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This paper investigates the link between the Maximum Principle and the sign of the (generalized) principal eigenvalue for elliptic operators in unbounded domains. Our approach covers the cases of Dirichlet, Neumann, and (indefinite) Robin boundary conditions and treat them in a unified way. For a certain class of elliptic operators (including the class of selfadjoint operators), we establish that the positivity of the principal eigenvalue is a necessary and sufficient condition for the validity of the Maximum Principle. If the principal eigenvalue is zero, no general answer holds; instead, under a natural condition on the domain's size at infinity, we show that the operator satisfies what we call the Critical Maximum Principle. We also address the question of the simplicity of the principal eigenvalue, and a series of counterexamples is proposed to disprove some possible misconceptions. Our main results are new even for the more classical cases of Dirichlet boundary conditions and selfadjoint operators.

Introduction

The Maximum Principle is the cornerstone property of elliptic operators and is related to several fundamental questions such as the existence of positive solutions, stability analysis, Liouville property, spectral analysis, the symmetry of solutions, etc. When the domain is bounded, it is classical that the positivity of the principal eigenvalue of an elliptic operator is a necessary and sufficient condition for the validity of the Maximum Principle. When the domain is unbounded, one can introduce some notions of generalized principal eigenvalue and study whether their signs provide necessary or sufficient conditions for the validity of the Maximum Principle [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]. Important literature is devoted to this question in under Dirichlet boundary conditions (see [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Donsker | On the principal eigenvalue of secondorder elliptic differential operators[END_REF][START_REF] Nussbaum | On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications[END_REF][START_REF] Pinchover | On principal eiganvalues for indefinite-weight elliptic problems[END_REF][START_REF] Pinchover | A Liouville-type Theorem for Schrödinger Operators[END_REF]). The study of the Neumann and Robin cases in unbounded domains have been initiated in a recent article of Rossi [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF] but appears to be more incomplete. Yet, these boundary conditions arise in various contexts (for instance, in the literature on reaction-diffusion equations and population dynamics [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF][START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF]) and therefore the question of the validity of the Maximum Principle in these cases has important implications.

In this paper, we consider a classical generalization of the principal eigenvalue in unbounded domains and show that, under certain conditions, its positivity is a necessary or a sufficient condition for the validity of the Maximum Principle. Our approach covers the cases of non-selfadjoint elliptic operator under Dirichlet, Neumann, and Robin boundary conditions and addresses them all together in a unified way.

Let us introduce our framework and notations. Let Ω ⊂ R n be a possibly unbounded domain and L be a linear elliptic operator of the form

Lu(x) := -∇ • (A(x) • ∇u(x)) -B(x) • ∇u(x) -c(x)u(x), ∀x ∈ Ω, (1) 
where, c : Ω → R, B : Ω →∈ R n , and A : Ω → R n×n . We associate the operator L with boundary conditions Bu = 0, ∀x ∈ ∂Ω, which can be either of the Dirichlet type

Bu = B D u(x) := u(x), ∀x ∈ ∂Ω,
or of the indefinite Robin type

Bu = B γ u(x) := ν(x) • A(x)∇u(x) + γ(x)u(x), ∀x ∈ ∂Ω, (2) 
with γ(•) : ∂Ω → R and where ν(x) is the outer normal direction of the domain at x ∈ ∂Ω. The term indefinite indicates that we make no sign assumption on γ. Neumann boundary conditions are obtained by taking γ ≡ 0 in [START_REF] Barlow | The Liouville property and a conjecture of De Giorgi[END_REF]. Our standing assumptions are the following:

Assumptions (H).

• A ∈ C 1,α loc ∩ L ∞ (Ω), B, c ∈ C 0,α loc ∩ L ∞ (Ω), γ ∈ C 1,α loc ∩ L ∞ (∂Ω)
for some α ∈ (0, 1),

• the domain Ω is C n loc , or C 2,α loc if n = 2, • the operator L is elliptic, i.e., A is symmetric positive definite (not necessarily uniformly in x ∈ Ω), i.e., A ≥ a(x)I n for some function a : Ω → (0, +∞).

The regularity assumptions are required to apply some technical results from [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF].

We define the notions of subsolutions, supersolutions and the Maximum Principle as follows.

Definition 1 (sub/supersolutions and Maximum Principle).

• We say that u ∈ C 2,α loc (Ω) is a subsolution (resp. supersolution) of (L, B) in Ω if and only if

Lu ≤ 0 (resp. ≥ 0) in Ω, Bu ≤ 0 (resp. ≥ 0) on ∂Ω.
• We say that (L, B) satisfies the Maximum Principle in Ω if every subsolution with finite supremum is nonpositive.

When the domain is bounded, Krein-Rutman theorem implies the existence of what is called the principal eigenvalue of (L, B) [START_REF] Daners | Inverse positivity for general Robin problems on Lipschitz domains[END_REF], that we denote by λ 1 . This eigenvalue is real and has the lowest real part among all eigenvalues. It is then classical that the sign of λ 1 is equivalent to the validity of the Maximum Principle. Namely, if the domain Ω is bounded, then

(L, B) satisfies the Maximum Principle in Ω ⇔ λ 1 > 0. ( 3 
)
This result is essentially classical, at least for Dirichlet or positive Robin boundary conditions (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF][START_REF] Protter | Maximum Principles in Differential Equations[END_REF]). When there is no sign hypothesis on γ, the analysis often gets more difficult, mainly because in this case, the Laplace operator is not positive. However, it is noted by Daners [8] that any (indefinite) Robin problem can be re-written as a positive Robin problem while preserving the structure of the operator. The results of Daners therefore entail the study of indefinite Robin boundary conditions using classical methods. In particular, they imply that the equivalence (3) holds in the case of indefinite Robin boundary conditions. When the domain is unbounded, Krein-Rutman theorem is not applicable, however, one can still extend the definition of the principal eigenvalue and investigate the link between its sign and the validity of the Maximum Principle. The most standard and general definition of the principal eigenvalue in the unbounded setting is as follows.

