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Abstract

A novel non-conservative formulation for equations governing thermo-mechanical phenomena is

developed to address multi-material and multi-physics issues. The first key point is that this formu-

lation achieves a unifying equation for compressible viscous fluid flow and elastic solid deformation.

The second is that the thermo-mechanical equations are both written with velocity and thermal

flux variables to solve them simultaneously. With that formulation, interaction conditions at the

fluid-structure interface become implicit and state equation is no longer necessary. Multi-time

scale problems are solved, from the time scale of acoustic and thermoacoustic wave propagation,

to longer time scale of fluid flow and thermal diffusion.
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I. INTRODUCTION

Many physical phenomena in materials science, biomedecine or process engineering are

dependent on compressible or incompressible fluid mechanics, acoustics or non-linear wave

propagation [1], heat transfer, elastic solid mechanics. These physical phenomena are very

often coupled leading to complex problems such as solid particle behavior in a fluid flow

[2, 3], plasma flow [4], fluid-structure interaction for aerospace [5, 6], or biomedical applica-

tions [7–10], thermo-elastic fracture [11], transmission and reflection of elastic waves through

an interface between dissimilar materials [12], thermoelastic shock wave diffraction with a

multimaterial interface where fluid compressibility cannot be ignored [6, 13–16].

The usual approaches for modeling such multi-physics problems are based on the standard

equations that govern materials that often differ with the time scale considered. For instance,

for short time scale characteristics in two-phase flows, thermal energy and material compress-

ibility are considered through the Euler equations, whereas isothermal incompressible viscous

flow is considered through Navier-Stokes equation for longer time scale steady-state flows.

Similarly, for temperature step variation, Fourier’s equation and a compressible form of the

Navier-Stokes equations are used to model thermoacoustic waves propagation. When a large

discrepancy between the time scale constants of the coupled governing equations is present,

for instance that of sound velocity and thermal diffusion, solving process needs to consider

the time increment consistent with the lower time constant to avoid numerical instabilities,

thus leading to time-consuming computation. Thus, for slow heating involving large time

scale modeling, incompressible Navier-Stokes and heat transport equations are used since

fluid flow convection and thermal diffusion time constants have closer order of magnitude.

Then, when the mechanical governing equations of the materials involved are not closely

related which is the case for a fluid and an elastic solid, interface coupling also implies ad-

ditional boundary equations at the interface. Simulation of such fluid-structure interaction

problems called as fluid-structure interaction can be addressed through numerical method-

ologies which sequentially solve each governing equation with data transfer through the

boundary conditions which can be temperature, pressure, shear stress or interface velocity de-

pending on the problem [6, 16–22]. Some other approaches introduce a pseudo-simultaneous

solving process for velocity and displacement fields in the fluid and solid domains, respec-

tiveley, by implementing implicit iterative sequential coupling in order to converge at any

time step and thus to avoid non-physical interface oscillations [8, 10]. This latter approach is
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defined as monolithic in contrast to the previous partitioned ones, but does not strictly solve

system variables simultaneously, which will insure accuracy and stability of the interface

coupling. The Arbitrary Lagrangian Eulerian (ALE) [5, 7, 14, 23–28] method which can

be coupled to both monolithic and partitioned approaches has the advantage of discretizing

strictly separated material. It can be used for viscous flow governed by Navier-Stokes equa-

tion as well as elastic solid equation. This method based on a moving mesh lead nevertheless

to distorted elements giving rise to re-meshing developments for efficient calculations [26].

Finite elements methods have been largely improved in order to increase the convergence

[29, 30] or to enhance the stress prediction [31]. On the opposite, eulerian method based on

a cartesian grid leads to a non-conforming interface, which has given rise to many numerical

developments either within partitioned [15, 22] or monolithic [32, 33] procedures in order

to increase the accuracy of coupling the two materials at the interface. To overcome such

inherent limitations of the numerical methods based on moving meshes and non-conforming

interfaces, the method of finite spheres was recently developed [34, 35] and applied to elastic

wave propagation problems [36].

Although numerical method developments or improvements are essential to deal with

complex multi-material behaviors involving coupled governing equations, the development

of new mathematical formulations is essential as well in order to avoid mismatch between gov-

erning equations for short and long time scale modeling, and to obtain strong fluid-structure

coupling at the interface by solving strictly simultaneously the governing equations. An

advance with such mathematical formulations was made in the particular case of isothermal

multi-fluid systems involving either compressible or incompressible flows [37] and for the

modeling of trans-critical path from supercritical to subcritical states [38]. In this paper we

aim to develop the complete mathematical formulation for compressible and incompressible

viscous flow, elastic solid deformation and heat transfer allowing to solve simultaneously

for the velocity, displacement and temperature fields of the multi-material system. More

precisely, this formulation has to combine the six main points discussed below.

• Compressible and “incompressible” fluids and solids are characterized by physical con-

stants which are not strictly related, for instance Lamé’s coefficients of an elastic solid

and that of a fluid. The first point is thus to unify the material intrinsic properties

which are involved in the conservative equations in order to reduce the different me-

chanical equations to a unique equation for strong coupling across the interface. This
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implies that every fluid will have to be considered as compressible or almost incom-

pressible, in relation to its experimental thermodynamic coefficient.

• The second point is to be able to formulate the unified mechanical equation and the

thermal equation with two vectorial variables in order to be able to solve for them

simultaneously through a single linear system.

• The third point concerns time scaling. Obviously, it is the shorter time constants

of the physical phenomena involved (acoustic, dynamic or thermal) that have to be

considered. But, the formulation will have to give the possibility to obtain the solution

using a higher time constant, allowing continuous evolution from a compressible fluid

at the time scale of wave propagation to an incompressible fluid at the time scale of

steady state evolution.

• As pointed out previously, the model has to deal with compressible fluids. In the liter-

ature highly compressible phenomena are resolved through a conservative formulation

where the momentum ρV, may result in different types of discontinuities for density ρ

and velocity V. While it is consistent to choose ρV as a variable when it varies slightly

as for one-phase flows, this is no longer the case for two-phase flows where one phase

is highly compressible and the other not. Indeed density can vary greatly across the

interface whereas velocity varies continuously and slightly. So, the third point is to

formulate a model with the velocity vector as variable, density being related to mass

flux. Studies dealing with strongly two-phase shocked flows in the framework of a

conservative formulation [13] prove to be insufficiently accurate to deal with two-phase

continuous flows.

• If density is related to mass flux, we can discuss the suitability of using the state

equation to determine density knowing temperature and pressure. Numerous numerical

studies use state equations formulated to be valid over a broad interval of variable

variation, particularly the pressure. Even in the case for the stiffened equation of state

[15, 39, 40] non-physical variable smoothing at the interface is obtained. The fourth

point is thus to take the counterpart to the use of state equations by considering the

thermodynamic coefficients. They can be more easily obtained from experimental data

tables and semi-empirical laws and will not modify the formulation of the mathematical

model as using the state equations does.
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• Finally, the mathematical model proposed has to be independent of the numerical

methodology allowing the use of either moving mesh or ALE methods where the differ-

ent materials are strictly separated or Cartesian grids where interface tracking methods

can be Lagrangian [41–43] or Eulerian [44, 45].

II. UNIFYING MODEL FOR FLUID FLOW AND ELASTIC SOLID DEFORMA-

TION COUPLED WITH HEAT TRANSFER

Let us consider a two-phase domain Ω delimited by a surface Γ. The interface between

the two phases is noted Σ (Fig. 1). These two phases can be either isotropic elastic solids

or Newtonian viscous fluids. The case where one phase is an elastic solid and the other a

Newtonian viscous fluid is considered in the model as well. No mass exchange through the

interface is involved, leading to a divariant system.
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FIG. 1: Evolution of the Lagrangian thermo-mechanical variables for a material point M

between time t0 to time t = t0 + dt

The thermodynamic state can thus be described at any time t and any material point M

with two intensive variables, for instance the absolute temperature T (M) and the pressure

p(M). Density ρ(M) and every thermodynamic coefficient such as specific heat cv(M),

isothermal compressibility coefficient χT (M), constant volume compressibility coefficient

α(M) and coefficient of thermal expansion β(M) are thus entirely defined from these two

variables. These thermodynamic coefficients are defined below together with the relationship

between them Eq. 1. All these coefficients can be determined experimentally whatever the

method used.
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The modeling of elastic materials requires a mechanical variable, the residual shear stress

tensor τ(M) (see paragraph 2.3.2).

