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Abstract

The question of complexity in biological systems is recurrent in evolutionary biology and is central in complex
systems science for obvious reasons. But this question is surprisingly overlooked by Evolutionary Systems Biology.
This comes unexpected given the roots of systems biology in complex systems science but also given that a proper
understanding of the origin and evolution of complexity would provide clues for a better understanding of extant
biological systems. In this chapter we will explore the links between evolutionary systems biology and biological
systems complexity, in terms of concepts, tools, and results. In particular, we will show how complex models can
be used to explore this question and show that complexity can spontaneously accumulate even in simple conditions
owing to a “complexity ratchet” fuelled by sign-epistasis.

1 Introduction
The link between evolution and complexity is as old as the evolutionary theory itself1. However, it is still largely
controversial. There is kind of a general agreement that complexity has globally increased along evolutionary history
(McShea, 1996)—although it may have decreased in some lineages, typically endosymbionts andmarine cyanobacteria
(Batut et al, 2014) — and that all extant organisms can be considered “complex” but the question becomes highly
controversial when it comes to the origin of complexity, i.e. to its ultimate causes (Mayr, 1961).

The question of the evolutionary origin and dynamics of biological complexity should logically be a central matter
of interest in Evolutionary Systems Biology (ESB). Yet, although not completely absent (Soyer and Bonhoeffer, 2006),
it is surprisingly overlooked compared to questions about modularity or robustness for instance. This is surprising
as a proper understanding of the evolutionary origin of biological complexity could provide valuable clues to analyse
extant biological systems and help decipher the structure-function relationship in biology.

In this chapter we will first discuss the specific aspects of ESB questions with a focus on the question of the evolution
of complexity (section 2). We will then discuss why and how “complex models” are required to tackle this question in
particular and ESB questions in general (section 3). Finally, in section 4, we will present a series of experiments based
on the Aevol model that shed a new light on the old question of the evolution of complexity.

2 Of Evolution, Systems and Complexity
The definition of Evolutionary Systems Biology is a recurrent matter of discussions within the community (Soyer
and O’Malley, 2013; Loewe, 2016). But although defining precisely ESB and its relations to evolutionary biology
on one side and systems biology on the other side could be an important matter for science policy, it is of low
practical importance in performing science itself. Indeed, a field can afford to be fuzzily defined. What is important
is to identify a coherent corpus of concepts, questions, tools and methods that are shared within a given scientific
community. Ultimately, the latter determines what is considered a valid result within the boundaries of a given science
and what is not.

1“ [...] if we know of a long series of gradations in complexity, each good for its possessor, then, under changing conditions of life, there is no
logical impossibility in the acquirement of any conceivable degree of perfection through natural selection.” (Darwin, 1859), page 204, Chap. VI.
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Linked with the attempts to define ESB, one could typically discuss whether ESB embraces evolutionary biology
and systems biology, whether ESB addresses those questions that are shared by both fields or whether ESB comes with
its own set of questions. However, if, as suggested above, we consider this problem at the level of concepts, questions
and tools, it immediately appears that, in terms of concepts, ESB unifies both fields while, in terms of questions, ESB
appears more as an intersection — if not as a disjunction — of evolutionary biology and systems biology.

Logically, ESB concepts include many concepts that originate, on the one side, from evolutionary biology (typ-
ically Selection, Fitness, Population, Mutations, Drift, Epistasis, Fitness Landscape, Genotype-to-Phenotype (G2P)
map...) and, on the other side, from systems biology (Regulation Networks, Metabolic Networks, Pathways, Motifs,
Architecture...). Given the strong roots of systems biology itself in complex systems science, it is not surprising to find
also concepts initially formulated in this domain, typically: Multiscale Systems, Complex Networks, Self-Organisation,
Modularity, Feedback... Some concepts, initially formulated in one field, have strongly benefited from the interaction
with the other and have fructified therein. Typically, the concepts of Robustness and Evolvability that initially emerged
in the context of complex systems science (Simon, 1962) are now fully integrated in the corpus of evolutionary biology
(Wilke et al, 2001; De Visser et al, 2003; Pigliucci, 2008; Woods et al, 2011). Finally, two concepts have acquired a
specific status within ESB: fitness landscapes and genotype-to-phenotype maps. Initially formulated within the context
of evolutionary biology and genetics (Wright, 1932; Alberch, 1991), they quickly became central in ESB, probably
because they directly match systems biology and complex systems science concepts (respectively energy landscapes
and multiscale systems), hence enabling direct exchanges between both fields.