Definition 2 (generalized principal eigenvalue). We call generalized principal eigenvalue of (L, B) the quantity

λ 1 := sup {λ ∈ R : (L -λ, B) admits a positive supersolution} . ( 4 
)
This definition coincides with the classical notion of principal eigenvalue given by Krein-Rutman theorem when applicable. In addition, it is knwon that λ 1 is associated with a positive eigenfunction [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]. If the operator is selfadjoint, i.e., if B ≡ 0 in (1), the generalized principal eigenvalue defined in [START_REF] Berestycki | Bistable travelling waves around an obstacle[END_REF] can also be expressed through the Rayleigh-Ritz variational formula, namely, under Robin boundary conditions

λ 1 = inf ψ∈H 1 (Ω) ψ L 2 =1 Ω |∇ψ| 2 A -cψ 2 + ∂Ω γψ 2 , ( 5 
)
where |∇ψ| 2 A := ∇ψ • A∇ψ, and under Dirichlet boundary conditions

λ 1 = inf ψ∈H 1 0 (Ω) ψ L 2 =1 Ω |∇ψ| 2 A -cψ 2 , ( 6 
)
where H 1 0 (Ω) is the space of H 1 functions which vanishes at the boundary ∂Ω. Definition (4) has been used in many papers to study the validity of the Maximum principle under Dirichlet boundary conditions when the domain is nonsmooth [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF][START_REF] Pinchover | Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations[END_REF][START_REF] Ross | Positive Harmonic Functions and Diffusion[END_REF] or unbounded [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Pinchover | On principal eiganvalues for indefinite-weight elliptic problems[END_REF][START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF], and coincides with previous variational caracterizations [START_REF] Shmuel Agmon | On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds[END_REF][START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF][START_REF] Donsker | On the principal eigenvalue of secondorder elliptic differential operators[END_REF][START_REF] Charles | A Minimum Principle for the Principal Eigenvalue for Second-Order Linear Elliptic Equations With Natural Boundary Conditions[END_REF][START_REF] Nussbaum | On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications[END_REF][START_REF] Ross | Positive Harmonic Functions and Diffusion[END_REF].. Recently, Rossi [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF] used definition (4) for Robin boundary conditions in unbounded domains and laid the groundwork by proving important results, including the technical question of the existence of a positive eigenfunction associated with λ 1 , see Lemma 1 below. Yet, the case of Robin boundary conditions is less understood than the Dirichlet case. We also mention the articles [START_REF] Pinchover | On positivity of solutions of degenerate boundary value problems for second-order elliptic equations[END_REF][START_REF] Pinchover | On criticality theory for elliptic mixed boundary value problems in divergence form[END_REF] in which an equivalent definition of the principal eigenvalue is considered for very general boundary condition, and also [START_REF] Patrizi | The Neumann problem for singular fully nonlinear operators[END_REF] which studies the Maximum Principle for fully nonlinear elliptic operator with Neumann boundary conditions.

In general, if the domain is unbounded, it is known that (3) does not hold, i.e., the positivity of the generalized principal eigenvalue λ 1 is neither a necessary nor a sufficient condition for the validity of the Maximum Principle, see Example 1 below and [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]. Alternative notions of generalized principal eigenvalues have therefore been proposed to provide, through their signs, such necessary and sufficient conditions.

Nevertheless, the definition of λ 1 through (4) is usually considered as the most natural generalization of the principal eigenvalue, firstly, because λ 1 is associated with an admissible eigenfunction (i.e. the "sup" in (4) is actually a max), secondly, because this definition matches with the Rayleigh-Ritz formula ( 5)- [START_REF] Berestycki | The influence of a line with fast diffusion on Fisher-KPP propagation[END_REF] in the case of a selfadjoint operator. It is therefore important to investigate the conditions under which the positivity of λ 1 ensures that the Maximum Principle holds.

Outline.

In this paper, we study the links between the sign of λ 1 and the validity of the Maximum Principle. Our results are stated and discussed in Section 2 and the proofs are given in Section 3.

Our first result (Theorem 1) establishes that, if the elliptic operator satisfies a certain condition [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] (which is automatically satisfied if the operator is selfadjoint), then the strict sign of the generalized principal eigenvalue is a sufficient and necessary condition for the validity of the Maximum Principle.

Then, we deal with the critical case where the generalized principal eigenvalue is zero. We show (Theorem 2) that under an additional condition on the growth of the domain [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF], the operator satisfies what we call the Critical Maximum Principle (Definition 4). From this, we derive a useful necessary and sufficient condition for the validity of the Maximum Principle in the critical case (Proposition 1) and deduce that no general answer holds. We also address the question of the simplicity of the principal eigenvalue (Proposition 2) and show that no general answer holds.

Finally, Theorem 3 provides a necessary and sufficient condition for the validity of the Maximum Principle for general elliptic operators that do not satisfy condition [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]. The sufficient condition involves the sign of an alternative notion of generalized principal eigenvalue.

Statement of the results

Many of our statements deal with a certain class of elliptic operator whose drift term derives from a bounded potential, namely, we may assume that

∃η : Ω → R ∈ C 1 ∩ L ∞ , ∇η = -A -1 • B. (7) 
Before stating our results, let us point out some important cases where assumption ( 7) holds.

• Assumption ( 7) is automatically satisfied if the operator is self-adjoint, i.e., if B = 0 in (1) (simply take η ≡ 0).

• In dimension n = 1, if B

A has a bounded primitive, then (7) is satisfied.

• If A -1 • B is constant, then (7) reduces to sup x∈Ω A -1 • B • x < +∞.
This assumption is not satisfied if Ω = R n and B = 0, but it is satisfied if, for example, the domain is a cylinder Ω

= (x 1 , x ) ∈ R × R n-1 : |x | < 1 and A -1 • B is orthogonal to the x 1 direction.
It was pointed to us by Professor Y. Pinchover (see also [START_REF] Ross | Positive Harmonic Functions and Diffusion[END_REF]Remark 2 p. 103]) that under assumption [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], we can write Lu = -e -η ∇ • (e η A∇u) + cu, which implies that L is a selfadjoint operator in L 2 (Ω, e η dx). This fact is somehow used in our proofs, see Lemma 2 below.