For multi-material flows, either Lagrangian [46] or Euler-Lagrange [47] approaches are

used. Note, that the framework of our approach is to first develop the thermo-mechanical

model within the Lagrangian representation. Thus, the material point temperature T (M),

pressure p(M) and density ρ(M) at time t will be determined from previously known values

T 0(M), p0(M) and ρ0(M) at time t0 (with t = t0+dt) and from the knowledge of the material

derivative of these variables dX(M)
dt

(with X = T, p, ρ), which depends on the applied velocity

field V and heat flux Φ. It is in the final step that the Eulerian variables will be determined

from the obtained Lagrangian variables.

A. Lagrangian form of pressure, temperature and density

As a first step, we focused on the Lagrangian formulation of pressure, temperature and

density which can be established from their material derivatives. For simplicity, the indica-

tion of the material M -point for the variables is omitted.

The material derivative of density is obtained directly from the mass conservation equa-

tion:

dρ

dt
= −ρ∇ ·V (2)

The material derivative of temperature can be first expressed as follows.

dT

dt
=

1

cv

de

dt
+

1

ρ2 cv

T
 ∂p

∂T


ρ

− p

 dρ

dt
(3)

Aiming to rewrite this equation as a function of velocity and flux vectors, we have:
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i) substituted for the material derivative of energy, the term defined from the conservation

equation of the internal energy Eq. (4) ,

ρ
de

dt
= −∇ ·Φ− p∇ ·V + q + φ (4)

where q and φ are the internal heat production and dissipation function, respectively;

ii) substituted for the material derivative of density the term of Eq. (2);

iii) substituted for the partial derivative of pressure with respect to temperature, the

thermodynamic coefficients defined in the equation system (1) which leads to Eq. (5). ∂p

∂T


ρ

= α p =
β

χT
(5)

We thus obtain the following equation.

dT

dt
= −

(
β T

ρ cv χT

)
∇ ·V − 1

ρ cv
(∇ ·Φ− q − φ) (6)

The material derivative of pressure can be written as a function of its partial derivatives

as follows.

dp

dt
=

(
∂p

∂ρ

)
T

dρ

dt
+

(
∂p

∂T

)
ρ

dT

dt
(7)

To rewrite this equation as a function of velocity and flux vectors, we have:

i) substituted for material derivatives of density and temperature the terms in equations

(2) and (6) respectively;

ii) substituted for partial derivative of pressure with respect to density, the thermody-

namic coefficients defined in equation system (1) leading to Eq. (8);

(
∂p

∂ρ

)
T

=
1

ρχT
(8)

iii) substituted for partial derivatives of pressure with respect to temperature, the ther-

modynamic coefficients in reference to Eq. (5).

We thus obtain the following equation.

dp

dt
= −

(
1

χT
+

β2 T

ρ cv χ2
T

)
∇ ·V −

β

ρ cv χT
(∇ ·Φ− q − φ) (9)
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Finally, we can write the Lagrangian formulations of density, temperature and pressure at

time t as a function of the divergences of velocity vector ∇ ·V and heat flux vector ∇ ·Φ,

ρ = ρ0e−dt ∇·V

T = T 0 − dt
(

β T 0

ρ0 cv χT

)
∇ ·V − dt 1

ρ0 cv
(∇ ·Φ− q − φ)

p = p0 − dt
(

1

χT
+

β2 T 0

ρ0 cv χ2
T

)
∇ ·V − dt

(
β

ρ0 cv χT

)
(∇ ·Φ− q − φ)

(10)

where the thermodynamic coefficients are defined at the M -material point with temper-

ature T 0 and pressure p0 at time t0.

Note that no state equation f(ρ, p, T ) = 0 is needed to calculate density, since it is defined

exactly from the velocity vector divergence ∇ ·V.

B. Vector form of the governing equations

The governing equations of the evolving system are composed of two equations (11) which

are the conservation of momentum ρV defined through Cauchy’s equation and the conser-

vation of heat flux Φ. These equations are written within the Lagrangian representation.
ρ
dV

dt
= ∇ · σ + ρ g + f

τp
dΦ

dt
+ Φ = −k∇T

(11)

Here, k is the thermal conductivity, g the gravity vector, f a volume force (for instance

those induced by surface tensions) and σ is the stress tensor which depends on the rheolog-

ical behavior of the materials involved. The parameter τp in Eq. (11) corresponds to the

time constant of phonon dynamics and has some importance in the numerical solution of

hyperbolic systems in which time constants are very small (∼ 10−9s) [48, 49]. When the

time constant is larger, the heat flux conservation equation converges towards the classical

Fourier equation.
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C. Elastic solid and fluid behaviors

The stress tensor σ can be split into spherical and non-spherical parts by introducing the

pressure p and the shear stress tensor τ :

σ = −p I + τ (12)

The expression of the shear stress tensor depends on the material rheology involved.

1. Newtonian viscous behavior

For Newtonian viscous behavior, τ is expressed as a function of the shear strain rate

tensor ε̇s depending on the first-order derivative of the velocity vector V,

τ = 2µ ε̇s = 2µ

(
1

2
(∇V +∇tV)− 1

3
∇ ·V I

)
(13)

where µ is the shear viscosity coefficient.

2. Isotropic elastic behavior

For an isotropic elastic solid, τ is expressed as a function of the shear strain tensor εs

depending on the first-order derivative of the displacement vector U in the case of small

deformations,

τ = 2µE εs = 2µE

(
1

2
(∇U +∇tU)− 1

3
∇ ·U I

)
(14)

where µE is the first Lamé’s coefficient.

For an evolving system, the displacement U at time t can be rewritten as U = U0 + V dt

where U0 is the displacement vector at time t0. Then, defining the shear stress τ 0 at time

t0 as a function of the U0-vector displacement using Eq. (14), the shear stress tensor τ can

be written as a function of the velocity vector.

τ = τ 0 + 2µE dt

(
1

2

(
∇(V) + ∇t(V)

)
− 1

3
∇ · (V) I

)
(15)
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D. Complete formulation of the governing equations

The final system (16) of the complete governing equations is constituted of the two con-

servative equations (11) within which:

i) the shear stress tensor at time t = t0 + dt is introduced using the constitutive laws for

viscous fluid Eq. (13) and elastic solid Eq. (15) which have been unified Eq. (17) using

the coefficient µ∗ (µ∗ = µ for the Newtonian viscous fluid and µ∗ = µE dt for the isotropic

elastic solid), and the residual shear stress tensor τ 0 (that equals zero for Newtonian viscous

fluids). The only equations which are solved are the two vectorial equations of system (16);

ii) the temperature T and pressure p at time t are introduced using the Lagrangian for-

mulation previously defined in system (10). The solution of the two equations corresponding

to the unknown velocity field (or incremental displacement field) and heat flux field, also

includes the pressure and temperature variations between the equilibrium state at time t0

and that at time t0 + dt, in thermodynamic consistency. The state equation for pressure

determination is no more needed;

iii) only the density ρ0 remains defined at time t0.



ρ0
dV

dt
= −∇

(
p0 − dt

(
1

χT
+

β2 T 0

ρ0 cv χ2
T

)
∇ ·V − dt

(
β

ρ0 cv χT

)
(∇ ·Φ− q − φ)

)
+ρ0 g + f

+∇ ·

τ 0 + 2µ∗

1

2
(∇V +t ∇V)−

1

3
∇ ·V I


τp
dΦ

dt
+ Φ = − k ∇

(
T 0 − dt

(
β T 0

ρ0 cv χT

)
∇ ·V − dt

(
1

ρ0 cv

)
(∇ ·Φ− q − φ)

)
(16)

τ = τ 0 + 2µ∗

1

2

(
∇V + ∇tV

)
− 1

3
∇ ·V I

 (17)

Since pressure p and temperature T are defined at time t within the governing equations

using formulations of system (10), these variables are thus simply updated from the resulting

velocity and flux divergences using the as introduced formulations. Similarly, but for the

elastic solid phase only, the shear stress is updated using the equation (17) (with µ∗ = µE dt),

the one that was introduced within the momentum conservation equation. Density ρ is
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updated, for its part, from a classical incremental process using the corresponding equation

of system (10).