When it comes to questions, the integrative trend that we observe for concepts seems to be reversed and ESB
questions seems more to intersect than to unify evolutionary and systems biology. In fact, one could easily understand
that ESB, that has emerged as a scientific field after both its “parent fields”, cannot address the same questions they
do. To be recognised as an independent scientific field, ESB must identify its own, independent, corpus of questions:
questions that cannot be answered (or even addressed) within the fields of evolutionary biology or systems biology
alone but that, on the opposite, require to link both fields. Given this, it appears that the questions addressed by ESB
belong to two families:

(i.) What kind of systems are likely to result from a given evolutionary process?
(ii.) Knowing its properties, how is a given system likely to evolve?

Of course, both kinds of questions are very general and lead to more specific ones (e.g., How may a change of
the mutation rate/mutational pattern/population size/... impact a given characteristic of the system?) but all ESB
questions ultimately belong to one of these two families. Importantly, both families of questions cannot be addressed
by evolutionary biology or systems biology alone as they require manipulating concepts originating from both fields.
Typical examples are the influence of a system’s robustness on its evolution (Wilke et al, 2001) and the influence of
evolutionary conditions on a system’s modularity (Kashtan and Alon, 2005) or evolvability (Crombach and Hogeweg,
2008).

Surprisingly, among the properties of biological systems, complexity has received relatively little attention within
the field of ESB. This is surprising because the question of the origin of biological complexity is a recurrent source
of debate in evolutionary biology (Gould, 1996; McShea, 1996; Dawkins, 1997), because it is at the heart of several
unsolved questions, among which the well known C-Value enigma (Thomas Jr, 1971; Elliott and Gregory, 2015),
and because it clearly requires integrating concepts from evolutionary biology, complex systems sciences and systems
biology.

It is difficult to identify the reasons for this lack of interest, but it is worth noting that this question is also absent
from the systems biology corpus. This may have two explanations. First, systems biology focuses on extant organisms
which are all considered complex. Considering that biological epistemology is rooted in classification and comparison,
complexity can easily be ignored as a question. Second, and more importantly, from the outside of evolutionary
biology, complex biological systems are generally implicitly believed to be produced by selection (Lukeš et al, 2011).
Complexity therefore seems a non-question and systems biology focuses mainly on the function of pathways, networks
or elements, following the naive idea that they are there because they have been selected for while they could very well
flourish by the sake of random drift rather than by selective necessity (Lynch, 2007).

Finally, and directly related to the questions, is the matter of tools and methods. Methods change very quickly
in science and evolutionary biology, systems biology and evolutionary systems biology have all followed the “big-
data bioinformatics” trend (Greene et al, 2014), accumulating deep-sequencing data on an ever-increasing number of
organisms, systems and conditions. Now, accumulating data is of low interest if this data is not to be integrated into
a coherent explanation framework — an unfortunate trend in the current “big-data-machine-learning” era (Pigliucci,
2009). On that matter, both evolutionary biology and systems biology share the same tradition of explanatorymodelling
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to seek for unifying principles. Typical explanatory models comprise fitness landscapes and population genetics (in
evolutionary biology) or complex networks and dynamical systems (in systems biology). But these tools only integrate
concepts from their origin field. Addressing ESB questions requires tools that integrate concepts originating from both
fields (e.g., tools integrating concepts such as fitness or drift and concepts such as modularity or complexity). In other
words, we need tools to observe how systems evolve when systems biology provides us with tools to understand systems
(independently from their evolution) and evolutionary biology provides us with tools to understand the evolution of
independent items (e.g. genes or traits) but lacks tools to understand the evolution of systems integrating a large number
of interacting elements. What ESB requires is a set of tools enabling to observe and analyse the evolution of systemic
properties within the framework of Darwinian evolution.