Our first result states that, under assumption [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], the strict sign of λ 1 gives a necessary and sufficient condition for the validity of the Maximum Principle.

Theorem 1. Assume that the standing assumptions (H) hold.

1. Assume [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]. If λ 1 > 0 then (L, B) satisfies the Maximum Principle in Ω.

If λ 1 < 0 then (L, B) does not satisfy the Maximum Principle in Ω.

The first statement of Theorem 1 is new and seems not known even for the more classical case of a selfadjoint operator with Dirichlet boundary conditions. 1 The second statement of Theorem 1 is already contained in [28, Theorem 2.9, (ii)] for the case of Robin boundary conditions, and in [7, Theorem 1.7, (ii)] for the case of Dirichlet boundary conditions.

If assumption ( 7) is not fulfilled, the first statement of Theorem 1 may not hold, as can be seen with the following example.

Example 1 (Counterexample to Theorem 1 if [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] does not hold). Set Lu = -u + δu in Ω = R for some parameter δ ∈ R \ {0}. By solving the equation -ϕ + δϕ = λϕ on R for any λ ∈ R, we deduce that λ 1 = δ 2 4 > 0. However, the constant u ≡ 1 is a positive bounded subsolution, thus the Maximum Principle does not hold.

Nervertheless, we give in Theorem 3 below a positive result dealing with general elliptic operators which do not satisfy [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF].

We recall that the Maximum Principle deals with subsolutions with finite supremum (see Definition 1). Without this condition, Theorem 1 does not hold:

Example 2 (Counterexample to Theorem 1 when considering unbounded subsolutions). Set Lu = -u + u on Ω = R. Classicaly, we have that λ 1 = 1. However, the function x → e x is a positive (unbounded) subsolution of the operator.

Theorem 1 does not deal with the case where λ 1 = 0. We will see in the sequel that, in this case, no general answer holds for the validity of the Maximum Principle. However, let us mention already that one way to deal with the case λ 1 = 0 is the observation that the assumption "λ 1 > 0" in the first statement of Theorem 1 can be replaced by a weaker assumption on the rate of convergence of the sequence of principal eigenvalues on truncated domains, see Theorem 4 in Section 3.2.

Let us now introduce the notion of principal eigenfunction.

Definition 3 (principal eigenfunction). We call principal eigenfunction any function ϕ which is positive on Ω and satisfies

Lϕ = λ 1 ϕ in Ω, Bϕ = 0 on ∂Ω. ( 8 
)
Principal eigenfunctions have been proved to exist by Berestycki and Rossi [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.4] for Dirichlet boundary conditions and by Rossi [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]Theorem 2.2] for Robin boundary conditions, see Lemma 1 in Section 3.1. However, principal eigenfunctions may not belong to L 2 (Ω) or to L ∞ , which is why λ 1 is referred to as the generalized eigenvalue. Also, in contrast with the case of bounded domains, λ 1 may not be simple (i.e., several linearly independent principal eigenfunctions may exist, see Example 7). Let us also point out that, if (and only if) the domain is unbounded, then any λ ∈ (-∞, λ 1 ] is an eigenvalue which admits a positive eigenfunction, see [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.4] and [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]Theorem 2.2].

We now define what we call the Critical Maximum Principle.

Definition 4 (Critical Maximum Principle). We say that (L, B) satisfies the Critical Maximum Principle in Ω if there exists a principal eigenfunction ϕ such that every subsolution with finite supremum is either nonpositive or a constant multiple of ϕ.

When the domain Ω is bounded, then (L, B) satisfies the Critical Maximum Principle in Ω if and only if λ 1 ≥ 0 (this is a direct consequence of the classical Strong Maximum Principle). The following result states that this property still holds under [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] if the domain is unbounded but satisfies a certain growth condition at infinity.

Theorem 2. Assume that the standing assumptions (H) hold.

1. Assume that [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] holds and that Ω satisfies

|Ω ∩ {|x| ≤ R}| = O(R 2 ) when R → +∞. ( 9 
)
If λ 1 ≥ 0 then (L, B) satisfies the Critical Maximum Principle in Ω.

2. If λ 1 < 0 then (L, B) does not satisfy the Critical Maximum Principle in Ω.

The first statement of Theorem 2 gives a useful sufficient condition for the Critical Maximum Principle to hold. This result is new even for the case of Dirichlet boundary conditions and selfadjoint operators. It is nonetheless closely related to the property of criticality [START_REF] Simon | The bound state of weakly coupled Schrödinger operators in one and two dimensions[END_REF] which are known to hold for Schrödinger operators in R n if and only if n ≤ 2, see [START_REF] Pinchover | A Liouville-type Theorem for Schrödinger Operators[END_REF][START_REF] Pinchover | Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations[END_REF][START_REF] Pinchover | On criticality theory for elliptic mixed boundary value problems in divergence form[END_REF][START_REF] Ross | Positive Harmonic Functions and Diffusion[END_REF] and references therein. Note that this standard restriction on the dimension translates in Theorem 2 to condition (9) on the size of the domain.

If condition [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] is not fulfilled, the first statement of Theorem 2 does not hold in general, as can be seen through Example 1. Let us give the following other example which shows that condition [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] is actually sharp in dimension n = 1. We recall that, in dimension n = 1, condition [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] reduces to assuming that -B A has a bounded primitive. Example 3 (Sharpness of (7) in Theorem 2). Let us consider Lu = -u + 2

x u in (1, +∞) with the Neumann boundary condition -u (1) = 0. Since ϕ ≡ 1 is a positive (super)solution, we have that λ 1 ≥ 0. However, the function

v(x) = 1 -ε -1
x is a subsolution which changes sign provided 0 < ε 1, hence the Critical Maximum Principle does not hold.