Through the introduction of thermodynamics within the governing equations, original

contribution of this model appears since temperature T 0 and pressure p0 at time t0 are

usually considered in these equations written at time t. Since compressibility is clearly made

explicit, modeling of “incompressible” fluids is done without using the additional equation

∇ ·V = 0, but simply introducing the real isotherm compressibility coefficient. Low values

of the compressibility coefficient (for instance χT = 4.5 10−10 Pa−1 for water) will constrain

the velocity divergence to approach zero.

Finally, as regards the dissipation function φ, for elastic solids φ = 0; for viscous fluids,

where τ = τ 0 = 0 and µ∗ = µ it gives,

φ = 2µ (D−
1

3
tr(D) I)2 (18)

where D =
1

2
(∇V +t ∇V).

E. Additional step for a Eulerian representation and system closure

Up to now, the model equations have been defined within a Lagrangian representation.

An Eulerian representation of the model, only requires one additional step which consists in

the advection of the scalar Lagrangian variables X from their material derivative through

the relation :

∂X

∂t
=
dX

dt
− V · ∇X (19)

where X = ρ, T, p, φ, τij, Vi (i = 1, 3; j = 1, 3).

If we differentiate the Lagrangian variables, again using the notation X(M) previously

defined from the Eulerian variables X(x) where x is the position of the geometric point, Eq.

(19) gives,

X(x)−X0(x)

dt
=
X(M)−X0(M)

dt
−V(M) · ∇X(x)

with X0(x) = X0(M) at time t0.
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After simplification, the Eulerian variables are defined from the Lagrangian variables

through the following equation:

X(x) = X(M)− dtV(M) · ∇X(x) (20)

The thermodynamic coefficients (χT , β, cv) and the physical constants (µE, µ, k) are

updated from the new Eulerian temperature T (x) and pressure p(x), as well as the heat

production q(x).

III. FOCUS ON THE UNIFIED MECHANICAL MODEL FOR FLUID FLOW AND

ELASTIC SOLID DEFORMATION

In the framework of this complete thermo-mechanical compressible model, this paper

first focuses on the consistency of the unified modeling of compressible or “incompressible”

fluid flow and elastic solid deformation. Within this purpose, isothermal conditions with

no consideration of gravity and volume force are studied, which reduced the Lagrangian

equation system (16) to the simplified unified equation defined below. Pressure update Eq.

(10) is also simplified, density and shear stress updates, Eqs. (10) and (17), remaining

unchanged.



ρ0
dV

dt
= −∇

(
p0 − dt

χT
∇ ·V

)
+∇ ·

τ 0 + 2µ∗

1

2
(∇V +∇tV)−

1

3
∇ ·V I



p = p0 − dt

χT
∇ ·V

ρ = ρ0 e−dt ∇·V

τ = τ 0 + 2µEdt

1

2
(∇V + ∇tV)−

1

3
∇ ·V I

 for elastic solid only

(21)

The consistency of the unified model will be demonstrated through three steps. As a first

step, only mono-phase systems will be considered in order to validate the equation either

12



for compressible fluids or elastic solids. In order to exhibit the physical contribution of the

time characteristic statement dt in the equation, two conditions of time characteristics will

be considered, dt > L/c and dt� L/c, in relation to the characteristic length of the system L

and the sound velocity c in the material involved.

As a second step, a two-phase system, involving two elastic solids, will be considered in

order to evaluate how accurately the model deals with force equilibrium at the interface.

Then as the third step, a fluid-elastic solid system will be considered to show that this

single equation can deal with fluid-structure interaction problems involving incompressible

(almost incompressible) fluids. It is important here to explain why this formulation can

be substantially used to model incompressible fluids since compressibility is introduced in

the formulation. In fluid mechanics, two main types of methods are used to model incom-

pressible flows. First the projection methods [50] of predictor-corrector type, where the

Navier-Stokes equation is resolved first without any penalty, and then the solution pro-

jected on a free divergence field. The Vector Penalty Projection [51], corresponding to a

vectorial scheme, is particularly efficient for the resolution of variable density flows. In the

second type of resolution methods, the incompressibility penalty is introduced within the

discretized momentum conservation equation. One of the more powerful methods is the

Augmented Lagrangian method of Fortin and Glowinski [52–54], where the equation and

penalty, introduced through the term ∇(−r∇ · V ) , are solved simultaneously within the

same vectorial system. Subsequent improvements have made this method competitive with

the projections methods for solving the velocity-pressure coupling [55]. For large values of

the r-parameter the divergence is constrained to be close to the computer precision. In 2011,

in the framework of multi-fluids flows only and isothermal conditions, it is thermodynamics

which is introduced for the first time within the momentum conservation equation through

the formulation of the pressure p (p = p0 − dt/χT∇ ·V ) giving rise to the physical meaning

of the r-parameter (r = dt/χT ) [37]. This term also includes implicit mass conservation (see

the development of the general lagrangian formulation of pressure in section II paragraph

A where the mass conservation equation is used). The low experimental values of χT for

“incompressible” media corresponding to high dt/χT -values thus insures the compressibility

condition at the computer precision.
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A. Numerical method and discretization of the Lagrangian-Eulerian formulation

The numerical methods that can be used to solve coupled equations in the framework

of multi-material domains are numerous. The phase differentiation can be described by

numerical schemes which strictly separate the phases, such as the ALE methods, or by

Eulerian methods through a phase field function, such as the volume of fluid methods [16]

and other methods of interface tracking.

The present formulation could be solved using various numerical schemes since the

physical model is written in a two-step formulation: 1) a lagrangian formulation step

described in section II.D allowing the development of moving mesh methods (for instance

ALE method); and 2) an additional formulation step described in section II-E to determine

the eulerian variables from the advection of the lagrangian variables (Eq. (20)) allowing the

development of fixed grid methods.

Discretization of the lagrangian momentum conservation equation

In this paper, the unified equation Eq. (21) was discretized in time and space by an

implicit volume method on a staggered grid. This choice was first motivated by the numerical

expertise we had in the discretization of the Augmented Lagrangian method [55] that was

extended to our formulation. This numerical scheme is certainly not the more efficient to

deal with sharp interface coupling, but is nevertheless powerful to deal with compressible and

incompressible media. Indeed, for finite volume schemes, we have to distinguish collocated

grid from staggered one. When the unknown variables are located at the same point of

the grid (collocated), some numerical instabilities can be observed since the calculation of

pressure gradient results from non-adjacent points. In that case, some pressure smoothing

and other numerical techniques are necessary such as the well-known one of Rhie and Chow

[56]. Harlow and Welch [57] were the first to locate the velocity components between two

close neighboring pressure points. The staggered grid is powerful to deal with high pressure

gradients and multi-phase flows [58]. Staggered grid is also useful in this article in order to

calculate velocity divergence using adjacent points.

In 2D, a direct solver MUMPS was chosen to solve the linear system. In 3D, an iterative bi-

conjugate gradient stabilized BICG-StabII [59] was implemented. The spatial discretization

employed centered schemes. This multiphase model is independent of the way the interface

is located, which enables the use of any Lagrangian or Eulerian interface tracking method.
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Here, the Eulerian Volume of Phase method (VOF) [60–62] is used, where the two-phase

system is numerically built using a phase function C varying within the interval [0, 1].

The value of the phase C -function is 0 in one phase and 1 in the other. The interface

between the two phases is defined as C = 0.5. Every physical constant A of the system

is defined in relation with the C-function in two ways depending on the problem: i) the

discontinuous way when the interface displacement is small, where A = A(0) for C ≤ 0.5 and

A = A(1) for C > 0.5 (the exponents (0) and (1) are assigned to the first and second phases,

respectively); and ii) the continuous way when the interface displacement is significant, where

A = (1− C) A(0) + C A(1).