3 Of Complex Evolution Models
Darwinian evolution has the advantage of being relatively simple to reproduce artificially. Indeed, since the emergence
of EvolutionaryAlgorithms (EAs) in the 1950’s and 1960’s, it has been shown that virtually any data structure (variables,
sets, vectors, matrices, programs, networks, trees...) can evolve in silico as long as it is subjected to a selection process
and to a replication-with-variation process. While EAs use this capacity for optimisation purposes, it can also be used
to design models of evolution. Now, since there is no limit to the complexity of the data structures that can evolve
within such a framework, one can design data structures with specific systemic properties and experimentally — but
computationally — study how these properties evolve under various evolutionary constraints (Fig. 1). This approach
emerged within the field of artificial life (Ray, 1991; O’Neill, 2003) and differ from other modelling approaches in
evolutionary biology by the use of “complex models”, i.e. models in which the “digital organisms” (Adami, 2006)
are purposefully complex, redundant and degenerated. This introduces many degrees of freedom in the organisms’
genotype-to-phenotypemap, hence allowing to study the evolution of organisms’ structures in parallel with the evolution
of their phenotypes and fitnesses. We will hereby call this approach “in silico Experimental Evolution” (ISEE) to
emphasize its methodological similarities with in vivo Experimental Evolution (Hindré et al, 2012; Batut et al, 2014).

ISEE methodology is in some way closer to in vivo experimental evolutionary assays than to classical population
genetics models. Indeed, after the initial design of the data structure (see Fig. 1) and of the experimental conditions,
ISEE practitioners let populations evolve in controlled conditions. Then, exactly as experimentalists would, they analyse
a posteriori the winning lineages (i.e. the final data structure’s systemic properties) and the underlying evolutionary
dynamics (including the sequence of fixed mutational events) to relate the digital organisms characteristics with the
evolutionary conditions. Although ISEE is of course limited by its use of digital rather than biological organisms, it
offers numerous advantages compared to in vivo assays. One is of course time. ISEE offers the possibility to simulate
the evolution of hundreds of populations for hundred of thousands of generations. But more than that, it allows for
perfect fossil records of the simulations (Adami, 2006; Hindré et al, 2012), hence making it possible to decipher
contingent events from deterministic ones, a classical issue in evolution. Last but not least, it allows for “impossible
experiments” (O’Neill, 2003), i.e. experiments that would be infeasible in vivo, either because the experimental
conditions would be impossible to set-up or because too many confounding factors would interact within biological
organisms.

Compared to other modelling approaches in Systems Biology, the interest of ISEE is straightforward: it allows
for the simulation of the evolution of any systems biology model provided that one can define mutation and selection
operators on that model (the former is generally relatively straightforward but the latter may be tricky as it requires
to be able to estimate the fitness corresponding to any parameter set). Compared to other modelling approaches in
Evolutionary Biology (typically population genetics and quantitative genetics), ISEE is particularly suited to study
the evolution of systems. Indeed, there is virtually no limit to the complexity of the data structures that could evolve
within a computer, as long as variation and selection operators can be defined for these data-structures. In the context
of ESB, this allows to use Data-structures in which systemic properties (S in Fig. 1) can vary by mutations and to
observe how these properties evolve under different conditions. As long as the underlying data-structure is redundant
(formally if the application DS → f is non-injective in Fig. 1), the systemic properties S can evolve independently
from the fitness of organisms f . It is them possible to study the indirect interplay between evolution and these
systemic properties. Indeed, in the last twenty years, many different data structures, including programs (Wilke et al,
2001; Adami, 2006), networks (Kashtan and Alon, 2005; Espinosa-Soto and Wagner, 2010), differential equation
systems (Soyer and Bonhoeffer, 2006), etc., have been used to study properties such as robustness (Wilke et al, 2001),
evolvability (Crombach and Hogeweg, 2008) or modularity (Kashtan and Alon, 2005; Espinosa-Soto and Wagner,
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Figure 1: Sketch of in silico experimental evolution. The model uses a population (1) of N Data Structures (DS1,
DS2,... DSi,... DSN), each associated to a computable fitness f i and quantifiable systemic properties Si . DSs are
submitted to a generational loop composed of a selection process (2) based on f i (but generally independent of Si), a
mutation process (3) that can modify the DSs (hence modifying f i and Si) and a replication process (4) that populates
the forthcoming generation. The population is let to evolve under monitoring, usually for thousands of generations,
before the trajectories f i (t) and Si (t) are analysed.