Condition [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF] on the domain's size at infinity echoes with the assumptions of a celebrated Liouville theorem from [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]. This condition turns out to be essentially sharp in our context, see the discussion at the end of Section 3.4 for more details. Let us simply show here that the first statement of Theorem 2 does not hold for the Laplace operator in the entire space when the dimension is strictly greater than two.

Example 4 (Counterexample to Theorem 2 when ( 9) is not fulfilled). Assume n ≥ 3, set Ω = R n , L = -∆, and let ρ : R n → R be a smooth function which is nonnegative, non identically zero, and compactly supported. Let φ(x) = C x 2-n (with C > 0) be the fundamental solution of the Laplacian in R n , and set u := -φ ρ + K where denotes the usual convolution product and where K > 0 is a suitably large constant so that u ≥ 0. Then we have Lu = -ρ ≤ 0, therefore u is a positive bounded subsolution of the Laplace operator in R n for which λ 1 = 0. This shows that one can construct positive non-colinear subsolutions, and so that Theorem 2 is not satisfied.

We point out that if the Critical Maximum Principle holds but not the Maximum Principle, then we necessarily have λ 1 = 0. To see this, simply note that, in this case, the second statement of Theorem 2 implies λ 1 ≥ 0, while the existence of a nontrivial subsolution which is also a multiple of a principal eigenfunction implies λ 1 ≤ 0.

As a consequence of Theorem 2, we show that, in the critical case when λ 1 = 0, the existence of a bounded principal eigenfunction is a necessary and sufficient condition for the validity of the Maximum Principle.

Proposition 1. Assume that (H), [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], ( 9) hold, and that λ 1 = 0. Then (L, B) satisfies the Maximum Principle if and only if there exists an unbounded principal eigenfunction.

This result implies that no general answer holds for the validity of the Maximum Principle when λ 1 = 0. This is illustrated on the following examples.

Example 5 (Non-validity of the Maximum Principle when λ 1 = 0).

• if the domain is bounded, it is classical that the Maximum Principle does not hold if λ 1 = 0. Indeed, the principal eigenfunction (given by Krein-Rutman theorem) is a positive bounded (sub)solution of (L, B).

• the principal eigenvalue of Lu = -u in R is λ 1 = 0 and the principal eigenfunctions are the constant functions, therefore Proposition 1 implies that the Maximum Principle does not hold in this case.

Example 6 (Validity of the Maximum Principle when λ 1 = 0). Consider the operator Lu = -u in Ω = (0, +∞) associated with the boundary condition Bu = -u (0) + γu(0) for some positive constant γ. We see that λ 1 = 0 and that any eigenfunction is a positive multiple of ϕ(x) = x + 1 γ . The principal eigenfunction ϕ is unbounded, therefore Proposition 1 implies that the Maximum Principle holds. The case of Dirichlet boundary conditions is also covered by this example by taking ϕ(x) = x.

Another consequence of Theorem 2 is the following sufficient condition for the simplicity of λ 1 .

Proposition 2. Assume (H), [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF], and that there exists a bounded principal eigenfunction. Then λ 1 is simple, i.e., the solution of (8) is unique up to a multiplicative constant.

Note that, in Example 6, we see that the principal eigenvalue is simple even though there exists no bounded eigenfunction. It shows that the existence of a bounded eigenfunction is a sufficient condition but not a necessary condition for the simplicity of the generalized principal eigenvalue.

Let us now show that no general answer holds for the simplicity of λ 1 . Example 5 exhibits situations where Proposition 2 applies, and thus where λ 1 is simple. The following example, inspired from [7, Proposition 8.1], is an instance where the principale eigenvalue is not simple.

Example 7 (Non-simplicity of λ 1 ). Assume Ω = R and set Lu := -u -c(x)u with c < 0 in (-1, 1) and c = 0 outside. Let us show that λ 1 = 0. On the one hand, the constant 1 is a supersolution of L in R, thus we have λ 1 ≥ 0 from definition (4). On the other hand, since the mean value of c over R is 0, we deduce λ 1 ≤ 0 from [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF]Theorem 2.7]. Let u -and u + be the solutions to Lu = 0 in R satisfying u ± (±1) = 1, u ± (±1) = 0. Using standard ODE arguments, we have that u -is positive, nondecreasing, nonconstant, and identically equal to 1 in (-∞, -1), whereas u + is positive, nonincreasing, nonconstant, and identically equal to 1 in (1, +∞). Therefore u ± are two linearly independent principal eigenfunctions and so λ 1 = 0 is not simple.

Let us emphasize that if λ 1 is not simple, then one can construct a signchanging solution of (8) by a linear combination of two principal eigenfunctions. Thus, in contrast with the case of a bounded domain, λ 1 may admit signchanging eigenfunctions.

All the above results deal with the class of elliptic operator that fulfill assumption [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]. Let us finally discuss the general case where [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] does not hold. In this case, the positivity of λ 1 is not a sufficient condition for the validity of the Maximum Principle, as can be seen through Example 1. However, under Dirichlet boundary conditions, Berestycki and Rossi [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.6] show that a sufficient condition is given by the positivity of λ1 := sup {λ ∈ R : (L -λ, B) admits a supersolution with positive infimum} .

(10) Note that the definition of λ in [START_REF] Donsker | On the principal eigenvalue of secondorder elliptic differential operators[END_REF] differs from that of λ in (2) since we impose that the supersolution has positive infimum rather than assuming that it is positive. In general, we have λ1 ≤ λ 1 , but whether the equality holds is an open question, see [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Conjecture 1]. Note that the existence of a principal eigenfunction with positive infimum implies λ1 = λ 1 , but the converse is not true, see [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Proposition 8.1].

The following theorem establishes that the positivity of λ1 is a sufficient condition for the Maximum Principle to hold. In turn, the following result extends [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.6] which deals with Drichlet boundary conditions to the case of indefinite Robin boundary conditions. Theorem 3. Assume Ω ⊂ R n is uniformly C 2 , that B, c, γ are uniformly C 0,α , that A is uniformly C 1,α and is uniformly elliptic (i.e. A(x) ≥ AI n for some constant A > 0). Recall λ1 defined in [START_REF] Donsker | On the principal eigenvalue of secondorder elliptic differential operators[END_REF].