As a first step, the intermediate unknown Lagrangian velocity field V at time step n+ 1

is determined from the Eulerian variables at the time step n, after a time increment ∆t,

using the following time discretization of Eq. (21).

ρn
V −Vn

4t
= −∇

pn −∆t
1

χnT
∇ ·V

+∇ ·
(
τ n + 2µ∗

(
1

2

(
∇V +∇tV

)
− 1

3
∇ ·V I

))
(22)

The determination of Lagrangian velocities V from Eq. (22) only requires the knowledge

of Eulerian density ρn, pressure pn, residual shear stress τ n and isotherm compressibility

coefficient χnT at time step n. The intermediate unknown Lagrangian variables p, ρ and τ

can then be determined from the knowledge of the velocity divergence ∇ · V through the

discretization of the pressure update equation defined in the equation system (21).

p = pn −∆t
1

χnT
∇ ·V

ρ = ρne−∆t ∇·V

τ = τ n + 2µ∗

1

2
(∇V +∇tV)−

1

3
∇ ·V I


(23)

This first order updating of pressure is exact only when the isotherm compressibility

term χT is independent of pressure. Otherwise, second order accuracy can be obtained in

determining the Lagrangian pressure at time step n+1 by substituting for pn its development

at time step n but using χnT instead of χn−1T . It gives :

15



p = pn−1 −4t
1

χnT
(∇ ·V +∇ ·Vn) (24)

Discretization of the advection equations

Finally the intermediate scalar Lagrangian variables X (X = ρ, p, τij, Vi with i = 1,

3; j = 1, 3) are advected using time discretization of Eq. (20) to determine the Eulerian

variables Xn+1 (Xn+1 = ρn+1, pn+1, τn+1
ij , V n+1

i with i = 1, 3; j = 1, 3) at time step n+ 1,

which leads to the following equation.

Xn+1 = X −4tV · ∇Xn+1 (25)

A Lax-Wendroff TVD scheme with a Superbee limiter for spatial discretization is used to

accurately deal with sharp variations of scalar variables at the interface.

The phase function Cn+1 at time step n + 1 is determined from the advection of the

phase function Cn at time step n in relation to the Eulerian velocity field Vn+1 (Eq. (26))

using the same time and space discretization schemes as previously defined for scalar variable

advection.

Cn+1 = Cn −4tVn+1 · ∇Cn (26)

The physical constants (χn+1
T , µ∗n+1) are then updated at time step n+ 1 from the Cn+1

function within the discontinuous or the continuous criteria at the interface described above,

and from th values of the intensive variables T n+1 and pn+1.

B. Isothermal one-phase compression

The relevance of the unified equation for fluid flow and elastic solid deformation is first

demonstrated through basic problems of fluids and elastic solid compressions and simple

shear deformations of elastic solids. They are simulated using a cubic cavity of length side

L=1 m containing either one or two phases at initial pressure pi and density ρi.

Compressions are simulated by injecting at a velocity V0, normal to the lower cavity

surface, the material involved at this surface (Fig. 2a). Then, the system volume remains

constant, it is the density ρ, pressure p and shear stress tensor τ which vary. The velocity

field is kept at zero value at the upper surface of the cavity, and symmetric conditions are
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set at the four lateral surfaces (Fig. 2a). For simulation of simple shear deformation, the

lower surface is displaced with a velocity V0 collinear to the X-axis. The velocity field is

maintained at zero value at the upper surface and periodic conditions are set at the four

lateral surfaces (Fig. 2b).

(a) (b)

FIG. 2: System geometry and boundary conditions for the compression of fluid and solids

(a) and the shear deformation of solids (b).

The physical characteristics of fluid and solids are shown in table I. For solids, Lamé’s

1st and 2nd coefficients µE and λE are calculated using Young’s modulus E and Poisson’s

coefficient ν (Eq. (27). 
µE =

E

2(1 + ν)

λE =
Eν

(1 + ν)(1− 2ν)

(27)

The coefficient of isothermal compressibility χT is deduced from µE and λE coefficients using

Eq. (28).
1

χT
=

2µE + 3λE
3

(28)

The physical constants of Table I show that cork is a perfect compressible solid (ν = 0),

and rubber a quasi-incompressible solid (ν ≈ 0.5) with a coefficient of isothermal compress-

ibility close to that of water.
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Physical constants air cork rubber

Initial mass density, ρi (kg/m3) 1.1768 250 3510

Initial pressure, pi (Pa) 101325 101325 101325

Young’s modulus, E (Pa) 5.00× 106 1.00× 106

Poisson’s coefficient ν 0 0.4999

1st Lamé’s coefficient, µE (Pa) for solid 2.50× 106 3.33× 105

Dynamic viscosity coefficient, µ (Pa.s)

for fluid

1.85× 10−5

2nd Lamé’s coefficient, λE (Pa) 0 1.67× 109

Isothermal compressibility coefficient,χT

(Pa-1)

9.87× 10−6 6.00× 10−7 6.00× 10−10

TABLE I: Physical constants of the three materials considered for the basic compression and

shear deformation problems.

1. Analytical solution

The one-phase compressions within the cubic cavity (Fig. 2a) proceed through constant

injection velocity V0. Analytical solutions can be obtained when steady compression is

assumed which leads to uniform velocity divergence∇ ·V = −V0/L within the overall system

with time. In these conditions, the integration of density conservative equation (Eq. (2))

gives the evolution of mass density with injection time at any point of the system:

ρ = ρi e
V0
L

(t−ti) (29)

where ρi is density at initial time ti.

The evolution of pressure depends on the phase involved through the coefficient of isother-

mal compressibility χT .

For elastic solids, χT is assumed to be constant with compression pressure. This ap-

proximation leads, when integrating Eq. (9) simplified for isothermal conditions, to a linear

dependence of pressure with time through the relation :
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p− pi =
V0
χTL

(t− ti) (30)

where pi is the pressure of the elastic solid at initial time ti.

For fluids, considered to be perfect gasses, the coefficient of isothermal compressibility χT

can be substituted by the reverse pressure term 1/p, which leads, after integration of Eq.

(9) simplified for isothermal conditions, to the following evolution of pressure with time.

p = pi e
V0
L

(t−ti) (31)

For elastic solids only, the evolution of the shear stress tensor τ with compression time

gives,

τ = τ i + 2 µE


1
3
V0
L

0 0

0 −2
3
V0
L

0

0 0 1
3
V0
L

 (t− ti) (32)

where τi is the shear stress tensor at time ti.

A normalized shear stress tensor is defined as τ̄ =
√

3
2
τ : τ , leading to scalar evolution

of the shear stress with time :

τ − τ i = 2µE
V0

L
(t− ti) (33)

where τ i is the normalized shear stress at initial time ti. For viscous flow, τ is reduced to

zero at any time.

2. Numerical simulation

Compressions of air, cork and rubber are compared until injection time tf=100 s by

considering the same injection speed V0 = 0.001 m/s. The 3D simulations were carried out

on a 21 x 21 x 21 mesh grid for different time increments 4t (100 s, 10 s, 1 s, 0.1 s, 0.01 s).

During compression, density, pressure and normalized shear stress (for elastic solids only)

increase over time, and are verified to be uniform throughout the entire volume even for the

first time step resolution. The comparison between the numerical evolution and the analyti-

cal evolution of relative ρ/ρi density (Eq. (29)) is presented in Fig. 3 for the three materials

studied. The evolution is shown to be independent of the material involved as predicted
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by Eq. (29). Moreover, the simulated evolution strictly fits the exponential analytical one,

showing that the model accurately accounts for density variation by solving velocity diver-

gence. A state equation is thus no longer needed with this compressible model whatever the

materials involved.

FIG. 3: Comparison between simulated and analytical exponential evolutions of relative

density of air, cork and rubber during compression (time increment 4t = 1s); the dashed

line corresponds to a linear evolution.

Similarly, the evolutions of pressure and normalized shear stress during compression for

the elastic materials perfectly match the analytical ones in reference to Eq. (31) and Eq.

(33), respectively, as shown in Fig. 4 for air and Fig. 5 for cork.
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FIG. 4: Comparison between simulated and analytical exponential evolutions of pressure

during air compression (time increment 4t = 1s); the dashed line corresponds to a linear

evolution.

