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Abstract
We consider the proximal gradient algorithm for solving penalized least-squares
minimization problems arising in data science. This first-order algorithm is
attractive due to its flexibility and minimal memory requirements allowing
to tackle large-scale minimization problems involving non-smooth penalties.
However, for problems such as x-ray computed tomography, the applicability
of the algorithm is dominated by the cost of applying the forward linear opera-
tor and its adjoint at each iteration. In practice, the adjoint operator is thus often
replaced by an alternative operator with the aim to reduce the overall compu-
tation burden and potentially improve conditioning issues. In this paper, we
propose to analyze the effect of such an adjoint mismatch on the convergence
of the proximal gradient algorithm in an infinite-dimensional setting, thus gen-
eralizing the existing results on PGA. We derive conditions on the step-size and
on the gradient of the smooth part of the objective function under which con-
vergence of the algorithm to a fixed point is guaranteed. We also derive bounds
on the error between this point and the solution to the original minimization
problem. We illustrate our theoretical findings with two image reconstruction
tasks in computed tomography.
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1. Introduction

Linear inverse problems arise when modeling phenomena from a broad range of real-life appli-
cations in image and signal processing. They aim to recover an estimate of an unknown signal
x, assumed to belong to a real Hilbert space H, from the following observation model

y = Hx + b, (1)

where y is the known measurement assumed to belong to a real Hilbert space G, H is a bounded
linear operator from H to G, and b ∈ G is a noise term. Such a problem is generally ill-
posed as H is poorly conditioned thus making the solution oversensitive to perturbations in the
measurements. In this context, the Moore–Penrose pseudo inversion of H does not produce a
meaningful solution. To avoid these shortcomings, variational methods propose to provide an
estimate x ∈ H of x, by minimizing a composite objective function summing a data fidelity
term and a penalization term. The data fidelity term measures the discrepancy between the
observation y and its estimate Hx for a given statistical model on the noise. In the following,
we focus on the additive white Gaussian noise, so that the natural data fidelity is quadratic and
its minimum is given by the Moore–Penrose generalized inverse. The penalization term shifts
the solution away from this rough estimate by adding a priori information about the sought
solution.

In most modern scientific areas, the availability of vast amounts of data has led to large-scale
inverse problems for which a minimizer must be processed quickly. To this end, first order
optimization algorithms are effective tools because they can be conveniently implemented
and do not require onerous computations. Among them is the proximal gradient algorithm
(PGA) [21], itself an instance of the forward-backward algorithm [24]. It consists of an explicit
gradient descent step which exploits the differentiability and convexity of the data fidelity term
and an implicit proximity step, which only assumes the convexity of the penalization term.

A quadratic fidelity term involves the positive self adjoint operator H ∗H, where H∗ denotes
the adjoint of H. Actually, only a product H ∗Hx, with x ∈ H, is required when evaluating its
gradient at each iteration. Designing efficient implementations of this product is thus key to
ensure speed and applicability of PGA. Hence the adjoint H∗ is often replaced by an alternative
operator, with the aim to increase the convergence rate, thanks to better conditioning, or to make
efficient use of hardware accelerators and therefore alleviate the total computation time.

Although this strategy results in an adjoint mismatch that breaks the operator symmetry
[34, 60], it is frequently used in tomographic transmission imaging [34], as practiced in indus-
trial non-destructive testing and diagnostic medical imaging [12, 38] and it has also been
advocated in single photon emission computed tomography (SPECT) imaging [51, 61]. In
tomography, x represents a scanned object with a spatially varying property that the forward
projection operator maps to a set of projections corresponding to measurements at different
angles. The adjoint operator is then the backprojector. Both projection and backprojection
operations act in the continuous domain and depend on the physical properties of the object.
When discretizing them on a Cartesian grid, different strategies can be used. In SPECT, the
modeling of the attenuation may be bypassed in the backprojector. In x-ray tomography, due
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to the changes in sampling rates induced by the rotation of the system and the divergent
geometry of the x-ray beam, oversampling in the image domain is necessary to derive an accu-
rate projector. However it implies redundancies that are usually unwanted and thus removed
in the backprojector. Popular GPU implementations of these projection and backprojection
operators are also often unmatched as it is the case in the ASTRA software package [56].

State-of-the-art matched projection/backprojection pairs rely on advanced interpolation
schemes that are difficult to parallelize on GPU [16, 43, 44]. Using an unmatched pair to reduce
the computational costs however endangers the convergence of the reconstruction algorithm.
It is an open problem to know whether errors will accumulate over iterations [1, 60] and lead
to suboptimal reconstruction compared to having a matched pair.

The literature remains scarce on the influence of such mathematical approximation on the
convergence of PGA. When the objective function is a least-squares term without any regular-
ization, PGA is reduced to a simple gradient algorithm. In this context, adjoint mismatch has
been investigated in the early work of [61] and then in [29, 32, 45]. In [32], the authors studied
adjoint mismatch and additional perturbations of their algebraic scheme. Later, in [29], they
discussed a modification of the algorithm that can guarantee convergence to a slighlty different
problem in finite dimension. Their analysis can be extended in a direct manner to the case when
the regularization term is a quadratic function. The work in [45] also dealt with a least-squares
objective function but using projections onto convex sets in the randomized Kaczmarz method.
Studying the impact of adjoint mismatch also finds application in an active line of research,
namely deep learning. Very recently, Bubba et al have proposed a CNN-based reconstruc-
tion algorithm ΦDONet in [11] where the backprojection operator is replaced by a partially
learned approximation made of an unrolled iterative soft-thresholding algorithm (ISTA, i.e. a
special case of PGA) structure, with the aim to improve the backprojection in the context of
limited angle tomography. In that case, the considered prior was an �1 penalization applied
to the wavelets coefficients of the object. Under some conditions on H, ΦDONet can be seen
as a perturbed version of ISTA. By adopting a probabilistic approach, the authors establish
the convergence in mean of the output of their optimally trained network with respect to the
ground truth in finite dimension. Note that their approach, though targeted to a specific applica-
tion, could be extended to any convolutional forward operator H which is a pseudodifferential
operator or a Fourier integral operator.

Up to our knowledge, PGA stability in the presence of adjoint mismatch has not been con-
sidered so far when general nonlinear operators induced by the presence of potentially non
differentiable convex priors are involved. In this paper, we propose to extend the theoretical
ideas in [29] to PGA in the presence of adjoint mismatch to solve a penalized least-squares
problem in an arbitrary Hilbert space. For this kind of problems, the resulting algorithm can
be seen as a generalization of PGA.