If λ1 > 0 then (L, B) satisfies the Maximum principle in Ω.

The assumption that the domain is uniformly C 2 is defined as follows: there exist R, C > 0 such that for all x ∈ ∂Ω, there exists some function g :

R n-1 → R such that g C 2 ≤ C and Ω ∩ {|x| ≤ R} = {(x , x n ) : x n > g(x )} ∩ {|x| ≤ R}, ( 11 
)
in some system of coordinate. In particular, it implies a uniform interior ball condition.

The proof of Theorem 3 can be adapted without difficulty to the case of oblique boundary conditions considered in [START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF].

Proofs of the results

Preliminary -existence of a principal eigenfunction

Denote by B R the ball of radius R > 0 and define λ R 1 the "classical" principal eigenvalue of the truncated eigenvalue problem

     -Lϕ R = λ R 1 ϕ R in Ω ∩ B R , Bϕ R = 0 on ∂Ω ∩ B R , ϕ R = 0 on Ω ∩ ∂B R . ( 12 
)
Note that imposing Dirichlet boundary conditions on Ω ∩ ∂B R is the only way to ensure the decreasing monotonicity of R → λ R 1 . The following result states the existence of the eigenelements for the truncated problem [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] and their convergence when R → +∞. It implies the existence of a principal eigenfunction in the whole domain. A complete proof can be found in [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.4] for Dirichlet boundary conditions and in [28, Theorem 2.1] for Robin boundary conditions (actually, the result is proved for more general oblique boundary conditions).

Lemma 1 ( [7, 28]). Assume that the standing assumptions (H) hold.

1. For almost every R > 0, λ R 1 is well defined and admits an eigenfunction ϕ R which is positive on Ω ∩ B R .

R → λ R

1 is strictly decreasing and lim

R→+∞ λ R 1 = λ 1 . 10 3. ϕ R converges in C 2,α
loc to some ϕ which is a principal eigenfunction in Ω.

Proof of Theorem 1, first statement

We divide the proof of the first statement of Theorem 1 in several lemmas which will be useful for the sequel.

The first lemma shows that assumption (7) entails a variational structure for the operator L even though it is not self-adjoint.

Lemma 2. Assume that (H) and [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] hold, let v be a subsolution of (L, B) and let λ 1 and ϕ be the principal eigenvalue and a principal eigenfunction. Setting σ := v ϕ , we have

∇ • ϕ 2 e η A∇σ ≥ λ 1 e η σϕ 2 , in Ω, ( 13 
)
and σ + ϕ 2 ν • A∇σ = 0, on ∂Ω, ( 14 
)
where σ + = max(0, σ) is the positive part of σ.

Under Dirichlet boundary conditions, the expression in ( 14) is not defined since ϕ = 0 on ∂Ω. In this case, ( 14) must be understood at the limit when approaching the boundary.

Proof. Let us first prove [START_REF] Charles | A Minimum Principle for the Principal Eigenvalue for Second-Order Linear Elliptic Equations With Natural Boundary Conditions[END_REF]. Assumption [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] directly implies the following identity

∇ • (e η A∇v) = [∇ • (A∇v) -B • ∇v] e η .
Using that v is a subsolution, we deduce

∇ • (e η A∇v) -ce η v ≥ 0.
Similarly, since ϕ is a principal eigenfunction, we have

∇ • (e η A∇ϕ) -ce η ϕ = -λ 1 e η ϕ.
Inequality ( 13) is then deduced by a straightforward computation.

Let us now prove [START_REF] Karp | Asymptotic behavior of solutions of elliptic equations II: analogues of Liouville's Theorem for solutions of inequalities on Rˆn , n\geq 3[END_REF]. We first consider the case of Robin boundary conditions. In this case, applying Hopf's lemma in the equation for ϕ in (8), we deduce that ϕ > 0 on Ω. Hence, σ is bounded. A straightforward computation then gives

ν • A∇σ = ν • A∇v ϕ -σ ν • A∇ϕ ϕ ≤ -γσ + γσ = 0.
It proves [START_REF] Karp | Asymptotic behavior of solutions of elliptic equations II: analogues of Liouville's Theorem for solutions of inequalities on Rˆn , n\geq 3[END_REF] in the case of Robin boundary conditions. Now, consider the case of Dirichlet boundary conditions. Let x 0 ∈ ∂Ω and set x ε := x 0 -εA(x 0 )ν(x 0 ) for all ε > 0. If σ(x ε ) ≤ 0 as ε becomes small, then [START_REF] Karp | Asymptotic behavior of solutions of elliptic equations II: analogues of Liouville's Theorem for solutions of inequalities on Rˆn , n\geq 3[END_REF] trivially holds. Otherwise, we necessarily have that v(x 0 ) = 0 and v(x εn ) > 0 for a vanishing sequence (ε n ), therefore ν(x 0 ) • A(x 0 )∇v(x 0 ) ≤ 0. Since ν(x 0 )•A(x 0 )∇ϕ(x 0 ) > 0 from Hopf's lemma, we deduce that lim ε→0 σ(x ε ) exists and equals ν(x0)•A(x0)∇v (x0) ν(x0)•A(x0)∇ϕ(x0) . From this, we deduce

ϕ 2 (x ε )σ + (x ε )ν(x 0 ) • A(x 0 )∇σ(x ε ) = v + (x ε ) ν(x 0 ) • A(x 0 )∇v(x ε ) -σ(x ε )ν(x 0 ) • A(x 0 )∇ϕ(x ε )
Since v(x 0 ) ≤ 0, the right member of the above expression vanishes as ε → 0, which completes the proof of ( 14).