2010; Clune et al, 2013). However, surprisingly, only few ISEE assays have tackled the question of complexity (Adami
et al, 2000; Lenski et al, 2003; Soyer and Bonhoeffer, 2006). Apart from the aforementioned reasons, another issue
limits the capacity to study complexity with digital models. Indeed, most ISEE data structures have a fixed complexity.
For instance, in most network models, the strength of the connections can evolve whilst the size of the network cannot
(number of nodes, number of connections). In other words, one could state that most complex models are not complex
enough to tackle the question of complexity.

4 Of Evolution of Complexity
4.1 Introduction
The evolutionary origin of complexity is a historical source of controversy. Basically, there are two main theoretical
bodies, each emphasizing one of the two main engines of evolution: variation and selection. A naive (but common)
interpretation of Darwininan theory states that selection is the driving force at the origin of extant structures. In
this view, extant complexity is "naturally" due to selection, which can act through several mechanisms (Lukeš et al,
2011): Complexity could be selected simply because complex organisms intrinsically have a higher fitness or because
complex environments select for complex organisms, directly (Albantakis et al, 2014) or through interactions with
other species or mates (Zaman et al, 2014); because complex organisms are more robust or more evolvable than simple
ones (Soyer and Bonhoeffer, 2006); because multi-part systems require complex regulation mechanisms (Maslov et al,
2009) or because new genes are recruited to compensate for the negative pleiotropic effects previous mutations brought
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about (Pavlicev and Wagner, 2012). In contrast, according to neutralist theories, complexity increases by the action
of random variations that spontaneously accumulate complexity, at least in some lineages. For instance, in S. J.
Gould’s “drunkard’s walk” model, variation disperses lineages in the space of complexity levels, hence resulting in
the emergence of lineages with ever increasing complexities (Gould, 1996). In the “Zero-Force Evolutionary Law”
(McShea and Brandon, 2010), variation disperses redundant components of the evolving system, hence increasing its
complexity. Finally, in “Constructive Neutral Evolution” (Lukeš et al, 2011), complexity arises because mutations
create dependencies in multi-components systems. So, while the precise mechanism by which variation may increase
complexity depends on the authors, all neutral models agree on the idea that the main driving force is random drift.

There are many reasons why studying the evolution of complexity is difficult. First, definitions and measures of
complexity are not firmly established, especially for biological systems (Adami, 2002). Second, biological systems are
multi-scale systems and complexity can simultaneously rise and fall on different scales, as exemplified by the C-value
enigma (Elliott and Gregory, 2015), by the strong streamlining of obligate bacterial symbionts (Moran, 2007) and by
“major transitions” (Maynard Smith and Szathmary, 1997). Finally, another difficulty is the lack of experimental tools.
Indeed, most of the above-mentioned hypotheses are based on thought experiments and/or on extant organisms without
any possibility to observe the transition between the emergent life, supposedly “simple”, and extant complex life forms.

By using complex models, ISEE can overcome these difficulties. Complexity is easier to define and measure on
models than it is on real organisms and, in a simulation, complexity can be monitored all along the evolutionary process
on perfect fossil records. Moreover complex models can integrate different scales and complexity can be quantified
simultaneously at these different scales. Last but not least, ISEEmakes it possible to perform “impossible experiments”
(O’Neill, 2003) in which multi-scale organisms evolve in environments which are more or less demanding in terms
of complexity. Indeed, one can define environments in which simple organisms can easily thrive (at least as easily as
complex organisms) and environments in which complex organisms are likely to have a better fitness than simple ones.
Then, by comparing the evolutionary outcomes in these two conditions, it is possible to decipher the relative effect of
selective and neutralist forces on the dynamics of complexity.

We used the Aevol in silico experimental evolution platform to implement this research program. We let populations
of initially simple individuals evolve in two different environments: a simple one and a complex one. The analysis of
the winning lineages in the two contexts revealed that complexity evolves in both contexts and that complex organisms
are not more complex in demanding environments. Moreover in both environments complexity increases are driven
by selection, although in simple environments, simple organisms are far fitter than complex ones. These seemingly
antagonistic results together show that complexity is driven by a ratchet mechanism, powered by selection but clicking
in a direction opposite to the long range selection gradient.