The major contributions of this paper are:

• A characterization of the fixed points of PGA in the presence of an adjoint mismatch;

• Conditions of convergence with new bounds on the gradient step-size and on the regular-
ization parameters;

• A characterization of the distance from the generated fixed point of the algorithm to a
‘true’ minimizer of the original objective function;

• A validation of these results on image reconstruction scenarios.

The paper is organized as follows: section 2 introduces the notation used in this work and
recalls results about the proximal gradient. Section 3 gives necessary conditions to preserve the
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convergenceof PGA with an adjoint mismatch and gives a bound on the discrepancy induced by
the mismatch on the resulting fixed point and the minimizer of the original objective function.
Next, examples of linear inverse problems with sparsity constraints arising from computed
tomography are discussed in section 4. Finally, some conclusions are drawn in section 5.

2. Preliminaries

2.1. Notation and mathematical background

We first provide the necessary background on convex analysis, proximity operators and mono-
tone operators. In this paper, the underlying signal space is the real Hilbert space H endowed
with scalar product 〈·|·〉, norm ‖ · ‖ and identity operator Id. 2H denotes the power set of H.
B(H,G) denotes the Banach space of bounded linear operators from H to G, equipped with
norm ‖ · ‖S so as

(∀T ∈ B(H,G)) ‖T‖S = sup
x∈H

‖x‖�1

‖Tx‖. (2)

The adjoint of T is denoted by T∗ ∈ B(G,H). Moreover, Ker T designates the nullspace of
operator T and ran T its range. If ran T is closed, its pseudo-inverse is T# ∈ B(G,H).

The class of functions which are proper, convex, lower-semicontinuousonH and take values
in R ∪ {+∞} is denoted by Γ0(H). For every g ∈ Γ0(H), domg is the domain of g and ∂g is
the subdifferential of g [4]. If x ∈ H, the proximity operator of g at x is defined as [46]

proxg(x) = arg min
z∈H

(
g(z) +

1
2
‖x − z‖2

)
. (3)

We say that f ∈ Γ0(H) is coercive if

lim
‖x‖→+∞

f(x) = +∞ (4)

and supercoercive if

lim
‖x‖→+∞

f(x)
‖x‖ = +∞. (5)

We shall also require the following properties of cocoercivity and monotonicity.
An operator A : H �→ 2H is said to be monotone if

(∀(x, y) ∈ H2)(∀u ∈ Ax)(∀v ∈ Ay) 〈u − v|x − y〉 � 0. (6)

It is said to be maximal monotone if, in addition, its graph {(x, y) ∈ H2|y ∈ Ax}, is not prop-
erly contained in the graph of any other monotone operator. A : H �→ 2H is said to be strictly
monotone if

(∀(x, y) ∈ H2)(∀u ∈ Ax)(∀v ∈ Ay) x �= y ⇒ 〈u − v|x − y〉 > 0. (7)

A : H �→ 2H is said to be strongly monotone if there exists η ∈ ] 0,+∞[ such that A − ηId is
monotone. A key property to ensure the convergence of PGA is the cocoercivity of the involved
gradient operator or of its approximation. Let us recall that operator A : H→H is η-cocoercive
with η ∈ [0,+∞[ if

(∀x ∈ H)(∀y ∈ H) η‖Ax − Ay‖2 � 〈x − y|Ax − Ay〉 . (8)
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Moreover, A is said to be nonexpansive if it is Lipschitz continuous with constant 1, i.e.,

(∀(x, y) ∈ H2) ‖Ax − Ay‖ � ‖x − y‖. (9)

A is α-averaged with α ∈ ] 0, 1] if there exists a nonexpansive operator Q such that
A = (1 − α)Id + αQ. If A : H→H, Fix A denotes the set of its fixed points.

2.2. Proximal gradient algorithm for the penalized least-squares criterion

PGA is used to find an estimate of x, defined in (1) by solving the following penalized least
squares criterion:

minimize
x∈H

1
2
‖y − Hx‖2 + g(x) +

κ

2
‖x‖2, (10)

where g ∈ Γ0(H) is a suitable possibly non-smooth regularization function and κ ∈ [0,+∞[.
Note that, when κ > 0, an elastic net-like penalization is introduced and the objective function
in (10) is thus strongly convex [65]. Several other choices of penalization strategies are covered
by problem (10), depending on the desired properties of x. For instance, box or positivity
constraints may be enforced when g is the indicator function of the associated constrained set.
Sparsity [3, 6, 7, 20, 55] can be introduced when g is a (possibly weighted) �1 norm defined on
a suitable Hilbert space (e.g. H = RN). Sparsity can also be imposed in a transformed domain.
For instance, one can resort to the total variation penalization [53] and its various extensions
[2, 9, 14] to promote piecewise constant images. Frame-based regularization [17], using various
kinds of wavelet frame domains [15, 49], are also encompassed by our framework. Function g
is typically weighted by one or several hyperparameters balancing the fitting of the data with
respect to the regularization. Setting these parameters depends on the task at hand. They can
be tuned empirically, by visual inspection, or using heuristics such as the ‘L-curve method’
[36, 59], cross validation, the discrepancy principle [54], the ‘S-curve method’ [39], or methods
based on Stein unbiased risk estimates (SURE) [28].

For optimization problem (10), PGA reads, for every n ∈ N,

xn+1 = xn + θn

(
proxγg((1 − γκ)xn − γH∗(Hxn − y)) − xn

)
, (11)

where x0 ∈ H is the initial estimate, (θn)n∈N are nonnegative relaxation parameters, and
γ ∈ ] 0,+∞[ is the algorithm step-size. When a sparsity inducing penalty is embedded as men-
tioned above and κ = 0, this algorithm reduces to the well-known ISTA that was developed
for the purpose of wavelet-based signal restoration [6, 15, 27, 33] and later extended to other
regularization functions [17].

If θn ∈ [ε, 1] with ε ∈]0, 1[ and γ ∈]0, 2/(‖H‖2
S + κ)[, the sequence (xn)n∈N generated by

algorithm (11) converges weakly to a solution to problem (10) when such a solution exists
[20, 24, 27]. Strong convergence is even achieved in some contexts [8, 20, 27]. Recent results
on overrelaxed versions of (11) can be found in [26] for special cases of gradient operators. The
flexibility introduced by an iteration-dependent step-size can be used to improve the algorithm
convergence pattern. Without loss of generality, the step-size will be hereafter assumed to be
constant knowing that extending our analysis to varying step-sizes is straightforward.