Classically, one can multiply ( 13) by σ and integrate to derive a variational inequality. However, since the domain is unbounded, we need to introduce a cut-off function. For R > 0, we define

χ R (x) := χ |x| R , ∀x ∈ R n , ( 15 
)
with χ a smooth nonnegative function such that

χ(z) = 1 if 0 ≤ z ≤ 1, 0 if z ≥ 2, |χ | ≤ 2.
Lemma 3. Assume that (H) and [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] holds, let v be a subsolution of (L, B) and λ 1 be the principal eigenvalue. Then, we have

λ 1 Ω χ 2 R e η v 2 + ≤ Ω |∇χ R | 2 A e η v 2 + , ∀R > 0,
where |∇χ R | 2 A = ∇χ R • A∇χ R , and v + = max(v, 0) is the positive part of v. Proof. Multiplying (13) by σ + χ 2 R , integrating over Ω and using the divergence theorem, we find

∂Ω σ + χ 2 R e η ϕ 2 ν • A∇σ - Ω ∇ χ 2 R σ + • A∇σe η ϕ 2 ≥ λ 1 Ω e η ϕ 2 σ 2 + χ 2 R . ( 16 
)
From ( 14), the boundary integral in ( 16) equals zero, and so we have

- Ω ∇ χ 2 R σ + • A∇σe η ϕ 2 ≥ λ 1 Ω e η ϕ 2 σ 2 + χ 2 R . ( 17 
)
Using that

∇ χ 2 R σ + • A∇σ = |∇ (χ R σ + )| 2 A -|∇χ R | 2 A σ 2 + ≥ -|∇χ R | 2 A σ 2 + ,
we find

Ω |∇χ R | 2 A σ 2 + e η ϕ 2 ≥ λ 1 Ω e η ϕ 2 σ 2 + χ 2 R .
We conclude the proof using that σ + ϕ = v + .

The last ingredient that we need for the proof of the first statement of Theorem 1 is the following technical lemma. Lemma 4. Let w ≡ 0 be a bounded function. Then,

lim inf R→+∞ R 2 Ω |∇χ R | 2 A w 2 Ω χ 2 R w 2 < +∞.
Proof of Lemma 4. By contradiction, assume that there exists R → β(R) positive increasing such that β(+∞) = +∞ and

R 2 Ω |∇χ R | 2 v 2 Ω χ 2 R v 2 ≥ β(R). ( 18 
)
Set

Ω R := Ω ∩ {|x| ≤ R}. Using that χ R ≤ 1, that ∇χ R is supported in Ω 2R , and that |∇χ R | 2 ≤ 1 R 2 |∇χ 1 | 2 , we deduce from (18) that Ω R v 2 ≤ K β(R) Ω 2R v 2 ,
for some constant K > 0 independent of R. Iterating this inequality, we find

Ω R v 2 ≤ K β(R) j Ω 2 j R v 2 ,
for all integer j ≥ 1. Since v is bounded, we also have that Ω R v 2 ≤ K R n for some constant K > 0 independent of R, therefore

Ω R v 2 ≤ K β(R) j K 2 j R n .
Taking R > 0 large enough so that β(R) > 2 n K, the right member of the above inequality vanishes as j → +∞. We find Ω R v 2 ≤ 0, and so v ≡ 0: contradiction.

We are now ready to complete the proof of the first statement of Theorem 1.

Proof of Theorem 1, first statement. Assume that v is a subsolution of (L, B) and that v + ≡ 0. From Lemma 3, we have that

λ 1 ≤ Ω |∇χ R | 2 A e η v 2 + Ω χ 2 R e η v 2 + .
Since w = e η 2 v + is bounded, Lemma 4 implies that the right member of the above inequality vanishes along some sequence R → +∞. We deduce that λ 1 ≤ 0, which conclude the proof.

We point out that the above proof only uses lim inf

R→+∞ Ω |∇χ R | 2 A w 2 Ω χ 2 R w 2 = 0,
which is a weaker statement than the one in Lemma 4. Actually, this observation allows us to replace the assumption "λ 1 > 0" in the first statement of Theorem 1 by a weaker assumption on the convergence of the sequence of principal eigenvalues on truncated domains.

Theorem 4. Assume (H) and [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF] hold and recall the definition of λ R 1 from Lemma 1 as the principal eigenfunction for the truncated problem [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. If

lim inf R→+∞ R 2 λ R 1 = +∞, (19) 
then (L, B) satisfies the Maximum Principle in Ω.

Proof. The proof can be deduced from a slight adaptation of above proof of the first statement of Theorem 1. Namely, replace λ 1 , ϕ by λ R 1 and ϕ R to deduce

λ R 1 Ω χ 2 R e η v 2 + ≤ Ω |∇χ R | 2 A e η v 2 + , ∀R > 0.
Note that, since λ R 1 → λ 1 from Lemma 1, assumption [START_REF] Nussbaum | On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications[END_REF] in Theorem 4 is indeed weaker than the assumption "λ 1 > 0" in Theorem 1.

Proof of Theorem 1, second statement

Assume λ 1 < 0. From Lemma 1, there exists R > 0 such that λ R 1 is negative and associated with a principal eigenfunction ϕ R which solves [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]. Note, however, that ϕ R is not smooth in Ω, otherwise we could directly achieve the proof since ϕ R is a positive supersolution of (L, B). To bypass this technical difficulty, we use the following technic that was pointed to us by Luca Rossi. Consider Φ(t, x) the solution of the evolution problem

     ∂ t Φ -LΦ = 0, ∀(t, x) ∈ (0, +∞) × Ω, BΦ = 0, ∀(t, x) ∈ (0, +∞) × ∂Ω, Φ(t = 0, x) = ϕ R (x), ∀x ∈ Ω.
The function ϕ R is a generalized supersolution, in the sense that it can be written as the infimum of two supersolutions (namely, 0 and ϕ R extended smoothly on Ω ∩ B R+ε ). It is then classical that t → Φ(t, •) is nonincreasing, i.e., ∂ t Φ ≤ 0, and so for any fixed t 0 > 0, Φ(t 0 , •) is a positive (smooth) supersolution of (L, B) in Ω. It proves that the Maximum Principle does not hold, which achieves the proof.