FIG. 5: Comparison between simulated and analytical linear evolutions of pressure and

normalized shear stress during cork compression (time increment 4t = 1s).

For air, since the coefficient of isothermal compressibility is pressure dependent, the evo-

lution of pressure with compression time deviates from linearity (Fig. 4). The update of

pressure using Eq. (24) gives, as expected, a second order convergence with decreasing time

increment (fig. 6). A relative error of around 10−8 was obtained for the lowest time increment

4t = 0.01 s.
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FIG. 6: Second order convergence rate of numerical air pressure towards the analytical

solution with time increment.

In contrast, for elastic material, the coefficient of isothermal compressibility is assumed

to be pressure independent, giving rise to linear evolutions of pressure and normalized shear

stress with time (Fig. 5). The relative errors obtained with these linear evolutions are

presented in table II for time increment4t = 1 s. These relative errors are close to computer

precision showing that, as expected, exact solutions for pressure and normalized shear stress

are obtained (see section 4).

Material p− pi (Pa)
p− pth
pth − pi

τ̄ − τ̄i (Pa)
τ̄ − τ̄th
τ̄th − τ̄i

cork 1.67×105 4× 10−12 5.00× 105 4× 10−12

rubber 1.67× 108 2× 10−13 6.67× 104 2× 10−13

TABLE II: Calculated pressure and normalized shear stress within the elastic solids at the

final compression time tf = 100 s; corresponding relative errors obtained for time increment

4t = 1 s.

Note that the steady compressions obtained were simulated with time increments greater

than the characteristic time of the system, L/cL, where cL is the velocity of longitudinal elastic

wave propagation. The velocity values for cork and rubber are indicated in table IV, the value
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for air being cL = 1/√ρχT = 293 m/s . So, within this time criterion 4t > L/cL, compression

modeling is independent of time discretization, apart from the numerical precision when the

coefficient of isothermal compressibility is pressure dependent.

C. Isothermal simple shear deformation of elastic solids

1. Analytical solution

The shear deformation of elastic solids proceeds through the constant velocity displace-

ment V0 of the lower surface in the x-axis direction (Fig. 2b). Density and pressure do not

vary during shear deformation. Assuming steady evolution leading to a uniform velocity

gradient within the overall system, the time integration of the shear stress tensor gives,

τ = µE


0 −V0

L
0

−V0
L

0 0

0 0 0

 (t− ti) (34)

from which we can determine the evolution of the normalized shear stress tensor,

τ − τ i =
√

3µE
V0

L
(t− ti) (35)

where τ i is the normalized shear stress at initial time ti. For viscous flows, τ is reduced

to zero at any time.

2. Numerical simulation

The 3D simulations of shear stress deformations were carried out on a 21 x 21 x 21 mesh

grid, for a constant velocity V0 = 0.001 m/s and for different time increments 4t (100 s,

10 s, 1 s). The physical constants of elastic solids and initial conditions used are indicated

in table I. During deformation, the normalized shear stresses of cork and rubber are verified

to be uniform throughout the material. The simulated evolutions of shear stress within cork

and rubber systems are presented in Fig. 7 until the deformation time tf=100 s. They are

shown to perfectly match the exact evolutions given by Eq. (35).
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FIG. 7: Comparison between the simulated and the analytical linear evolutions of the nor-

malized shear stress during simple shear deformation of cork (circles) and rubber (squares)

for time increment 4t = 1 s.

At the final time tf=100 s, exact solutions are obtained for shear deformations in refer-

ence to the low relative error (table III). Note that, as for compressions, the steady shear

deformations obtained are modeled with time increments greater than the time character-

istics of the system, i.e. 4t > L/cT , where cT is the velocity of the transverse elastic wave

propagation (see Table IV for cT -values of cork and rubber).

material τ̄ − τ̄i (Pa)
τ̄ − τ̄th
τ̄th − τ̄i

cork 4.33× 105 7× 10−16

rubber 5.77× 104 1× 10−7

TABLE III: Normalized shear stress calculated within the material for the final deformation

time tf=100 s ; corresponding relative errors obtained for time increment 4t = 1 s.

D. Elastic wave propagation

In order to illustrate the physical meaning of the time dependent term dt/χT in Eq. (21),

compression and shear deformations are simulated by considering time increments much
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lower than the system time characteristics 4t � L/C. We can thus expect to get some

insight into the time scale of wave propagation.

1. Analytical solution

Elastic wave propagation results in the oscillating exchange of kinetic energy into elastic

energy. For isotropic elasticity, elastic waves are the addition of two types of waves: longi-

tudinal waves where the material displacement field is collinear with the direction of wave

propagation; and the transverse waves where the displacement field is perpendicular to the

direction of wave propagation. Wave propagation velocity depends on the elastic constants

of the material, and the type of waves. For longitudinal waves, the theoretical propagation

velocity cthL is,

cthL =

√√√√2µE + λE

ρ
(36)

and for transverse waves, the theoretical propagation velocity Cth
T is defined as follows.

cthT =

√√√√µE

ρ
(37)

2. Numerical simulation

The 3D simulations of elastic wave propagation were carried out on a 4x64x 4 mesh grid,

considering cork and rubber as elastic materials.

As a first step, the propagation of a compression pulse was studied by applying an injection

velocity V0 = 0.0001 m/s during the first time increment only, the injection velocity being

equal to zero during the remaining simulation time. For time increment 4t = 3 × 10−5 s

much lower than the characteristic time 4t = L/cthL = 1.45 10−3 s a non-steady evolution

of the pressure was obtained as shown in Fig. 8 for rubber. Indeed, we can observe that

the pressure at the center point of the system evolves through periodic oscillations which

become attenuated with time until the equilibrium state. This is the result of the initial

wave compression which propagates in the direction of the displacement field (Y-direction),

reflects off the upper surface, then propagates backwards to reflect off the lower surface, and

so on until the equilibrium state. The oscillation period TL corresponds to the time lapse
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required for the wave to pass through the (Y = 0.5)-plane of the material and return to

it after being reflected, that is the time for the wave to cover the distance L. From the

measurement of the period (Fig. 8), the longitudinal propagation velocity can be calculated

through the relation ccalL =
L

TL
. The calculated value for rubber is shown in table IV together

with that obtained with cork as a perfectly compressible material.

FIG. 8: Pressure variation at the center point of the rubber system during longitudinal

elastic wave propagation; time increment, 4t = 3× 10−5 s.

In the second step, the propagation of a shear deformation pulse was studied by displacing

the lower material surface in the X-direction at the velocity V0 = 0.0001 m/s during the first

time increment only. Here again, the time increment4t = 2×10−3s is much smaller than the

characteristic time 4t = L/cthT = 0, 19 s which allowed wave propagation to be followed. So,

the shear wave propagates in the Y-direction perpendicularly to the displacement field, which

characterizes transverse wave propagation. Fig. 9 presents the evolution of the τxy-element

of the shear stress tensor at the center point of the rubber system. The periodicity of the

curve shows, here again, that the transverse wave reflects successively off the upper and lower

surfaces of the cavity. From the measurement of the oscillation period TT , the transverse

propagation velocity can be calculated through the relation ccalT =
L

TT
. The calculated value

is indicated in table IV together with that obtained on cork.
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FIG. 9: Variation, during transverse wave propagation, of the τxy-element of the shear stress

tensor at the center point of the rubber system; time increment, 4t = 2× 10−3 s.

