
Re

ηv2
+

.

Since w = e
η
2 v+ is bounded, Lemma 4 implies that the right member of the

above inequality vanishes along some sequence R → +∞. We deduce that
λ1 ≤ 0, which conclude the proof.

13



We point out that the above proof only uses

lim inf
R→+∞

∫
Ω |∇χR|

2
Aw

2∫
Ω χ

2
Rw

2 = 0,

which is a weaker statement than the one in Lemma 4. Actually, this observation
allows us to replace the assumption “λ1 > 0” in the first statement of Theo-
rem 1 by a weaker assumption on the convergence of the sequence of principal
eigenvalues on truncated domains.

Theorem 4. Assume (H) and (7) hold and recall the definition of λR1 from Lemma 1
as the principal eigenfunction for the truncated problem (12). If

lim inf
R→+∞

R2λR1 = +∞, (19)

then (L,B) satisfies the Maximum Principle in Ω.

Proof. The proof can be deduced from a slight adaptation of above proof of the
first statement of Theorem 1. Namely, replace λ1, ϕ by λR1 and ϕR to deduce

λR1

∫
Ω
χ2
Re

ηv2
+ ≤

∫
Ω
|∇χR|2Aeηv2

+, ∀R > 0.

Note that, since λR1 → λ1 from Lemma 1, assumption (19) in Theorem 4 is
indeed weaker than the assumption “λ1 > 0” in Theorem 1.

3.3 Proof of Theorem 1, second statement
Assume λ1 < 0. From Lemma 1, there exists R > 0 such that λR1 is negative and
associated with a principal eigenfunction ϕR which solves (12). Note, however,
that ϕR is not smooth in Ω, otherwise we could directly achieve the proof since
ϕR is a positive supersolution of (L,B). To bypass this technical difficulty, we
use the following technic that was pointed to us by Luca Rossi. Consider Φ(t, x)
the solution of the evolution problem

∂tΦ− LΦ = 0, ∀(t, x) ∈ (0,+∞)× Ω,
BΦ = 0, ∀(t, x) ∈ (0,+∞)× ∂Ω,
Φ(t = 0, x) = ϕR(x), ∀x ∈ Ω.

The function ϕR is a generalized supersolution, in the sense that it can be writ-
ten as the infimum of two supersolutions (namely, 0 and ϕR extended smoothly
on Ω∩BR+ε). It is then classical that t 7→ Φ(t, ·) is nonincreasing, i.e., ∂tΦ ≤ 0,
and so for any fixed t0 > 0, Φ(t0, ·) is a positive (smooth) supersolution of (L,B)
in Ω. It proves that the Maximum Principle does not hold, which achieves the
proof.
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3.4 Proof of Theorem 2
Proof of Theorem 2. It can be seen from the proof of the second statement
of Theorem 1 that, if λ1 < 0, then (L,B) does not satisfy the Critical Maximum
Principle in Ω. It proves the second statement of Theorem 2.

We now turn to the proof of the first statement of Theorem 2. Let us assume
that (7) and (9) hold, that λ1 ≥ 0, and let us prove that the Critical Maximum
Principle holds. Let v be subsolution of (L,B) with finite supremum, and set
σ := v

ϕ , where ϕ is a principal eigenfunction (given by Lemma 1). Our goal is
to show that σ+ = max(σ, 0) = v+

ϕ is constant.
Let us consider the cut-off function χR defined in (15) for R > 0. From

inequality (17) in the proof of Lemma 3, we have∫
Ω
∇
(
χ2
Rσ+

)
·A∇σeηϕ2 ≤ 0.

By expanding the term ∇
(
χ2
Rσ+

)
, we find∫

Ω
|∇σ+|2Aχ2

Re
ηϕ2 ≤ −2

∫
Ω
∇χR ·A∇σ+σ+χRe

ηϕ2.

Using Cauchy Schwartz inequality and that ∇χR is supported in {R ≤ |x| ≤
2R}, we obtain

∫
Ω
|∇σ+|2Aχ2

Re
ηϕ2 ≤ 2

√√√√(∫
Ω∩{R≤|x|≤2R}

|∇σ+|2Aχ2
Re

ηϕ2

)(∫
Ω
|∇χR|2Aσ2

+e
ηϕ2

)
.

(20)
Since σ+ϕ = v+ and eη are bounded, and since |∇χR|2 = 1

R2 |∇χ1|2, we deduce∫
Ω
|∇χR|2Aσ2

+e
ηϕ2 ≤ K

R2

∣∣Ω ∩ {R ≤ |x| ≤ 2R}
∣∣,

for some constant K > 0 independent of R. Assumption (9) implies that the
right member of the above inequality is bounded uniformly in R. Injecting this
estimate in (20), we obtain∫

Ω
|∇σ+|2Aχ2

Re
ηϕ2 ≤ K

√∫
Ω∩{R≤|x|≤2R}

|∇σ+|2Aχ2
Re

ηϕ2, (21)

for some constantK > 0 independent of R. We deduce that
∫

Ω |∇σ+|2Aχ2
Re

ηϕ2 is
bounded uniformly in R. We can therefore pass to the limit in (21) as R→ +∞,
which gives

∫
Ω |∇σ+|2Aϕ2

1e
η ≤ 0. Hence ∇σ+ = 0, which ends the proof.