5
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3. Convergence analysis with an adjoint mismatch

3.1. Mismatched algorithm

As mentioned earlier, in the context of an adjoint mismatch, operator H∗ is purposefully
replaced by surrogate operators (Kn)n∈N, iteration (11) thus becoming:

For every n ∈ N,

xn+1 = xn + θn

(
proxγg((1 − γκ)xn − γKn(Hxn − y)) − xn

)
. (12)

Hereafter, we list assumptions used throughout this paper, to analyze scheme (12).

Assumption 3.1.

(i) g ∈ Γ0(H)
(ii) For every n ∈ N, Kn ∈ B(G,H)

(iii) There exist K ∈ B(G,H) and {ωn}n∈N ⊂ ] 0,+∞[ with
∑

n∈N ωn < +∞ such that

KH �= 0 (13)

(∀n ∈ N) ‖Kn − K‖S � ωn. (14)

The last assumption covers two scenarios of particular interest:

• When K = H∗, we get a sequence of approximations (Kn)n∈N providing asymptotically a
perfect estimation of the adjoint of H.

• When, for every n ∈ N, ωn = 0, a constant error K − H∗ is introduced on the adjoint.

In the context of convergence analysis of fixed point iterations [23] of the modified PGA
algorithm (12), the following notation is central.

Notation 3.2. Let γ ∈ ] 0,+∞[. We define

L = KH + κId (15)

Tγ : H→H

x �→ proxγg(x − γLx + γKy)
(16)

λmin = inf
x∈H

‖x‖=1

〈x | Lx〉

λ+
min = inf

x∈(Ker L)⊥
‖x‖=1

〈x | Lx〉

λmax = sup
x∈H

‖x‖=1

〈x | Lx〉

β =
1
2
‖L − L∗‖S.

(17)

Note that λmin (resp. λmax ) is the minimum (resp. maximum) spectral value of (L + L∗)/2 and
that λ+

min � λmin . We will show that the convergence of algorithm (12) is guaranteed under
cocoercivity conditions on operator L.

6
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3.2. Properties of the modified gradient descent operator

When K �= H∗, the gradient of the smooth part of our objective function is replaced by the
operator κId + K(H · −y), which is not guaranteed to be a cocoercive operator. We will thus
propose conditions preserving this property. First, we prove certain properties induced by the
cocoercivity of operator L, which will be used throughout the article.

Lemma 3.3. Let η ∈ ] 0,+∞[. If L is η-cocoercive, then the following hold:

(i) λmin � 0
(ii) Ker (L + L∗) = Ker L = Ker L∗

(iii) L + L∗ �= 0.

Proof. L is η-cocoercive if and only if, for every x ∈ H,

〈x|Lx〉 � η‖Lx‖2. (18)

(i) The fact that λmin � 0 directly follows from (18).
(ii) If x ∈ Ker L, then

〈x | Lx〉 = 0

⇔ 〈x | (L + L∗)x〉 = 0 (19)

According to (i), L + L∗ is self-adjoint positive. It thus admits a self adjoint square root
(L + L∗)1/2 and (19) is equivalent to

‖(L + L∗)1/2x‖2 = 0 ⇔ (L + L∗)1/2x = 0, (20)

which yields (L + L∗)x = 0. We have thus proved that Ker L ⊂ Ker (L + L∗). By reex-
pressing (18),

(∀x ∈ H)
1
2
〈x|(L + L∗)x〉 � η‖Lx‖2. (21)

Consequently, if x ∈ Ker (L + L∗), then x ∈ Ker L. In summary, Ker (L + L∗) = Ker L.
By symmetry, Ker (L + L∗) = Ker L∗

(iii) L + L∗ = 0 if and only if Ker (L + L∗) = H which, according to (ii), would imply that
Ker L = H, that is L = 0. This contradicts our assumption in (13). �

Whenever cocoercivity is present, we will show that the behavior of iterative scheme (12)
remains stable. Conditions for cocoercivity are summarized below.

Proposition 3.4.

(i) Assume that λmin � 0.
If λ+

min ∈ ] 0,+∞[ and Ker (L + L∗) = Ker L, then L is η-cocoercive with

η = 1/

⎛⎝√
λmax +

β√
λ+

min

⎞⎠2

. (22)

If β = 0, then L is (1/λmax)-cocoercive.

7
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(ii) Suppose that ran (L + L∗) is closed. L is η-cocoercive with η ∈]0,+∞[ if and only if
λmin � 0, Ker (L + L∗) = Ker L, and

η � η =
2

‖(Id + (L − L∗)(L + L∗)#)(L + L∗)1/2‖2
S

. (23)

Proof.

(i) Let A and B be the self-adjoint and skewed parts of L, respectively given by

A =
L + L∗

2
(24)

B =
L − L∗

2
. (25)

Assume first that V = Ker A = Ker L = Ker L∗. Let x ∈ H and let xV⊥ denote its
projection onto the orthogonal complement of V . We have

‖Lx‖2 = ‖LxV⊥‖2

� (‖AxV⊥‖+ ‖BxV⊥‖)2. (26)

Since λmin � 0, A is a positive operator and we have then

‖AxV⊥‖2 � ‖A‖S 〈xV⊥|AxV⊥〉 = λmax 〈xV⊥ | AxV⊥〉 . (27)

In turn,

‖BxV⊥‖ � β‖xV⊥‖. (28)

and

〈xV⊥ | AxV⊥〉 � λ+
min‖xV⊥‖2. (29)

Then, if λ+
min > 0,

‖BxV⊥‖2 � β2

λ+
min

〈xV⊥ | AxV⊥〉 (30)

Altogether (26), (27) and (30) yield

‖Lx‖2 � 1
η
〈xV⊥ | AxV⊥〉 =

1
η
〈x | Ax〉 = 1

η
〈x | Lx〉 , (31)

where η is given by (22). This shows that L is η-cocoercive.
If β = 0, then L = A and the result follows from the inequality

‖Ax‖2 � λmax 〈x | Ax〉 . (32)

(ii) According to lemma 3.3, if L is cocoercive then λmin � 0 and Ker (L + L∗) = Ker L. To
establish the result, we will thus assume that these two conditions are satisfied and prove
that L is cocoercive if and only if (23) holds.