Proof of Theorem 2

Proof of Theorem 2. It can be seen from the proof of the second statement of Theorem 1 that, if λ 1 < 0, then (L, B) does not satisfy the Critical Maximum Principle in Ω. It proves the second statement of Theorem 2.

We now turn to the proof of the first statement of Theorem 2. Let us assume that ( 7) and ( 9) hold, that λ 1 ≥ 0, and let us prove that the Critical Maximum Principle holds. Let v be subsolution of (L, B) with finite supremum, and set σ := v ϕ , where ϕ is a principal eigenfunction (given by Lemma 1). Our goal is to show that σ + = max(σ, 0) = v+ ϕ is constant. Let us consider the cut-off function χ R defined in [START_REF] Gary M Lieberman | Mixed boundary value problems for elliptic and parabolic differential equations of second order[END_REF] for R > 0. From inequality [START_REF] Gary M Lieberman | Pointwise estimates for oblique derivative problems in nonsmooth domains[END_REF] in the proof of Lemma 3, we have

Ω ∇ χ 2 R σ + • A∇σe η ϕ 2 ≤ 0.
By expanding the term ∇ χ 2 R σ + , we find

Ω |∇σ + | 2 A χ 2 R e η ϕ 2 ≤ -2 Ω ∇χ R • A∇σ + σ + χ R e η ϕ 2 .
Using Cauchy Schwartz inequality and that ∇χ R is supported in {R ≤ |x| ≤ 2R}, we obtain

Ω |∇σ + | 2 A χ 2 R e η ϕ 2 ≤ 2 Ω∩{R≤|x|≤2R} |∇σ + | 2 A χ 2 R e η ϕ 2 Ω |∇χ R | 2 A σ 2 + e η ϕ 2 .
(20) Since σ + ϕ = v + and e η are bounded, and since |∇χ

R | 2 = 1 R 2 |∇χ 1 | 2 , we deduce Ω |∇χ R | 2 A σ 2 + e η ϕ 2 ≤ K R 2 Ω ∩ {R ≤ |x| ≤ 2R} ,
for some constant K > 0 independent of R. Assumption [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF] implies that the right member of the above inequality is bounded uniformly in R. Injecting this estimate in [START_REF] Patrizi | The Neumann problem for singular fully nonlinear operators[END_REF], we obtain

Ω |∇σ + | 2 A χ 2 R e η ϕ 2 ≤ K Ω∩{R≤|x|≤2R} |∇σ + | 2 A χ 2 R e η ϕ 2 , ( 21 
)
for some constant K > 0 independent of R. We deduce that Ω |∇σ + | 2 A χ 2 R e η ϕ 2 is bounded uniformly in R. We can therefore pass to the limit in [START_REF] Pinchover | On principal eiganvalues for indefinite-weight elliptic problems[END_REF] as R → +∞, which gives Ω |∇σ + | 2 A ϕ 2 1 e η ≤ 0. Hence ∇σ + = 0, which ends the proof.

The core of the proof consists in showing that ∇ • (ϕ 2 1 A∇σ) ≥ 0 (from Lemma 2) implies ∇σ + = 0. The literature refers to this property as a Liouville property. Originally introduced by Berestycki, Caffarelli, Nirenberg in [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF], it has been extensively used and discussed [START_REF] Barlow | The Liouville property and a conjecture of De Giorgi[END_REF][START_REF] Gazzola | The sharp exponent for a Liouville-type theorem for an elliptic inequality[END_REF][START_REF] Karp | Asymptotic behavior of solutions of elliptic equations II: analogues of Liouville's Theorem for solutions of inequalities on Rˆn , n\geq 3[END_REF][START_REF] Moschini | New Liouville theorems for linear second order degenerate elliptic equations in divergence form[END_REF][START_REF] Villegas | Sharp Liouville Theorems[END_REF]. Actually, we believe that the technics of [START_REF] Moschini | New Liouville theorems for linear second order degenerate elliptic equations in divergence form[END_REF]Theorem 5.1] allow to relax assumption [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF] to

|Ω ∩ {|x| ≤ R}| = O(R 2 log(R)).
However, a recent work of Villegas [START_REF] Villegas | Sharp Liouville Theorems[END_REF] suggests that the conclusions of Theorem 2 do not hold if we only assume

|Ω ∩ {|x| ≤ R}| = O(R 2 log(R) 2 ).
Hence, assumption [START_REF] Donsker | On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle[END_REF] seems to be essentially optimal in our context. See [START_REF] Moschini | New Liouville theorems for linear second order degenerate elliptic equations in divergence form[END_REF][START_REF] Villegas | Sharp Liouville Theorems[END_REF] for more details.

Proof of Proposition 1

Assume that λ 1 = 0 and let ϕ be a principal eigenfunction. If ϕ is bounded, then it is a bounded positive supersolution and so the Maximum Principle does not hold: it proves the first statement.

Conversely, let v be subsolution with a finite supremum. Under assumption (9) Theorem 2 implies that v is either nonpositive or is a constant multiple of ϕ. However, since v is bounded and ϕ is not, v cannot be a non-zero multiple of ϕ. Therefore, v is nonpositive and the Maximum Principle holds.

Proof of Proposition 2

Let λ 1 be the principal eigenvalue and ϕ, ψ be two principal eigenfunctions. Up to replacing L with L+λ 1 , we can assume without loss of generality that λ 1 = 0. Since ψ is bounded, it is a positive subsolution of (L, B) with finite supremum. Then, Theorem 2 implies that ψ is a constant multiple of ϕ, therefore λ 1 is simple.

Proof of Theorem 3

Proof of Theorem 3. The proof of Theorem 3 for Dirichlet boundary conditions is already contained in [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]Theorem 1.6]. We therefore focus on the case of Robin boundary conditions.

We assume λ1 > 0. Let v be a subsolution of (L, B) with finite supremum, and ϕ be a supersolution of (L + λ, B), λ ∈ (0, λ1 ) with positive infimum. Let us show v ≤ 0. Up to renormalization, we can assume without loss of generality that sup Ω v ≤ 1 and inf Ω ϕ ≥ 3.