The core of the proof consists in showing that ∇ · (ϕ2
1A∇σ) ≥ 0 (from

Lemma 2) implies ∇σ+ = 0. The literature refers to this property as a Liouville
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property. Originally introduced by Berestycki, Caffarelli, Nirenberg in [3], it has
been extensively used and discussed [2, 11, 14, 18, 30]. Actually, we believe that
the technics of [18, Theorem 5.1] allow to relax assumption (9) to

|Ω ∩ {|x| ≤ R}| = O(R2 log(R)).

However, a recent work of Villegas [30] suggests that the conclusions of Theo-
rem 2 do not hold if we only assume

|Ω ∩ {|x| ≤ R}| = O(R2 log(R)2).

Hence, assumption (9) seems to be essentially optimal in our context. See [18,30]
for more details.

3.5 Proof of Proposition 1
Assume that λ1 = 0 and let ϕ be a principal eigenfunction. If ϕ is bounded,
then it is a bounded positive supersolution and so the Maximum Principle does
not hold: it proves the first statement.

Conversely, let v be subsolution with a finite supremum. Under assump-
tion (9) Theorem 2 implies that v is either nonpositive or is a constant multiple
of ϕ. However, since v is bounded and ϕ is not, v cannot be a non-zero multiple
of ϕ. Therefore, v is nonpositive and the Maximum Principle holds.

3.6 Proof of Proposition 2
Let λ1 be the principal eigenvalue and ϕ,ψ be two principal eigenfunctions. Up
to replacing L with L+λ1, we can assume without loss of generality that λ1 = 0.
Since ψ is bounded, it is a positive subsolution of (L,B) with finite supremum.
Then, Theorem 2 implies that ψ is a constant multiple of ϕ, therefore λ1 is
simple.

3.7 Proof of Theorem 3
Proof of Theorem 3. The proof of Theorem 3 for Dirichlet boundary conditions
is already contained in [7, Theorem 1.6]. We therefore focus on the case of Robin
boundary conditions.

We assume λ̃1 > 0. Let v be a subsolution of (L,B) with finite supremum,
and ϕ be a supersolution of (L + λ,B), λ ∈ (0, λ̃1) with positive infimum. Let
us show v ≤ 0. Up to renormalization, we can assume without loss of generality
that supΩ v ≤ 1 and infΩ ϕ ≥ 3.

The function v and ϕ satisfy differential inequalities which do not yield
uniform C2,α estimates. In the following technical lemma, we construct two
auxiliary functions u ≥ u ≥ v which satisfy the same differential inequalities as
v and ϕ respectively and are also solutions to some semilinear elliptic equations
that entail uniform estimates.
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Lemma 5. There exist two functions u, u ∈ C2(Ω) such that

v+ ≤ u ≤ 2 ≤ u ≤ ϕ

where v+ = max(v, 0), and{
Lu = |c(x)|θ(u) + λu Ω,
Bu = |γ(x)|θ(u) ∂Ω,

{
Lu = |c(x)|θ(u) Ω,
Bu = |γ(x)|θ(u) ∂Ω,

where

θ(·) is smooth, nonnegative, nonincreasing, θ =
{

1 on (−∞, 2],
0 on [3,+∞),

(22)

θ(·) is smooth, nonpositive, nonincreasing, θ =
{

0 on (−∞, 1],
− 1 on [2,+∞).

The proof of this lemma is postponed at the end of the section.
Let us go on with the proof of Theorem 3. We set

t0 := inf {t ≥ 0 : u ≤ tu} .

By contradiction, assume t0 > 0. Denoting w := u−t0u, we have that w ≤ 0 and
that there exists a sequence xn ∈ Ω such that w(xn) → supw = 0. Intuitively,
our goal is to obtain a contradiction from taking the limit as n→ +∞ and apply-
ing the Maximum Principle. Up to extraction of a subsequence, we can assume
without loss of generality that either d(xn, ∂Ω) → 0 or lim inf d(xn, ∂Ω) > 0.
Set un(·) := u(· + xn), un(·) := u(· + xn), wn(·) := w(· + xn), defined in the
closure of Ωn := Ω − xn. Let B1 denote the unit ball centered at the origin
and set Vn := Ωn ∩ B1. Let also R > 0 be the radius in the definition of the
uniform C2 regularity of the domain (11), and let yn ∈ Ωn be a sequence such
that 0 ∈ Bn := {|x − yn| ≤ R} ⊂ Ωn. Without loss of generality, we can also
assume that R is so small that Bn ⊂ Vn.