4.2 The Aevol model
Aevol (https://www.aevol.fr) is an in silico experimental evolution platform developed by the Inria Beagle team.
This chapter is not intended to promote Aevol, and since the platform has been described in numerous publications
(Knibbe et al, 2007; Beslon et al, 2010; Batut et al, 2014; Rutten et al, 2019; Liard et al, 2020), we will confine ourselves
to its core principles and focus on the structure of the information coding scheme as it is of utmost significance in our
experiments.

The rationale of Aevol is that the structure of the fitness landscape of an organism is likely to be strongly determined
by the structure of the biological information coding of this organism (i.e. by the structure of its genotype-to-phenotype
(G2P) map) and by the variety of mutational operators that act on its genome. That is why, Aevol uses a data structure
that mimics precisely the biological genomic structure and that is decoded through a bio-like G2P map (Fig. 2, parts
A to D). “Organisms” are then embedded in an evolutionary loop that includes classical selection operators and a large
variety of mutations operators including structural ones (Fig. 2 parts F to H).

The core principles of Aevol make it ideally suited to study the evolution of biological complexity. Aevol is a multi-
scale model. As such, complexity can be monitored at different levels (genomic, proteomic and phenotypic) and the
set of mutational operators includes large-scale chromosomal rearrangements (including duplications and deletions).
Hence, genomic complexity can vary by gene duplication-divergence, possibly driving complexity to higher levels.
Finally, similarly to “real” biological G2Pmappings, Aevol’s mapping is redundant meaning that complexity can evolve
partly independently at the different levels.
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Figure 2: The Aevol model. Genomes (A) contain genes decoded into proteins. Functional levels (proteome and
phenotypes) use a mathematical abstraction where proteins are represented by triangular functions (B) and phenotypes
are computed as the sum of all the proteins’ functions (C). Fitness is computed through a curve-fitting task, the closer
the phenotype from a “phenotypic target” (in red on parts B and C) the fitter the organism. Aevol is based on a
generational loop with selection (F), a complex mutational process including rearrangements and mutations (G) and
replication (H).
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4.2.1 Information coding in Aevol

In Aevol, each individual owns a genome containing its heritable information (Fig. 2.A). The genome is a binary
double-stranded sequence that is decoded in two steps: Transcription and Translation. Transcription relies on consensus
signals (promoters) and hairpin-like structures (terminators) for transcription initiation and termination respectively.
Translation involves consensus ribosome binding sites and an artificial genetic code based on triplet codons (including
Start and Stop) which is used to compute the protein sequences. Importantly, these processes introduce redundancy
and degeneracy: complex genomes can encode for simple proteomes (e.g. if all genes have the same sequence) and
complex proteomes can be encoded on compact sequences (if genes share sequences through e.g. overlapping).

Given the sequence of a protein, Aevol computes its functional contribution. Now, although mimicking biological
processes at the sequence level is feasible, it is impossible to compute the function of a protein from its primary
structure in a realistic way. That is why Aevol uses an abstract mathematical formalism to describe the functional
levels (proteins and phenotype). In Aevol all functions are expressed in a one-dimensional continuous “functional
space” (more precisely on the [0, 1] interval) by an activation value in the [−1, 1] interval (upper and lower bounds
corresponding to maximum activation and maximum inhibition respectively). In this space, proteins are described as
triangle-shaped functions (Fig. 2.B), themselves described by three parameters (mean m, height h and half-width w)
computed from three interlaced variable-length binary codes in the primary structure of the protein. Once all kernels
have been computed from the protein set, they are summed to compute the phenotype (Fig. 2.C).

Finally, in Aevol, the fitness is computed as the exponential of the difference between the phenotypic function and
a “phenotypic target” indirectly representing the abiotic conditions the organisms evolve in. Classically in Aevol the
target function is defined by a sum of Gaussians, hence requiring a virtually infinite number of protein-triangles to be
perfectly fitted.

4.3 Designing an impossible experiment
The abstract mathematical formalism used to model functional levels in Aevol makes it possible to design experiments
allowing to quantify the relative contribution of neutral and selective forces in the evolution of complexity. Indeed, it
is difficult to quantify these relative contributions in a complex environment where they are both expected to increase
complexity. Now, if one can let initially simple organisms evolve in a simple environment, then, selective forces are
supposedly inactive and the evolutionary outcome shall only reflect neutral forces contribution.