The function v and ϕ satisfy differential inequalities which do not yield uniform C 2,α estimates. In the following technical lemma, we construct two auxiliary functions u ≥ u ≥ v which satisfy the same differential inequalities as v and ϕ respectively and are also solutions to some semilinear elliptic equations that entail uniform estimates.

In the case of a selfadjoint operator with Dirichlet (resp. Robin) boundary conditions, we deduce from [7, Theorem 1.7, (i)] (resp.[START_REF] Rossi | Stability analysis for semilinear parabolic problems in general unbounded domains[END_REF] Theorem 

2.9, (iii)]) that "λ 1 > 0" implies that there exists no bounded positive subsolution of (L, B). The first statement of Theorem 1 is therefore more general since it deals with possibly sign-changing subsolutions (with finite supremum).

0 on [3, +∞), [START_REF] Pinchover | A Liouville-type Theorem for Schrödinger Operators[END_REF] θ(•) is smooth, nonpositive, nonincreasing, θ = 0 on (-∞, 1],

-1 on [2, +∞).

The proof of this lemma is postponed at the end of the section.

Let us go on with the proof of Theorem 3. We set

By contradiction, assume t 0 > 0. Denoting w := u-t 0 u, we have that w ≤ 0 and that there exists a sequence x n ∈ Ω such that w(x n ) → sup w = 0. Intuitively, our goal is to obtain a contradiction from taking the limit as n → +∞ and applying the Maximum Principle. Up to extraction of a subsequence, we can assume without loss of generality that either d(x n , ∂Ω) → 0 or lim inf d(x n , ∂Ω) > 0.

Set

Let B 1 denote the unit ball centered at the origin and set V n := Ω n ∩ B 1 . Let also R > 0 be the radius in the definition of the uniform C 2 regularity of the domain [START_REF] Gazzola | The sharp exponent for a Liouville-type theorem for an elliptic inequality[END_REF], and let y n ∈ Ω n be a sequence such that 0 ∈ B n := {|x -y n | ≤ R} ⊂ Ω n . Without loss of generality, we can also assume that R is so small that B n ⊂ V n . Let us derive uniform C 2,α loc estimates on u n and u n . For n large enough, we have that w n (0) ≥ -1, therefore inf Vn u n is bounded from above uniformly in n. From the classical Harnack inequality, u satisfies sup

with a constant C > 0 independent of n. This implies that sup Vn u n is bounded uniformly in n. Then, classical Schauder estimates imply that u n , u n , and

The uniform C 2,α imply by compactness that w n converges (up to a subsequence) to some w ∞ in C 2 (B ∞ ), where B ∞ is a ball of radius R and 0 ∈ B ∞ . Similarily, the coefficients

and

Let us show that w ∞ ≡ 0. On the one hand, if 0 ∈ B ∞ then the classical Strong Maximum Principle implies that w ∞ ≡ 0. On the other hand, if 0 ∈ ∂Ω ∩ B ∞ then the boundary condition in [START_REF] Pinchover | Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations[END_REF] yields

From Hopf's lemma, we deduce w ∞ ≡ 0. In both cases, we have derived that w ∞ ≡ 0.

Using [START_REF] Pinchover | Topics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations[END_REF], that t 0 > 0, and that inf u ∞ > 0, we deduce λ = 0: contradiction. Thus t 0 = 0, u = v + = 0, and so v ≤ 0. Our goal is to show the existence of a solution u of the equation

which also satisfies 2 ≤ u ≤ ϕ. Our arguments can be adapted without difficulty to prove the existence of u satisfying the required conditions. From the assumptions [START_REF] Pinchover | A Liouville-type Theorem for Schrödinger Operators[END_REF] on θ and that inf Ω ϕ ≥ 3, we have that

Setting σ ≡ 2, we also have that

We are going to use ϕ and σ as a super and a subsolution of ( 24), and construct u with Perron's iterative method on a truncated domain. Let us consider a sequence 0 < R j → +∞ of real positive numbers and an increasing sequence of bounded Lipschitz subdomains Ω Rj ⊂ Ω such that j>0 Ω Rj = Ω. We denote

We set u 0 = ϕ and define by induction u n+1 as the unique solution of

with C := inf Ω c and Γ := inf ∂Ω γ. From the results of Liberman [START_REF] Gary M Lieberman | Mixed boundary value problems for elliptic and parabolic differential equations of second order[END_REF], we know that all classical results (Schauder estimates, Maximum Principle, solvability, etc.) hold from the mixed boundary value problem [START_REF] Pinchover | On criticality theory for elliptic mixed boundary value problems in divergence form[END_REF]. First, those results imply that the sequence u n is well defined. Then, from the Maximum Principle, we can show by induction that

From the a priori Schauder estimates proved in [START_REF] Gary M Lieberman | Mixed boundary value problems for elliptic and parabolic differential equations of second order[END_REF] for the mixed boundary value problem [START_REF] Pinchover | On criticality theory for elliptic mixed boundary value problems in divergence form[END_REF], we know that u n is bounded in C 2,α uniformly in n, and therefore converges in C 2 (Ω R ) to some function u R which is a solution of

We also know from ( 26) that

From Theorem 3.3 in [START_REF] Gary M Lieberman | Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations[END_REF] and Theorem 4.3 in [START_REF] Gary M Lieberman | Pointwise estimates for oblique derivative problems in nonsmooth domains[END_REF], we can show that the Harnack estimate holds for the mixed boundary problem [START_REF] Protter | Maximum Principles in Differential Equations[END_REF], namely, we have that sup

where C is a constant independent of R. Now, from classical Schauder estimates, u R is uniformly C 2,α in Ω R0 . Thus, u R converges (up to extraction) to some u in C 2 loc (Ω) when R → +∞, which satisfies the required conditions.

Let us now derive an estimate on u R which is uniform in R. We fix R 0 > 0 and take R > R 0 .
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