Let us use the same notation as in the proof of (i). Since V = Ker A = Ker L, L is
η-cocoercive with η ∈]0,+∞[ if and only if

(∀x ∈ V⊥) η‖Lx‖2 � 〈x | Ax〉 . (33)

8
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Let x ∈ V⊥ and let y = Ax. Since ranA is closed, this is equivalent to x = A#y. We have
then

‖Lx‖2 = ‖Ax + Bx‖2

= ‖Ax + BA#y‖2

= ‖(Id + BA#)Ax‖2

� ‖(Id + BA#)A1/2‖2
S‖A1/2x‖2

= ‖(Id + BA#)A1/2‖2
S 〈x|Ax〉 . (34)

Note that ‖(Id + BA#)A1/2‖S �= 0 (since L is nonzero). We have thus shown that L
is cocoercive with constant 1/‖(Id + BA#)A1/2‖2

S = η, hence for any constant η > 0
satisfying (23).

In addition, the maximum cocoercity constant ηmax is such that

1
ηmax

= sup
v∈V⊥\{0}

‖Lx‖2

〈x|Ax〉 = sup
v∈V⊥\{0}

‖(Id + BA#)Ax‖2

‖A1/2x‖2
. (35)

On the other hand,

‖(Id + BA#)A1/2‖2
S = sup

z∈H\{0}

‖(Id + BA#)A1/2z‖2

‖z‖2
. (36)

Every z ∈ H can be decomposed as zV + zV⊥ , where (zV , zV⊥ ) ∈ V × V⊥. Since A is self-
adjoint positive, V = Ker A1/2 = Ker A. We can thus reexpress (36) as

‖(Id + BA#)A1/2‖S = sup
z∈H\{0}

‖(Id + BA#)A1/2zV⊥‖2

‖zV‖2 + ‖zV⊥‖2

= sup
z
V⊥∈V⊥\{0}

‖(Id + BA#)A1/2zV⊥‖2

‖zV⊥‖2
. (37)

We know however that V⊥ = (Ker A1/2)⊥ = ran
(
(A1/2)∗

)
= ran (A1/2). The expressions

in (35) and (37) are thus equal. �
Remark 3.5. When β �= 0, (22) suggests that η is higher when the nonzero spectral values
of (L + L∗)/2 are clustered together.

The following special cases are worth being mentioned.

Corollary 3.6.

(i) If λmin > 0, then L is cocoercive with constant

η =
2

‖(Id + (L − L∗)(L + L∗)−1)(L + L∗)1/2‖2
S

� 1/

(√
λmax +

β√
λmin

)2

. (38)

(ii) Assume that H is finite dimensional and λmin � 0. If the dimensions of Ker L and Ker
(L + L∗) are equal, then L is cocoercive with constant η � η where η and η are given by
(22) and (23), respectively.

9
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Proof.

(i) If λmin > 0, then L + L∗ is strongly positive. It is thus invertible, ran (L + L∗) = H is
closed, and Ker (L + L∗) = {0}. In the proof of proposition 3.4(ii), we have seen that
Ker L ⊂ Ker (L + L∗). Therefore, Ker (L + L∗) and Ker L reduce to the null space and,
according to proposition 3.4(ii), L is η-cocoercive. In addition, in this case, λ+

min = λmin ,
it then follows from proposition 3.4(i) and the fact that η is the maximum cocoercivity
constant of L that the lower bound in (38) holds.

(ii) We have seen thatλmin � 0 implies that Ker L ⊂ Ker (L + L∗). Therefore, Ker L is equal to
Ker (L + L∗) if and only if the dimensions of Ker L and Ker (L + L∗) are equal. In addition,
ran (L + L∗) is closed and λ+

min is necessarily positive when H is finite dimensional. The
result then follows from proposition 3.4. �

Remark 3.7. Let λ̃min be the minimum spectral value of (KH + H∗K∗)/2. We have
λmin = λ̃min + κ. A practical choice for κ to ensure that λmin is positive is thus to set
κ > −λ̃min .

Remark 3.8. A characterization of cocoercive linear operators in finite dimension was pro-
vided in [64] through psd-plus matrices. The characterization provided in this paper may appear
more relevant to the context of inverse problems and is valid in an infinite dimensional setting.

To ensure the convergence of (12), it might appear more natural to rely upon conditions
which are based on the nonexpansiveness of Id − γL. We next show that such conditions are
directly related to the cocoercivity of L.

Proposition 3.9. If L is η-cocoercive with η ∈ ] 0,+∞[ and γ � 2η, then

‖Id − γL‖2
S � 1 + γ

(
γ

η
− 2

)
λmin � 1. (39)

Conversely, if ‖Id − γL‖S � 1 for some γ ∈] 0,+∞ [, then L is η-cocoercive for every
η ∈] 0, γ/2].

Proof. For every x ∈ H,

‖(Id − γL)x‖2 = ‖x‖2 − 2γ 〈x | Lx〉+ γ2‖Lx‖2. (40)

Because of (18)

‖(Id − γL)x‖2 � ‖x‖2 − 2γ 〈x | Lx〉+ γ2

η
〈x | Lx〉 . (41)

Therefore, since γ � 2η,

‖Id − γL‖2
S � 1 + γ

(
γ

η
− 2

)
λmin . (42)

According to proposition 3.4(i), λmin � 0 and the obtained uppper bound is thus less than or
equal to 1.

Conversely, if Id − γL is nonexpansive, then

(∀x ∈ H) ‖x − γLx‖2 � ‖x‖2 (43)

The cocoercivity of L thus straightforwardly follows from (40). �

10
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3.3. Fixed points

As we will see, the fixed point set of operator Tγ plays a prominent role in the convergence
analysis of the mismatched PGA. The next proposition characterizes the existence and unique-
ness of such a fixed point. Note that a fixed point will generally no longer coincide with the
global solution to (10).

Proposition 3.10.

(i) Let γ ∈ ] 0,+∞[ and let x̃ ∈ H. We have x̃ ∈ Fix Tγ if and only if x̃ belongs to

F =
{

x ∈ H | 0 ∈ Lx − Ky + ∂g(x)
}
. (44)

In addition, F is non empty if L + ∂g is surjective.
(ii) If λmin � 0, then F is a closed and convex set.

(iii) F has at most one element if one of the following conditions holds:

(a) L + ∂g is strictly monotone;
(b) L + L∗ is positive definite;
(c) λmin � 0 and g is strictly convex.

In addition, F is a singleton if λmin � 0 and one of the following conditions holds:
(d) L + ∂g is strongly monotone;
(e) λmin �= 0;
( f ) g is strongly convex.

(iv) Assume that L is cocoercive. F is nonempty if one of the following conditions holds:

(a) dom ∂g = H and (L + L∗)/2 + ∂g is surjective;
(b) dom ∂g = H and

x �→ 1
2
〈x|Lx〉+ g(x) (45)

is coercive;
(c) g is supercoercive;
(d) dom g is bounded.