The good correspondence between the simulated wave propagation velocities compared

to the calculated ones (table IV) clearly shows that the model proposed perfectly solves

elasticity behavior at the time scale of elastic wave propagation. As expected, the longitudi-

nal wave velocities are greater than the transverse ones, especially for quasi incompressible

materials where the value of the 2nd Lamé coefficient λE is high (or the Poisson coefficient

ν tends to 0.5) which is the case for rubber.

material CthL (m/s) CthT (m/s) CcalL (m/s) CcalT (m/s)

cork 141.4 100.0 141.3 100.1

rubber 689.2 9.74 688.5 9.73

TABLE IV: Comparison between theoretical and calculated wave propagation velocities for

the two basic cases of longitudinal and transverse elastic waves.
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E. Two-phase compression

1. Analytical solution

Two elastic solids are stacked within the cavity (fig. 2a) in such a way that the interface is

parallel to the XZ-plane. The thickness of the lower and upper materials are thus defined by

xL and (1− x)L, respectively with 0 < x < 1. The injection velocity V0 is constant during

compression and we assume a steady state leading to uniform displacement divergences

∇ ·U(1) and ∇ ·U(2) within phases (1) and (2) at each time t. Indexes 1 and 2 are assigned

to the lower and upper phases, respectively. The upper phase is assumed to be incompressible

to avoid interface displacement during compression. In these conditions, Eq. (38) can be

written as follows.

x∇ ·U(1) + (1− x)∇ ·U(2) = −
V0

L
(t− ti) (38)

From the general equation of the interface force equilibrium :∑
k

τ
(2)
ik − τ

(1)
ik = (p(2) − p(1)) ni (39)

we can write Eq. (40) by substituting for p(i) and τ
(i)
yy the terms in Eq. (41) for i = y (see

Eq. (28) for the χT dependence with Lamé’s coefficients).

(2µ
(2)
E + λ

(2)
E )∇ ·U(2) = (2µ

(1)
E + λ

(1)
E )∇ ·U(1) (40)

Combining Eqs. (38) and Eq. (40), ∇ ·U(1) and ∇ ·U(2) can be expressed at time t as a

function of the constants in question,

∇ ·U(2) = −
(2µ

(1)
E + λ

(1)
E )

V0

L
(t− ti)[

x(2µ
(2)
E + λ

(2)
E ) + (1− x)(2µ

(1)
E + λ

(1)
E )
]

∇ ·U(1) = −
(2µ

(2)
E + λ

(2)
E )

V0

L
(t− ti)[

x(2µ
(2)
E + λ

(2)
E ) + (1− x)(2µ

(1)
E + λ

(1)
E )
]

giving the analytical solution for pressure, normalized shear stress and the τyy-element of

the shear stress tensor through the following relations with i = 1, 2.

p(i) = −
1

χ
(i)
T

∇ ·U(i) τ (i) = 2 µ
(i)
E ∇ ·U

(i) τ (i)yy =
4

3
µ
(i)
E ∇ ·U

(i) (41)
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2. Numerical simulation

The 3D simulations of the two-material compression were carried out on a 4 x 65 x 4 mesh

grid considering cork as the lower material and rubber as the upper one (Fig. 10).

FIG. 10: System geometry and boundary conditions for the two-elastic solid compression.

Equal thicknesses for the two phases is considered (x = 0.5), as well as a constant injection

speed V0 = 0.0001 m/s. Similar boundary conditions as the one-phase compression studies

are considered. The values of the cork constants µ
(1)
E , λ

(1)
E , χ

(1)
T , and rubber constants µ

(2)
E ,

λ
(2)
E , χ

(2)
T are indicated in table I. These constants are assigned to the discretisation nodes

using the phase function C, assuming discontinuity across the interface. The time increment,

4t = 1 s is more than three orders of magnitude greater than the characteristic time L/2 cT

of the cork phase (that of rubber being lower) yielding a linear steady compression within

the two phases. The pressure and normalized shear stress profiles are reported in Figs.11

and 12 respectively, along the (X=0.5 m;Y; Z=0.5 m)-line, for the final compression time

tf = 100 s.
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FIG. 11: Pressure profile along the (X=0.5 m;Y; Z=0.5 m)-line at the final compression time

tf = 100 s.

.

FIG. 12: Normalized shear stress profile along the (X=0.5 m;Y; Z=0.5 m)-line at the final

compression time tf = 100 s.

These profiles clearly show the uniformity of pressure and normalized shear stress through-

out each material, the exact values being obtained in reference to the low relative error (table

V). As expected, pressure and shear stress discontinuities are obtained at the interface in

accordance with the interface equilibrium condition (Eq. (39) with i = y). Note that force

equilibrium at the interface is not enforced as a boundary condition, but is an implicit so-
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lution of the unified equation. This force equilibrium criterion is shown to be obtained with

good accuracy (see last column of table V).

Material p− pi
p− pth
pth − pi

τ̄ − τ̄i
τ̄ − τ̄th
τ̄th − τ̄i

τyx − τyxi τ (2)yy − τ
(1)
yy − (p(2) − p(1))ny

(Pa) (Pa) (Pa) (Pa)

cork (1) 33234 3× 10−13 99701 8× 10−14 -66467
1.8× 10−7

rubber (2) 99674 1× 10−12 39.87 1× 10−10 -27

TABLE V: Calculated pressure and normalized shear stress within the two materials at the

final compression time tf = 100 s; corresponding relative errors and interface equilibrium

criteria obtained for time increment 4t = 1 s.

F. Complex problem of fluid-elastic solid interaction

1. Problem description

Here, the unifying model for fluid flow and elastic solid deformation is put to test through

the study of a complex fluid-solid interaction. This problem is based on previous 2D studies

[16, 18, 25] of laminar incompressible flow around an elastic object resulting, as a function

of parameter settings, in either a steady state solution or self-induced oscillations of the

object. The 2D configuration of the system is addressed here in 3D by considering a system

thickness of 0.01 m. The system setup (Fig. 13) is a long channel of length L = 2.5 m and

height H = 0.41 m. Within this channel, is an obstacle of cylindrical shape with a radius

r = 0.05 m. The cylinder center is positioned at the (0.2 m, 0.2 m)-point. A long elastic flag

of length l = 0.35 m and height h = 0.02 m is attached to the obstacle so that the right

furthest side of the flag is positioned at X = 0.6 m.
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FIG. 13: System geometry for the study of fluid-elastic solid interaction.

A parabolic profile is set at the left channel inflow,

V0(0, Y, Z) = 1.5 V 0

Y (H − Y )H
2

2 =
6.0

0.1681
Y (0.41− Y ) (42)

where V 0 is the mean inflow velocity. Smooth increase of velocity profile in time is used,

V0(t, 0, Y, Z) =


V0(0, Y, Z)

1− cos(
π

2
t)

2
if t < 2.0 s

V0(0, Y, Z) otherwise

(43)

where V0(0, Y, Z) is the velocity profile given in Eq. (42).

The Neumann condition, dV/dX = 0, is prescribed for the outflow, and the no-slip condition

V = 0 is prescribed for the fluid on the top and bottom walls. A penalty of the velocity

field, V = 0, is set within the entire obstacle [63]. The physical constants of the fluid and

elastic object and the two studied inflow mean velocities are indicated in table VI.
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Material Physical constants Case 1 Case 2

Elastic solid Initial density, ρi (kg/m3) 1000 10000

Young’s modulus, E (Pa) 1.4× 106 1.4× 106

Poisson’s coefficient ν 0.4 0.4

Fluid phase Initial density, ρi (kg/m3) 1000 1000

Viscosity coefficient,µ (Pa.s) 1.0 1.0

Compressibility coefficient, χT (Pa-1) 4.5× 10−10 4.5× 10−10

Mean inflow velocity, V0 (m.s-1) 0.2 1

TABLE VI: Physical constants of the fluid and elastic flag involved in the fluid-structure

interaction problems.

The parameter settings lead to Reynolds number values (Re =
2 ρ V0 r

µ
) low enough

to induce laminar flow (Re = 20, 100, for the first and the second parameter settings,

respectively). Note that the time increment 4t = 0.001 s is not sufficiently small to follow

the longitudinal elastic wave propagation within the fluid since the characteristic times L/cL =

1.7 10−3 s and H/2 cL = 1.4 10−1 s (with cL =
√

1/ρχT ) are of the same order of magnitude

or greater. So a very small effect of fluid compressibility will have to be expected. The

calculation was performed on a 415x110x 2 mesh grid, with refinement in the vicinity of the

elastic flag and the obstacle. The material constants are assigned to the system discretization

nodes using the phase function C and assuming the continuity of the constants across the

interface (see paragraph 4).