Using Aevol, we can easily design such an “impossible experiment”: given Aevol’s G2P map, we can design two
kinds of environments. As stated above, in Aevol, genes are decoded into triangular kernel functions and the sum
of these kernels gives the organism’s phenotype. As a result, because triangular phenotypic targets have the same
shape as protein kernel functions, they don’t require a complex proteome structure to be fitted (but they can be fitted
by a complex proteome). On the opposite, Gaussian-shaped functions are impossible to fit with a finite number of
protein-triangles. We used this property to design two phenotypic target functions, one simple, the other complex (Fig.
3). Then, we sampled random genomes to find “trivial” organisms with only one gene and let these initially trivial
organisms evolve in both environments to quantify the final levels of complexity. Finally, since the mutation rate is
also likely to influence complexity (Knibbe et al, 2007), we tested three different mutation rates: µ = 10−4, 10−5,
and 10−6 mut.bp−1.gen−1. We simulated 100 independent evolution threads per condition with a constant population
size (1,024 individuals). Simulations were seeded with clonal populations of simple individuals with a single gene
generated by random sampling of 5,000 bp genomes. All simulations lasted 270,000 generations.

In silico experimental evolution makes it possible to store perfect fossil records. Hence, once the evolutionary runs
are finished, one can take any organism at any generation and retrieve its lineage, including fixed mutations. Given
an organism one can also measure its characteristics, including its complexity, robustness and evolvability2. Here we
measured fitness, complexity, robustness and evolvability of the ancestors of the best final organism (at generation
270,000) from generation 0 to 250,000 (the last 20,000 generations being ignored as ancestors cannot be considered to
be fixed when they are too close to the final generation).

Following Adami (2002), we considered complexity as the quantity of information an evolving system integrates
from its environment. Here we quantified complexity at two levels: the sequence level and the functional level. At the
sequence level, Genomic complexity (CG) is directly measured by the number of “essential” base pairs on the genome

2In Aevol, robustness and evolvability are estimated by Monte Carlo sampling. 10,000,000 offspring of a given individual are generated.
Robustness is estimated by the fraction of neutral offspring and evolvability is estimated by the mathematical expectation of fitness improvement on
the forthcoming generation.

7



Functional  
space

Activation  
level

m = 0.5

h = 0.5
σ ≈ 0.04

maximum activation level

Functional  
space

m = 0.5

h = 0.5
w = 0.1

Activation  
level maximum activation level

Figure 3: The two phenotypic targets used in our experiments. Top: The simple target is an isoceles triangle of mean
m = 0.5, half-width w = 0.1 and height h = 0.5. This shape can be perfectly fitted by a single protein-triangle
(see section 4.2). Bottom: The complex target is a Gaussian-shaped curve of mean m = 0.5, standard-deviation
σ ≈ 0.03989, and a maximum value h = 0.5. Given the proteins model in Aevol, this target cannot be perfectly fitted
with a finite number of proteins.

8



(i.e. base pairs which, if mutated, would change the phenotype of the organism). Note that it may be very different from
the genome size since the genome can accumulate non-coding sequences. It can also be shorter than the functional
information stored on the genome since genes can share sequences by means of overlapping (see Fig. 4.B). Measuring
functional complexity CP is not as straightforward. At the phenotypic level, complexity is directly driven by selection
that imposes that the phenotype fits the phenotypic target. Now, the phenotypic function can result from the sum of a
variable number of protein-kernel function. However, simply counting the proteins would overestimate complexity as
two proteins can have different sequences but the same function. Hence, we used a finer description of the proteomic
information to measure the functional complexity CP: CP is defined as the number of parameter values used to encode
the protein set (i.e. the number of different m, different w and different h values in the kernel set).

To study the long-term fate of simple vs. complex organisms, we also defined a qualitative classification procedure.
A trivial option would have been to define a threshold on the quantitative measures but this would be arbitrary. Hence,
we classified organisms according to their functional structure: In Aevol, if all the proteins of an organism have the
same m and w (i.e., all the proteins have the same function, possibly with different levels of activity h), then their
functions produce a triangular phenotype with the same characteristics. We used this property to define two classes.
Organisms are called “simple” if all their proteins have the same function (in mathematical terms, if the sum of all
kernel functions is a kernel). Importantly simple organisms may contain many different proteins differing in their
efficiency h. Hence, simple organisms can have variable levels of genomic (CG) and functional (CP) complexities.
Fig. 4 shows examples of simple and complex organisms.