Proof.
(i) We have

x̃ ∈ Fix Tγ ⇔ x̃ = proxγg((1 − γκ)x̃ − γK(Hx̃ − y))

⇔ (1 − γκ)x̃ − γK(Hx̃ − y) ∈ (Id + γ∂g)(x̃)

⇔ x̃ ∈ F . (46)

Under the considered surjectivity condition, there straightforwardly exists x̃ ∈ H for which
(44) holds.

(ii) If λmin � 0, then L is monotone. Since it is continuous, it is maximally monotone and
x �→ Lx − Ky is also maximally monotone. As the domain of this operator is H and ∂g is
maximally monotone, x �→ Lx − Ky + ∂g(x) is maximally monotone. It then follows from
[4, proposition 23.39] that F is closed and convex.

(iii) (a) This follows from [4, proposition 23.35].
(iii) (b) If L + L∗ is positive definite then, for every x ∈ H\{0},

11
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〈x | Lx〉 = 1
2
〈x|(L + L∗)x〉 > 0, (47)

which shows that L is strictly monotone. Since ∂g is monotone, we deduce that L + ∂g is
strictly monotone, and (iii) (a) allows us to conclude that Tγ has at most one fixed point.

(iii) (c) According to [4, example 22.4(ii)], if g is strictly convex, then ∂g is strictly mono-
tone. λmin � 0 if and only if L is monotone. L + ∂g is then strictly monotone. Thus the result
still follows from (iii) (a).

(iii) (d) If λmin � 0, because of the monotonicity and the continuity of L, L + ∂g is
maximally monotone. The result then follows from [4, Proposition 23.37].

(iii) (e) For every x ∈ H,

〈x|Lx〉 � λmin‖x‖2, (48)

which shows that L is strongly monotone. We deduce that L + ∂g is strongly monotone, and
(iii) (d) allows us to conclude that F is a singleton.

(iii) (f ) According to [4, Example 22.4(iv)], if g is strongly convex, then ∂g is strongly
monotone. Since L is monotone, L + ∂g is strongly monotone and the result follows from
(iii) (d).

(iv) (a) Let A and B be defined by (24) and (25), respectively. We have thus

L + ∂g = A + ∂g + B. (49)

According to proposition 3.4,

λmin = inf
x∈H ‖x‖=1

〈x | Lx〉 = inf
x∈H ‖x‖=1

〈x | Ax〉 � 0, (50)

which implies that A is maximally monotone. As ∂g is maximally monotone and dom A = H,
A + ∂g is maximally monotone. Since B is a skewed continuous linear operator, it is also max-
imally monotone and A + ∂g + B is maximally monotone. According to lemma 3.3(iii), A �= 0
and, since it is self-adjoint, it is 1/‖A‖-cocoercive. It then follows from [4, proposition 25.16]
that A is 3∗ monotone. According to [4, example 2.13], ∂g is 3∗ monotone. By invoking
[4, proposition 25.22], A + ∂g is thus 3∗ monotone. Since dom B = H = dom (A + ∂g), it can
be deduced from the Brézis–Haraux theorem (see [4, corollary 25.27(ii)]) that A + ∂g + B is
surjective.

(iv) (b) The function defined by (45) also reads

h : x �→ 1
2
〈x | Ax〉+ g(x). (51)

We have seen that A is self-adjoint and monotone (i.e. positive semi-definite and self-adjoint).
Let z ∈ H. Minimizing

x �→ h(x) − 〈x | z〉 (52)

is thus a convex optimization problem. A classical necessary condition for this problem to
admit a solution is that h is coercive. In turn, if x is a solution to the optimization problem (51),
it follows from Fermat’s rule that

z ∈ ∂h(x) = Ax + ∂g(x). (53)

Since z can be chosen arbitrarily, this shows that A + ∂g is surjective. The fact that F �= ∅ then
follows from (iv) (a).

12
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(iv) (c)-(iv) (d) Let γ ∈ ]0, 2η] where η is the cocoercivity constant of L and let
W = Id − γL. According to proposition 3.9, ‖W‖S � 1 and Id − W = γL is monotone. In
addition, dom g∗ = H if and only if g is supercoercive [4, proposition 14.15]. The results then
follow from [22, proposition 4.3(vi) (d)]. �

By design, equation (44) shows that any fixed point of Tγ is a solution to an equilibrium
instead of being defined from some optimality condition. In the context of remark 3.7, the
existence of a unique fixed point x̃ for Tγ follows from the above result. This point can be
viewed as an approximation to the minimizer of problem (10) whose error is bounded in the
following theorem.

Theorem 3.11. Assume that the following hold.

(i) L is cocoercive.
(ii) Let ν ∈ [0,+∞[ be the strong convexity modulus of g. Either ν > 0 or λmin �= 0.

(iii) x̂ is a solution to the minimization problem (10).

Then there exists a unique solution x̃ to (44) and the following upper bound on the error
incurred by the mismatch holds:

‖x̃ − x̂‖ � χ ‖(H∗ − K)(Hx̂ − y)‖, (54)

where

χ = inf
γ∈]0,2η[

γ

1 + γν − ‖Id − γL‖S
� 1

ν + 2λmin
. (55)

Proof. According to proposition 3.4(i), λmin � 0.
If λmin > 0, according to proposition 3.10(iii)(e), (44) has a unique solution x̃.
If λmin = 0, then ν > 0, which means that g is ν-strongly convex. It then follows from

proposition 3.10(iii)(f ) that (44) has a unique solution x̃.
Let γ ∈ ] 0,+∞[. According to proposition 3.10(i), x̃ ∈ Fix Tγ , that is

x̃ = proxγg((1 − γκ)x̃ − γK(Hx̃ − y)), (56)

and we also know that

x̂ = proxγg((1 − γκ)x̂ − γH∗(Hx̂ − y)). (57)

We can write g = h + ν/2‖ · ‖2 where h ∈ Γ0(H), which implies that

(∀x ∈ H) proxγg(x) = prox γ
1+γν h

(
x

1 + γν

)
. (58)

As prox γ
1+γν h is nonexpansive, we deduce that

‖x̃ − x̂‖ � 1
1 + γν

‖(1 − γκ)x̃ − γK(Hx̃ − y)

− (1 − γκ)x̂ + γH∗(Hx̂ − y)‖

=
1

1 + γν
‖(Id − γL)(x̃ − x̂) + γ(H∗ − K)(Hx̂ − y)‖

� τγ‖x̃ − x̂‖+ γ

1 + γν
‖(H∗ − K)(Hx̂ − y)‖ (59)

13
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with

τγ =
‖Id − γL‖S

1 + γν
. (60)

In addition, according to proposition 3.9, when γ � 2η,

‖Id − γL‖S � 1. (61)

This ensures that τγ < 1, when ν > 0.
Assume now that λmin > 0. If γ < 2η, (39) yields

‖Id − γL‖S < 1, (62)

which also guarantees that τγ < 1.
In summary, if γ < 2η, it can be deduced from (59) that

‖x̃ − x̂‖ � γ

(1 − τγ)(1 + γν)
‖(H∗ − K)(Hx̂ − y)‖, (63)

which leads to (54). In addition, according to (60) and (39),

(1 − τγ)(1 + γν) � γ

(
ν +

(
2 − γ

η

)
λmin

)
> 0. (64)

By noticing that

sup
γ∈]0,2η[

ν +

(
2 − γ

η

)
λmin = ν + 2λmin, (65)

the upper bound on χ is obtained. �

Remark 3.12.