To sum up, similar settings are considered compared to the 2D benchmarking study [25],

except for i) the compressibility characteristics of the fluid which is perfectly incompressible

in the benchmarking study whereas the physical coefficient of compressibility of water is

considered in this study; ii) the no-slip boundary condition at the fluid/elastic solid interface,

since the unified model formulation does not require any explicit boundary condition at the

fluid/solid interface.
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2. Numerical results

The movement of the elastic flag during channel flow is analyzed through the X-

displacement UX and the Y-displacement UY of the A (0.6 m; .0.2 m)-point at its very right

end. Fig. 14 shows these UX,UY−displacements for the parameter setting of case 1 (Table

VI). After early time oscillations, the steady state evolution is obtained. It is characterized

by A-point coordinates very close to those calculated in the benchmark study [25] as shown

in Table VII.

FIG. 14: UX,UY−displacements of the A-point of the elastic flag during channel flow for

parameter setting of case 1 (Table VI).

Case 1 UX (m) UY (m)

benchmark 2.27× 10−5 8.21× 10−4

present result 2.26× 10−5 8.29× 10−4

TABLE VII: Comparison of the UX and UY displacements of the A-point during the steady-

state evolution with that of the benchmarking study [25] .

For the parameter setting of case 2 (Table VI), a non-steady state evolution was obtained

with periodic oscillations of the flag as shown in Fig. (15) with the Y-displacement curve of

the A-point. The frequency, the mean value (average of the minimum and maximum values)

and the amplitude (difference of the minimum or maximum values from the mean) of the
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periodic evolution were calculated (Table VIII). These period characteristics are close to

those computed in the benchmarking study (also see Table VIII).

FIG. 15: Y-displacement of the A-point of the elastic flag during the channel flow for pa-

rameter setting of case 2 (Table VI).

Case 2 frequency mean value amplitude

benchmark 2.0 1.23× 10−3 8.06× 10−2

present result 1.9 1.1× 10−3 7.6× 10−2

TABLE VIII: Characteristics of the Y-periodic displacement of the A-point during the non-

steady state evolution; comparison with the same characteristics computed in the bench-

marking study [25]

Fig. (16) shows a snapshot of the flag morphology during the self-induced oscillations. As

expected, compressive values are calculated under the convex interface while tensile values

are calculated under the concave interface. In the fluid, as in previous study [18], compressive

areas with comparable intensities are localized in the left part of the obstacle and above the

flag when going down, and tensile areas are localized on the right part of the obstacle and

below the flag. Note that the end part of the flag becomes slightly rounded. This non physical

deformation is the consequence of the numerical VOF representation of the interface which

tends to smooth interfaces.
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The results obtained for this complex problem clearly show that the unified model for

fluid flow and elastic solid deformation allows within strictly one vectorial solving step,

the accurate calculation of fluid velocity and solid displacement fields as well as interface

displacement. A strong fluid-structure coupling is thus obtained with that model without

any boundary condition setting at the interface. Moreover, the results show that for time

increments larger than the characteristic time for the fluid 4t > H/2 cL, the unified model

leads to the same incompressible fluid flow.

FIG. 16: Pressure map in the surroundings of the flag at the simulation time t = 17.1 s of

the unsteady evolution

IV. FOCUS ON THE THERMO-MECHANICAL COUPLING THROUGH THER-

MAL TRANSPORT STUDY

In this part, we study thermal transport within a monophase fluid system, and its coupling

with mechanics through the thermal expansion of the fluid. So, the complete governing

equation system (16) in which the residual shear stress τ 0 equals zero has to be solved.

This apparent simple problem nevertheless involves different time scale phenomena such

as: i) phonon dynamics with a very short time constant τp ≈ 10−12 s, ii) thermoacoustic

propagation time constant τc = L/cL, where L is the characteristic length of the system and

cL the sound celerity, ii) the fluid flow time constant τn = L/V0 where V0 is the characteristic

velocity of the fluid flow, and iv) the thermal diffusion time constant τd = ρ cp L
2/k. We

studied two time scale thermal transport characteristics, those of thermoacoustics and of

thermal diffusion, so that the heat equation of system (16) can be reduced to Fourier’s
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equation.

Φ + k ∇
(
T 0 − dt

(
β T 0

ρ0 cv χT

)
∇ ·V − dt

(
1

ρ0 cv

)
(∇ ·Φ− q − φ)

)
= 0 (44)

A. Numerical scheme and flux equation discretization

Lagrangian heat fluxes Φ are determined from the vectorial solving process of Eq. (45)

which results in the time dicretization of Eq. (44) using the known temperature and velocities

at time step n.

Φ + k ∇
(
T n − dt

(
βn T n

ρn cnv χ
n
T

)
∇ ·Vn − dt

(
1

ρn cnv

)
(∇ ·Φ− φn)

)
= 0 (45)

Here φn is the dissipation function at time step n defined from velocity vector Vn using

Eq. (18)

Then Lagrangian velocities V at time step n + 1 are determined from Vn and Φ using

Eq. (22), where the predictive Lagrangian pressure term,pn −∆t
1

χnT
∇ ·V


is extended to the following ones.(

pn − dt
(

1

χnT
+

βn 2 T n

ρn cnv χ
n 2
T

)
∇ ·V − dt

(
β

ρn cnv χ
n
T

)
(∇ ·Φ− φn)

)
The Lagrangian pressure p, temperature T and density ρ at time step n + 1 are then

re-actualized from the Lagrangian velocity and flux vectors using the following equations.

ρ = ρne−dt ∇·V

T = T n − dt
(

βn T n

ρn cnv χ
n
T

)
∇ ·V − dt 1

ρn cnv
(∇ ·Φ− φn)

p = pn − dt
(

1

χnT
+

βn 2 T n

ρn cnv χ
n 2
T

)
∇ ·V − dt

(
βn

ρn cnv χ
n
T

)
(∇ ·Φ− φn)

(46)

The Lagrangian dissipation function (18) φ was calculated from the Lagrangian velocity

vector V and the thermodynamic coefficients at time step n.

The Eulerian variables pn+1, T n+1 , ρn+1, φn+1, Vn+1 and Φn+1 at time step n + 1 were

determined from the calculated Lagrangian variables p, T , ρ, φ, V and Φ following the
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same advection scheme described in section III-A. Similarly, the thermodynamic coefficients

(χn+1
T , βn+1, cn+1

v , µn+1, kn+1) were updated from the phase function C and the values

of the intensive variables T n+1 and pn+1. For a perfect gas we have χn+1
T = 1/pn+1 and

βn+1 = 1/T n+1.

B. Air cavity heating

1. System description

A 2D square cavity of width L = 1 m, containing air at pressure pi = 101325 Pa, is

heated from initial temperature Ti = 300 K to Tf = 400 K. The horizontal walls of the

cavity are assumed to be adiabatic and the vertical walls are kept isothermal at temperature

Tf . The initial air density ρi, initial isothermal compressibility coefficients χT i and viscosity

coefficients µ are indicated in Table I. Such thermo-elastic coupling also requires knowledge

of the initial coefficient of thermal expansion βi = 3.33 × 10−3 K−1, the specific heat cv =

719 J.kg−1.K−1and the thermal conductivity k = 2.63 × 10−2 W.m−1.K−1. The µ, cv, k-

coefficients are assumed to be constant within the temperature and pressure intervals studied,

unlike the χT and β coefficients which are pressure and temperature dependent. Assuming

air to be a perfect gas, we have: β = 1/T and χT = 1/p. The value of thermoacoustic

characteristic time τc ≈ 3.× 10−3 s and that of the thermal diffusion τd ≈ 4.5× 104 s

2. Thermoacoustic time scale solution

The simulation was carried out on a one-dimensional 1024 mesh grid. Time increment

∆t = 10−5 s was chosen to be two orders of magnitude lower than the thermoacoustic

characteristic time τc = L/cL ≈ 3. 10−3 s where cL = 1/
√
ρiχT i = 430 m.s−1 is the velocity of

elastic wave propagation at initial time. The sudden heating of the air in contact with the wall

produces thermoacoustic wavelets in agreement with previous studies [64, 65]. These wavelets

propagate toward each other in the direction of the cavity center, as the temperature profile

at time t = 10−3s shows (Fig. 17). At that time, the maximum temperature amplitude of the

wave is very low, not exceeding 0.04 K around the initial temperature Ti = 400 K, whereas

the air temperature near the wall reaches 400 K. As regards the corresponding pressure

profile in Fig. 18, wavelets are also observed with a strict similar wavelength and amplitude
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decay. No phase difference is observed. Strong coupling between temperature and pressure

thus occurs for thermoacoustic wavelets. Temperature depends strongly on air expansion or

compression since low temperature domains correspond strictly to tensile pressure domains

and conversely high temperature domains correspond to compression domains (comparison

between Fig. 17 and Fig. 18). This is not the case far from the wavelets and especially near

the walls where pressure is close to its initial value whereas temperature is very high. In

this latter case, it is the density decrease which compensates for the temperature increase.