4.4 Results: The complexity ratchet
Among the 300 simulations that evolved in a complex environment, 298 were classified as “complex” at generation
250,000. However, strikingly, only 71 of the 300 simulations that evolved in a simple environment are “simple” at
generation 250,000, the remaining 229 being “complex”. Even more strikingly, a comparison of the mean fitness of the
simple and complex organisms (in a simple environment) shows that simple organisms are far fitter with a mean fitness:
fsimple = 0.99±0.008 (the maximum fitness in Aevol being: fmax = 1) than the complex ones ( fcomplex = 0.42±0.32).
This shows that in a simple environment complex organisms have no direct selective advantage over simple ones. We
also verified that they have no robustness and evolvability advantage (simple organisms being actually much more
robust that complex ones).

A natural interpretation of these results is that complexity is a transitory state and that complex organisms will
become simpler as their fitnesses improve. However, this is firmly contradicted by the dynamics of simple vs. complex
individuals. First, simples’ fitnesses grow very quickly at the beginning of the simulations to reach their maximum in
a few thousands of generations (often less than one thousands). Second, among the 236 individuals that were complex
at generation 10,000, 227 were still complex at generation 250,000. This shows that complexity (or simplicity) belongs
to organisms’ identities and that, once fixed at the very beginning of the simulations, hardly can it change thereafter.

When comparing the final complexity levels in the simple and complex environments, we found no significant
difference. Together with the previous observation that, in a simple environment, complexity accumulates despite
the fitness advantage of simple organisms, this suggests that complexity in driven by a strong neutral process, strong
enough to overcome the large difference of fitness between simple and complex organisms in the simple environment
(see above). However, in both environments, results show that a high mutation rate strongly limits complexity at both
the genomic and functional levels, which is not consistent with a neutral process as diffusion is likely to occur at a faster
pace with a high mutation rate. Moreover, when relaxing the selection pressure (i.e. letting the populations evolve
further without selection), we observed that complexity quickly drops to zero, hence invalidating neutralist hypotheses.

Altogether, these results are puzzling: on the one hand, they show that complexity accumulates despite selection
(simple organisms being fitter than complex ones), and on the other hand, they suggest that complexity is not driven
by a neutral process either. To disentangle the relationship between drift and selection, we analysed the evolution of
complexity and fitness during the 250,000 generations of the experiments (Fig 5).

Figs. 5.A and 5.B illustrate that the dynamics are different for the two complexity measures but similar for the two
environmental conditions. Indeed, in both complex and simple environments CG quickly plateaus while CP increases
all along evolution (less obviously so for the highest mutation rate). Moreover, Fig. 5.C shows that, even though simple
organisms are fitter than complex ones (see above), paradoxically, the latter improve their fitnesses while increasing in
complexity. This shows that, in our experiments, complexity is driven by a strong sign-epistasis mechanism that, in
the fitness landscape of Aevol, sets simple functional structures and complex ones apart. This sign-epistasis initiates a
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Figure 4: A simple (A) and a complex (B) organism. Both evolved for 250,000 generations under a mild mutation rate
(10−5 mut.bp−1.gen−1) in simple conditions (triangular target). Left: circular genomes and genes (black arcs). Notice
the non-coding sequences on both genomes and also the genes overlap on the genome of the complex organism (B).
Right: proteins (black triangles) and phenotypic targets (red filled triangle). Panel (C) zooms on the protein structure
of the complex organism. The simple organism has two genes, two proteins and a functional complexity CP = 4. The
complex organism has 12 genes, 11 functional proteins and CP = 24.
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Figure 5: (A) Mean genomic complexity CG along generations for organisms that evolved in the simple environment
(blue lines) and in the complex environment (red lines) and for the three different mutation rates. None of the differences
are statistically significant at generation 250,000 except the effect of a harsh mutation rate (p-value < 10−4).
(B) Mean functional complexity CP along generations for organisms that evolved in the simple environment (blue
lines) and in the complex environment (red lines) and for the three different mutation rates. None of the differences
are statistically significant at generation 250,000 except the effect of a harsh mutation rate (p-value < 10−3).
(C) Mean fitness f along generations for organisms that evolved in the simple environment (blue lines) and in the
complex environment (red lines) and for the three different mutation rates. The effect of mutation rates on fitness are all
statistically significant at generation 250,000 in complex conditions and for the two extreme mutation rates in simple
conditions. Plain line: µ = 10−6. Dotted line: µ = 10−5. Dashed line: µ = 10−4.
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“complexity ratchet” (Liard et al, 2018, 2020) that pushes organisms toward greater complexity, meanwhile improving
their fitness but staying far below the fitness of simple organisms.