(i) Under the assumptions of the above proposition, we deduce from (54) that

‖x̃ − x̂‖ � χ ‖H∗ − K‖S‖Hx̂ − y‖. (66)

This upper bound tells us that the error depends on the data error (which encompasses
noise and modeling errors) and the norm of the mismatch on the adjoint.

(ii) In addition, the parameter χ depends on the strong convexity modulus ν and on the
quadratic regularization parameterκ. Indeed, the largerκ, the largerλmin. The upper bound
in (55) shows that increasing ν or κ allows us to decrease the distance to the true mini-
mizer x̂. At the same time, these parameters control the regularization term in (10) so that
large values of them can introduce a bias in the recovery of the true signal. One should
therefore seek values of these parameters balancing these two effects.

Remark 3.13. It follows from [29, theorem 3.3] that, when g = 0 and H∗H + κId is
invertible,

‖x̃ − x̂‖ � 1
κ
‖(H∗ − K)(Hx̂ − y)‖+ o(‖H∗ − K‖). (67)

This bound is less tight than the one in (54)–(55) if 2λmin > κ ⇔ κ > −2λ̃min, where λ̃min

is the minimum spectral value of (KH + H∗K∗)/2.
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3.4. Convergence result

We present a first result concerning the averageness properties of operator Tγ with
γ ∈ ] 0,+∞[.

Lemma 3.14. Let η ∈ ] 0,+∞[, let γ ∈]0, 2η[, let

α =
1

2 − γ/(2η)
∈
]

1
2

, 1

[
, (68)

and let W = Id − γL. The following properties hold.

L is η-cocoercive (69)

⇔ W is γ/(2η)-averaged (70)

⇒ (∀x ∈ H) ‖Wx − 2(1 − α)x‖+ ‖Wx‖ � 2α‖x‖ (71)

⇒ Tγ is α-averaged. (72)

Proof. If γ < 2η and L is η-cocoercive, then the first equivalence holds [4, proposition 4.39].
Let us now show that (70) implies (71). Set α = γ/(2η). Since W is α-averaged, there exists

a nonexpansive operator Q : H→H such that W = (1 − α)Id + αQ. We have then, for every
x ∈ H,

‖Wx − 2(1 − α)x‖+ ‖Wx‖

= ‖(1 − α)x + αQx − 2(1 − (2 − α)−1)x‖+ ‖(1 − α)x + αQx‖

= α‖Qx − (1 − α)(2 − α)−1x‖+ ‖(1 − α)x + αQx‖

= α

√
‖Qx‖2 +

(
1 − α

2 − α

)2

‖x‖2 − 2
1 − α

2 − α
〈x|Qx〉

+
√
α2‖Qx‖2 + (1 − α)2‖x‖2 + 2α(1 − α) 〈x|Qx〉

� ϕ(θ)‖x‖, (73)

where

ϕ(θ) = α

√
1 +

(
1 − α

2 − α

)2

− 2
1 − α

2 − α
θ +

√
α2 + (1 − α)2 + 2α(1 − α)θ.

In the last inequality, we have set 〈x|Qx〉 = θ‖x‖‖Qx‖ and used the nonexpansiveness of Q.
Let us now study function ϕ on [−1, 1]. The derivative ϕ′ of this function is such that

α−1(1 − α)−1ϕ′(θ) =
1√

α2 + (1 − α)2 + 2α(1 − α)θ

− 1√
(2 − α)2 + (1 − α)2 − 2(1 − α)(2 − α)θ

.

Therefore, ϕ′(θ) � 0 since

α2 + (1 − α)2 + 2α(1 − α)θ � (2 − α)2 + (1 − α)2 − 2(1 − α)(2 − α)θ

⇔ θ � 1, (74)
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where we used the fact thatα ∈]0, 1[. This shows thatϕ is increasing on [−1, 1] and we deduce
from (73) that

‖Wx − 2(1 − α)x‖+ ‖Wx‖ � ϕ(1)‖x‖ =
2

2 − α
‖x‖ = 2α‖x‖. (75)

Since proxγg is firmly nonexpansive, it follows from [22, theorem 3.8], that when (71) holds,
Tγ is α-averaged. �

Given the above properties, the convergence of the mismatched PGA is guaranteed by the
following result.

Proposition 3.15. Assume that L is η-cocoercive with η ∈] 0,+∞ [. Let γ ∈] 0, 2η [and
δ = 2 − γ/(2η). Let (θn)n∈N be a sequence in [0, δ] such that

∑
n∈N θn(δ − θn) = +∞. Sup-

pose that F �= ∅. Then the sequence (xn)n∈N generated by algorithm (12) converges weakly
to a point x̃ ∈ F . In addition, if λmin �= 0 and, for every n ∈ N, ωn = 0 and θn ∈ [θ, 1] with
θ ∈ ] 0,+∞[, then (xn)n∈N converges linearly.

Proof. For every n ∈ N, let Wn = (1 − γκ)Id − γKnH, let bn = γKny, let W = Id − γL,
and let b = γKy. Then (12) reads, for every n ∈ N,

xn+1 = xn + θn

(
proxγg(Wnxn + bn) − xn

)
. (76)

The algorithm can thus be interpreted as an instance of the recurrent neural network inves-
tigated in [22] with m = 1 layer. It follows from lemma 3.14 that [22, condition 3.1]
holds.

In addition, as a consequence of assumption 3.1, [22, assumption 5.1] is satisfied since∑
n∈N

‖Wn − W‖S � γ‖H‖S

∑
n∈N

ωn < +∞ (77)

∑
n∈N

‖bn − b‖ � γ‖y‖
∑
n∈N

ωn < +∞. (78)

The convergence of (xn)n∈N to x̃ ∈ F can then be deduced from [22, theorem 5.4].
Assume now that λmin �= 0, (∀n ∈ N) ωn ≡ 0 and θn ∈ [θ, 1]. It follows from (12) and (56)

that, for every n ∈ N,

xn+1 − x̃ = (1 − θn)(xn − x̃)

+ θn(proxγg((Id − γL)xn + γKy) − proxγg((Id − γL)x̃ + γKy)).