Finally, from the position of the first peak base, xp = 0.34 m, at time t = 10−3 s (Figs. 17

and 18) the velocity of the wavelets is determined. The obtained value 340 m.s−1 is that of

the sound celerity in air, in other words the velocity of longitudinal elastic wave propagation

.

FIG. 17: Temperature profile T −Ti at t = 10−3 s along the line perpendicular to the vertical

heating wall of the cavity set at 400 K; time increment ∆t = 10−5 s.

39



FIG. 18: Pressure profile p − pi at t = 10−3 s along the lines perpendicular to the vertical

heating wall of the cavity; time increment ∆t = 10−5 s.

3. Thermal diffusion time scale solution

The simulation was carried out on a one dimensional 1024 mesh grid. Time increment

∆t = 0.1 s was chosen to be thirty times greater than the thermoacoustic characteristic time

τc = L/cL ≈ 3. × 10−3 s in order to obtain pressure convergence at each time step. As

expected, uniform pressure is calculated throughout the cavity which increases with time

until the equilibrium state is reached, Fig. 19. The different features for the evolution of

relative temperature and pressure at the center point of the cavity, i.e. sharp increase for

pressure and delayed increase for temperature clearly shows that, early on, temperature

variations depend on local temperature gradient whereas pressure is consistent with the

global mean temperature value.

Theoretical solution for final steady state is given by the thermodynamic equilibrium state.

It gives uniform air density, temperature and pressure within the cavity, that is : ρthf = ρthi ,

T thf = 400 K and pthf = ρthf r T
th
f = 135100 Pa (r = 287 J.kg−1K−1 for air). Mass conservation

is maintained to within computer accuracy. The calculated pressure pf = 135076 Pa which

is not deduced from the state equation, is obtained with a relative error of 1.8 10−4 by

comparison with the theoretical solution.
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FIG. 19: Evolutions of relative pressure p∗ = (p − pi)/(pf − pi) and temperature T∗ =

(T − Ti)/(Tf − Ti) at the cavity center for large time scale increment ∆t = 0.1 s

V. CONCLUSION

From the criteria defined in the introduction; i) definition of a unified governing equation

for fluid flow and elastic solid deformation; ii) multi-time scale solving; iii) non-conservative

formulation; iv) non- use of the state equation; v) same main variables for mechanical and

thermal equations, we succeeded in formulating a mathematical model were the unknown

vectorial variables velocity and displacement fields, and heat flux can be simultaneously

solved for through a unique linear system. This was mainly done by introducing thermo-

dynamics within Cauchy’s equation and the conservation of heat flux equation allowing the

compressibility and the thermal expansion terms to be made explicit. The secondary vari-

ables, pressure, density, mechanical stress and temperature are consequently updated from

the main vectorial variables using the thermodynamic coefficients only. The concept of state

equation disappears with this mathematical model. The thermodynamic pressure is related

to the momentum conservation law only, while density is related to the mass conservation

equation. Density is thus obtained with computer accuracy whatever the problem is. The

formulation is defined within the Lagrangian description. The Eulerian variables are deter-

mined in the end step from the advection of the Lagrangian variables.

In the framework of this complete thermo-mechanical formulation, we first focus in this

paper on the consistency of the unified governing equation for compressible fluid flow and

elastic solid deformation by considering isothermal problems. First of all, the same equation

is shown to deal with multi-time scale problems with the study of elastic solid deformation.
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Indeed, for time scale analysis lower than the characteristic time of acoustic wave propaga-

tion, we succeed in following the longitudinal and transverse elastic waves with an accurate

wave velocity, whereas for longer analysis time, the compression process was obtained with

steady evolution. For two-phase systems, the model is shown to implicitly solve the interface

equilibrium criterion accurately, even in the case of the fluid-structure interaction. There is

no longer a need for interface boundary conditions inherent to governing equations differing

in type across the interface. Note that “incompressible” fluid flow can be modeled with the

formulation by simply considering the experimental compressibility coefficient of the phase

involved along with time scale analysis longer than the characteristic time of acoustic wave

propagation.

Similarly, through the study of air heating in an enclosure, the complete thermo-

mechanical formulation was shown to succeed in catching thermoacoustic waves for analysis

time scales shorter than the characteristic time of acoustic wave propagation. For longer

time scale analysis, steady evolution of density, pressure and temperature is obtained until

the thermodynamic equilibrium state is reached.

This new mathematical formulation of the thermo-mechanical equations including ther-

modynamics brings major assets for the modeling of multi-phase and multi-physics prob-

lems. Currently limited to isotropic linear elastic solids, we aim to extent this formulation to

anisotropic elasticity and inelasticity such as the elasto-plastic behavior. Finally, if the pur-

pose of this paper was not to propose the more efficient numerical scheme, this is of course of

great importance and we will have to think about further developments in order to deal with

more complex fluid-structure problems that we can found in the literature [21, 24, 26, 66].
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Figure captions

Fig. 1: Evolution of the Lagrangian thermo-mechanical variables for a material point M

between time t0 to time t = t0 + dt.

Fig. 2: System geometry and boundary conditions for the compression of fluid and solids

(a) and the shear deformation of solids (b).

Fig. 3: Comparison between simulated and analytical exponential evolutions of relative

density of air, cork and rubber during compression (time increment 4t = 1s); the dashed

line corresponds to a linear evolution.

Fig. 4: Comparison between simulated and analytical exponential evolutions of pressure

during air compression (time increment 4t = 1s); the dashed line corresponds to a linear

evolution.

Fig. 5: Comparison between simulated and analytical linear evolutions of pressure and

normalized shear stress during cork compression (time increment 4t = 1s).

Fig. 6: Second order convergence rate of numerical air pressure towards the analytical

solution with time increment.

Fig. 7: Comparison between the simulated and the analytical linear evolutions of the

normalized shear stress during simple shear deformation of cork (circles) and rubber (squares)

for time increment 4t = 1 s.

Fig. 8: Pressure variation at the center point of the rubber system during longitudinal

elastic wave propagation; time increment, 4t = 3 10−5 s.

Fig. 9: Variation, during transverse wave propagation, of the τxy-element of the shear

stress tensor at the center point of the rubber system; time increment, 4t = 2 10−3 s.

Fig. 10: System geometry and boundary conditions for the two-elastic solid compression.

Fig. 11: Pressure profile along the (X=0.5 m;Y; Z=0.5 m)-line at the final compression

time tf = 100 s.

Fig. 12: Normalized shear stress profile along the (X=0.5 m;Y; Z=0.5 m)-line at the final

compression time tf = 100 s.

Fig. 13: System geometry for the study of fluid-elastic solid interaction.

Fig. 14: UX,UY−displacements of the A-point of the elastic flag during channel flow for

parameter setting of case 1 (Table VI).

Fig. 15: Y-displacement of the A-point of the elastic flag during the channel flow for

parameter setting of case 2 (Table VI).

Fig. 16: Pressure map in the surroundings of the flag at the simulation time t = 17.1 s of
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the unsteady evolution.

Fig. 17: Temperature profile T − Ti at t = 10−3 s along the line perpendicular to the

vertical heating wall of the cavity set at 400 K; time increment ∆t = 10−5 s.

Fig. 18: Pressure profile p− pi at t = 10−3 s along the lines perpendicular to the vertical

heating wall of the cavity; time increment ∆t = 10−5 s.
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