Let us derive uniform C2,α
loc estimates on un and un. For n large enough, we

have that wn(0) ≥ −1, therefore infVn un is bounded from above uniformly in
n. From the classical Harnack inequality, u satisfies

sup
Vn

un ≤ C inf
Vn
un.

with a constant C > 0 independent of n. This implies that supVn un is bounded
uniformly in n. Then, classical Schauder estimates imply that un, un, and wn
are bounded in C2,α(Vn), uniformly in n.

The uniform C2,α imply by compactness that wn converges (up to a subse-
quence) to some w∞ in C2(B∞), where B∞ is a ball of radius R and 0 ∈ B∞.
Similarily, the coefficients Ln := L(·+xn), Bn = B(·+xn) converge in C0,α (up
to a subsequence) to some L∞, B∞. We further have

w∞ ≤ 0 = w∞(0),

17



and {
L∞w∞ ≤ −t0λu∞ in B∞,
B∞w∞ ≤ 0 in ∂Ω ∩B∞.

(23)

Let us show that w∞ ≡ 0. On the one hand, if 0 ∈ B∞ then the classical
Strong Maximum Principle implies that w∞ ≡ 0. On the other hand, if 0 ∈
∂Ω ∩B∞ then the boundary condition in (23) yields

ν(0) ·A∞(0)∇w∞(0) ≤ −γ∞(0)w∞(0) = 0.

From Hopf’s lemma, we deduce w∞ ≡ 0. In both cases, we have derived that
w∞ ≡ 0.

Using (23), that t0 > 0, and that inf u∞ > 0, we deduce λ = 0: contradiction.
Thus t0 = 0, u = v+ = 0, and so v ≤ 0.

Proof of Lemma 5. The proof is inspired by the proof of [7, Proposition 5.2].
We use the notations

f(x, s) := |c(x)|θ(s) + λs ; g(x, s) := |γ(x)|θ(s).

Our goal is to show the existence of a solution u of the equation{
Lu = f(x, u) Ω,
Bu = g(x, u) ∂Ω.

(24)

which also satisfies 2 ≤ u ≤ ϕ. Our arguments can be adapted without difficulty
to prove the existence of u satisfying the required conditions.

From the assumptions (22) on θ and that infΩ ϕ ≥ 3, we have that{
Lϕ ≥ f(x, ϕ) Ω,
Bϕ ≥ g(x, ϕ) ∂Ω.

Setting σ ≡ 2, we also have that{
Lσ ≤ f(x, σ) Ω,
Bσ ≤ g(x, σ) ∂Ω.

We are going to use ϕ and σ as a super and a subsolution of (24), and construct
u with Perron’s iterative method on a truncated domain. Let us consider a
sequence 0 < Rj → +∞ of real positive numbers and an increasing sequence
of bounded Lipschitz subdomains ΩRj ⊂ Ω such that

⋃
j>0

ΩRj = Ω. We denote

ΣRj = ∂ΩRj ∩ ∂Ω, and we choose ΩR such that the intersection of ΣR and
∂ΩR\ΣR is a C2 (n− 2)-dimensional manifold.

We set u0 = ϕ and define by induction un+1 as the unique solution of
Lun+1 − Cun+1 = f(x, un)− Cun ΩR,
Bun+1 − Γun+1 = g(x, un)− Γun ΣR,
un+1 = ϕ ∂ΩR\ΣR

(25)
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with C := infΩ c and Γ := inf∂Ω γ. From the results of Liberman [15], we know
that all classical results (Schauder estimates, Maximum Principle, solvability,
etc.) hold from the mixed boundary value problem (25). First, those results
imply that the sequence un is well defined. Then, from the Maximum Principle,
we can show by induction that

σ ≤ un+1 ≤ un ≤ ϕ. (26)

From the a priori Schauder estimates proved in [15] for the mixed boundary
value problem (25), we know that un is bounded in C2,α uniformly in n, and
therefore converges in C2(ΩR) to some function uR which is a solution of

LuR = f(x, uR) ΩR,
BuR = g(x, uR) ΣR,
uR = ϕ ∂ΩR\ΣR

(27)

We also know from (26) that

σ ≤ uR ≤ ϕ.

From Theorem 3.3 in [16] and Theorem 4.3 in [17], we can show that the
Harnack estimate holds for the mixed boundary problem (27), namely, we have
that

sup
ΩR0

uR ≤ C inf
ΩR0

uR ≤ C inf
ΩR0

ϕ,

where C is a constant independent of R.
Now, from classical Schauder estimates, uR is uniformly C2,α in ΩR0 . Thus,

uR converges (up to extraction) to some u in C2
loc(Ω) when R → +∞, which

satisfies the required conditions.
Let us now derive an estimate on uR which is uniform in R. We fix R0 > 0

and take R > R0.
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