(79)

Using the nonexpansivity of the proximity operator and the triangle inequality yield

‖xn+1 − x̃‖ � (1 − θn)‖xn − x̃‖+ θn‖(Id − γL)(xn − x̃)‖
� (1 − θn + θn‖Id − γL‖S)‖xn − x̃‖. (80)

By using now proposition 3.9, we deduce that

‖xn+1 − x̃‖ �
(

1 − θn + θn

√
1 − γ

(
2 − γ

η

)
λmin

)
‖xn − x̃‖

� ρ‖xn − x̃‖, (81)
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where

ρ = 1 −
(

1 −

√
1 − γ

(
2 − γ

η

)
λmin

)
θ ∈]0, 1[. (82)

We deduce that, for every n ∈ N, ‖xn − x̃‖ � ρn‖x0 − x̃‖, which shows the linear convergence
of (xn)n∈N. �

We now see that the cocoercivity constant of L is useful to obtain an upper bound on the
gradient descent parameter.

Remark 3.16. If L is self-adjoint positive (i.e. β = 0 and λmin � 0), then it follows from
proposition 3.4 that L is η-cocoercive with 1/η = λmax = ‖L‖S. Proposition 3.15 thus leads
to 2/‖L‖S as a strict upper bound on step-size γ in order to guarantee the convergence of the
algorithm. This allows us to recover the classical upper bound on the step-size for algorithm
(12) in the special case when K = H∗.

Remark 3.17. When g = 0, θn ≡ 1, and H = RN , (12) becomes a linear recursive equation
and tools from matrix analysis can be employed to derive the following necessary and sufficient
convergence conditions [29, theorem 3.1]:

(∀ j ∈ J) γ < 2
Re ζ j

|ζ j|2
(83)

Re ζ j > 0, (84)

where (ζ j)i∈J are the nonzero eigenvalues of L. It is easy to show that, for every j ∈ J,
λmin � Re ζ j. Therefore, if λmin > 0, (84) is satisfied. Then, it follows from propositions
3.4(ii) and corollary 3.6(i) that a sufficient and necessary condition for L to be η-cocoercive is
η � η where η is given by (38). Since proposition 3.15 guarantees the convergence of (12)
when γ ∈] 0, 2η [, we deduce that

(∀ j ∈ J) η � Re ζ j

|ζ j|2
. (85)

This emphasizes that, in the presence of adjoint mismatch, the cocoercivity of L only provides
a sufficient condition for the convergence of PGA.

4. Numerical experiments

As stated in the introduction, the proposed method is applicable to a wide range of inverse prob-
lems. In this section, the focus is placed on two x-ray 2D tomographic image reconstruction
problems that appear in image-guidance for interventional radiology and surgery.

We aim at recovering an image x having N pixels in the Euclidean space H = RN from
a set of tomographic measurements y ∈ G = RM . In the observation model (1), H ∈ RM×N

is the projection matrix and b is an additive i.i.d. zero-mean Gaussian noise with standard
deviation σ ∈ ] 0,+∞[. We consider the frequent problem arising in this imaging modality,
where a constant error is introduced on the adjoint, when implementing the PGA algorithm, so
that Kn ≡ K. To quantify the error introduced by K ∈ RN×M , we define ξ as the average over
20 realizations of the ratio 〈Hu|v〉 /

〈
u|Kv

〉
with (u, v) i.i.d. uniformly sampled on ([0, 1]N)2.

The farther ξ from 1, the farther K from H∗. In addition to this coupling ratio, we provide
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a measure of asymmetry μ defined as ‖KH − H∗K∗‖F/(2‖KH‖F) where ‖ · ‖F denotes the
Frobenius norm.

In our first experiment, a geometric abdomen phantom is reconstructed from a truncated
field of view. This corresponds to the common setup where the detector is not large enough
to model large body parts such as the abdomen. In the second experiment, we perform a
joint reconstruction and segmentation of a metallic device (e.g. needles) present in a region
of interest (ROI) of another geometric phantom from undersampled projections. For such
class of under-determined problems, iterative reconstruction methods have proven their supe-
riority over filtered backprojection [52]. Note that, in both experiments, the noise variance σ2

is kept small to emphasize that sub-sampling is the main issue (as it is the case in interventional
C-arm CBCT imaging) while still avoiding to commit an ‘inverse crime’ simulation.

All the simulations were performed with the ASTRA Toolbox [56] implemented on Matlab,
which allows the explicit computation of matrices H and K. In both experiments, matrix H
was computed using ASTRA line-length ray driven projector [62], while K was generated
using the pixel-driven backprojector [58]. Note that the latter corresponds to the default choice
in the GPU implementation for backprojection in ASTRA. All iterative reconstructions are
initialized with x0 equal to the null vector of RN . The regularization parameters were tuned
empirically with a grid search so as to reach a satisfying reconstructed image quality.

4.1. Example 1: reconstruction of a geometric abdomen from undersampled projections

4.1.1. Problem statement. We simulated a scan of an abdomen of size 45 cm made of a ver-
tebrae set to 3000, metallic inserts ranging from 4000 to 4500 and a liver area set to 1840.
These values correspond to positive Hounsfields Unit (HU) such that air is 0 HU and water is
1000 HU. The source-to-object distance and the source-to-image distance were respectively
set to 800 mm and 1200 mm leading to a magnification factor of 1.5 as can be found on clin-
ical scanners. The associated sinogram was computed in fan beam geometry over 180◦ using
50 regularly spaced angular steps. The projection and backprojection operators were rescaled
by π/50 so as to match with the analytical definition of the backprojector [37] and to make
the parametrization independent from the number of projections. The detector has 62 bins
of size 6.4 mm, so that M = 62 × 50, and the image is reconstructed on a discrete grid of
N = 128 × 128 pixels, with size 1.5 × 6.4 = 4.26 mm. The image reconstruction problem is
undetermined, due to the small detector field of view (FOV) and the limited angular coverage.
The noise standard deviation is set to σ = 0.69, so that ‖b‖/‖Hx‖ ≈ 6.3 × 10−5. Figure 1
shows the phantom x and the data y.