Thismeans that the negative complexity-fitness correlation observed in the simple environment is due to some initial
contingent events (“frozen accidents”). Depending on their very first evolutionary steps, organisms initiate different
evolutionary trajectories: some initiate a “gene optimisation” trajectory (typically through substitutions) while others
initiate a “gene duplication-divergence” trajectory. In a complex environment, both strategies ultimately converge as
complexity is required to adapt to the Gaussian target. But in a simple environment, the gene-optimization strategy and
the gene-duplication strategy are antagonistic because of sign-epistasis. Hence, once organisms have set themselves
on either trajectory, they can hardly switch to the other, and the longer the evolutionary history, the harder the switch
becomes. We verified this theory by evolving populations without any chromosomal rearrangement mechanism. We
observed that, in these new conditions, 98% of the simulations lead to simple organisms (to be compared to the 23.7%
of simple organisms in presence of both point mutations and rearrangements), confirming that the complexity ratchet
is indeed fuelled by duplications. This also shows that a minimum diversity of mutational operators is required for
the ratchet to be effective and suggests that including such a variety of operators is mandatory to observe the whole
complexity of the evolutionary process.

By evolving initially simple organisms in a simple environment, we were able to observe the effect of a “complexity
ratchet”. Now, by comparing the complexity levels in simple and complex environments, we can estimate the power of
this ratchet. Indeed, we first showed that complexity is not higher in complex environments, showing that the ratchet
is at least as powerful as direct selection for complexity. Second, we have observed an effect of the mutation rate on
the complexity levels and on fitness levels (Fig. 5): high mutation rates strongly limit the maximum level of genomic
complexity (Fig. 5.A).This suggests that evolution of complexity must be analysed in a multi-scale framework: the
complexity ratchet drives complexity at the functional level but the functional level has to be encoded within the
genomic sequence. Hence, mutational robustness, by bounding the amount of information a genome can store (Wilke
et al, 2001; Knibbe et al, 2007), loosely bounds the functional complexity. Yet, at the functional level, complexity
continuously increases (Fig. 5.B), driven by the complexity ratchet that slowly increases fitness (Fig. 5.C).

5 Conclusion
In this chapter, we have explored the relationship ESB maintains with complexity. We successively discussed the
apparently low interest of ESB for the question of complexity. We then showed how complex models can be used to
explore how evolving systems accumulate complexity. Finally, we presented an experiment that revealed the existence
of a “complexity ratchet” fuelled by sign-epistasis (Liard et al, 2018, 2020). Within the field of ESB, this result deserves
a specific discussion. Indeed, it shows that, when analysing a biological system, there may be no relationship between
the complexity of the structure and that of the function. Because of the complexity ratchet, a simple function can
very well be carried out by very complicated systems, even when simple solutions exist. Interestingly, sign-epistasis
has recently been identified in signaling cascades (Nghe et al, 2018), a system that is well known for its unnecessary
complexity (Soyer and Bonhoeffer, 2006).

On the methodological side, complex models raise a difficult question: given the complexity of these models, how
can one ensure that the results (and, here, the complexity ratchet), are valid, i.e. transferable to “real” living systems
but also to evolutionary biology and to systems biology that don’t make use of this kind of models (and hence don’t
trust them). On that question, the answer has been given more than 20 years ago by Volker Grimm in an enlightening
article (Grimm, 1999) “The decisive thing with modelling is not the model per se, but what the model and working with
the model does to our mind. [...] If the whole process of modelling has succeeded, something will have happened in
our head, namely that an understanding of relationships has emerged. We should then be in a position to communicate
our insights to others without referring to the model”. It has no meaning to discuss whether Aevol is “true” or “false”;
But if we are able to explain the complexity ratchet in biological terms independently from the model that revealed it,
then the question of the model’s rightness no longer matters.
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