With those settings, H∗ contains 1.08% nonzero elements whereas this proportion decreases
to 0.89% for K. The coupling ratio is ξ = 1.151 and the asymmetry metric μ is equal to 0.159.
Figure 2 shows the backprojection of constant measurements at a single angle using either
K or H∗. A high frequency Moire pattern is visible when using H∗ (right image) due to the
redundancy introduced by oversampling the projection, while the backprojected view remains
uniform with K (left image).

An estimate of x is obtained by adopting a sparse inducing formulation, reminiscent from
the literature on compressive sensing [13, 30, 31, 35, 42]. We solve the penalized least squares
problem (10) with g = ρ‖W · ‖1, W ∈ RN×N being the orthogonal symlet 2 wavelet transform
on 2 resolution levels, and ρ > 0 the associated regularization parameter.

We ran Algorithms (11) and (12), for two settings κ1 and κ2 of parameter κ such that L
is not cocoercive with κ1, but becomes cocoercive with κ2. In such case, the condition given
in proposition 3.10(iii)(e) holds, which proves the existence of a unique fixed point of scheme
(12) and its convergence is ensured according to proposition 3.15. We set κ1 = 10−2. Moreover,
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Figure 1. Phantom x (left) and sinogram y (right).

Figure 2. Backprojection of a uniform view with K (left) and H∗ (right).

following remark 3.7, κ2 is set as −λ̃min + 10−2. The eigenvalue λ̃min = −1.61 is computed
using the Matlab function eigs. Note that despite the fact that matrices H and K were stored in
these experiments, matrix-free iterative methods can be used to compute the dominant and the
smallest eigenvalues of operator (L + L∗)/2 thus complying with practical implementations
of the projector and backprojector for higher dimensional problems. Moreover, to bypass the
need for the exact adjoints of H and K∗ while computing minimum eigenvalues, we refer to
the strategy in [29]. We set additionally the regularization hyperparameter ρ to 600 and the
relaxation parameter θn ≡ 1. For the coupled settings (H∗,κ1), (K,κ1) and (H∗,κ2), step-size
γ was set to 1.9/(‖H‖2

S + κ) = 2.9 × 10−3. For (K,κ2), γ is chosen equal to 1.82 × 10−5 in
accordance with corollary 3.6 and proposition 3.15. The algorithms are ran until a stopping
precision on the relative distance between two consecutive iterates is below 10−7 or a maximum
number of iterations of 104 is reached.

4.1.2. Results. Figure 3 displays the normalized mean square error (NMSE) defined as
(‖x − xn‖/‖x‖)n, computed along the iterations when applying algorithms (11) and (12). The
plots confirm that, with value κ1, PGA converges when the exact adjoint H∗ is used but
diverges when replaced by K, as was expected from our theoretical analysis. In the latter case,
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Figure 3. Decay of the error along iterations for algorithms (11) and (12) and two
choices of κ parameter.

Figure 4. Reconstructions (left) and zoomed versions within the FOV (right) obtained
using κ1 and either algorithm (11), NMSE = 0.1207, MAE = 2330 (top) or algorithm
(12), NMSE = 0.1610, MAE = 3141 (bottom).

algorithm (12) shows an initial convergence trend that reaches a minimum discrepancy point
close to the minimizer obtained with H∗ before diverging. For value κ2, both algorithms (11)
and (12) converge to fixed points that are close to each other, again confirming our theoretical
analysis. The corresponding NMSE values are 0.4432 and 0.4572, respectively. PGA with-
out mismatch requires less iterations to reach convergence than its perturbed version using K.
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Figure 5. Reconstructions (left) and zoomed versions within the FOV (right) obtained
using κ2 and either algorithm (11), NMSE = 0.16, MAE = 2205 (top) or algorithm (12),
NMSE = 0.1534, MAE = 2399 (bottom).

Figure 6. FBP reconstructions, in the FOV, with zero-padded FBP, NMSE = 1.776,
MAE = 8534 (left) and extrapolated FBP by replicating the borders of the sinogram,
NMSE = 0.366, MAE = 1871 (right).

Note that, in a real context, practitioners often use early stopping to avoid the potential nega-
tive effects of the adjoint mismatch. Nevertheless it is difficult for the user to know when the
iterations should be stopped so as to reach this intermediary good solution, hence the result
is often suboptimal. Our analysis shows that one can still use an inaccurate adjoint without
resorting to such an empirical rule.

Reconstruction results are displayed in figures 4 and 5 using the same windowing. Let us
remark that, due to the use of a short detector, the projections suffer from axial truncation.
The set of pixels of the image whose projections belong to the detector FOV then define the
so-called image FOV. We added a comparison with two reconstructions obtained from the
standard filtered back-projection (FBP) approach in figure 6. On the left, the image is obtained
from standard FBP by zero-padding the sinogram, while on the right, the image is obtained by
replicating the borders of the sinogram [41]. Only the image FOV is depicted here, since the
FBP reconstruction outside this zone is not relevant. We also indicated the NMSE and the max-
imum absolute error (MAE), defined as maxi∈{1,...,N}|xi − xi|, for all the reconstructed images
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Figure 7. Absolute difference between the reconstructed image from FBP using repli-
cated sinogram borders and the ground truth, within the FOV.

Figure 8. Absolute difference between the reconstructed image and the ground truth,
within the FOV, using κ1 (top) or κ2 (bottom), and either algorithm (11) (left) or
algorithm (12) (right).

when compared with the ground truth. Both FBP reconstructions suffer from various artifacts
(peripheral bright-band artifacts, cupping, over-estimation of the values as shown in figure 7)
[47, 48, 50], in contrast with the solutions provided by our regularized iterative approach.
Furthermore, when parameter κ2 is used, the reconstructed image obtained by PGA with the
mismatched adjoint K is very similar to the image obtained without mismatch. In contrast,
combining the setting κ1 with the mismatched adjoint in PGA yields a reconstruction that is
deteriorated by artifacts propagating from the exterior of the FOV and a higher NMSE com-
pared to the solution obtained when using the exact H∗ as shown on the reconstructed image
in figure 4 (bottom left) and the FOV error map in figure 8 (top right). In a nutshell, as soon as
the convergence of PGA is ensured, an unmatched projector/backprojector pair gives a simi-
lar reconstruction quality than the matched pair but may lead to a slower convergence. Let us
emphasize that, in practice, the decrease of the convergence rate in terms of iterations could be
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Figure 9. Phantom x (left) and ROI xr (right).

compensated by a reduced computation cost for operator K. Finally, note that computing the
infimum in (55) in theorem 3.11 with a grid search gives an upper bound of 3.25 × 105. The
actual error is 1.0934 × 104 which is indeed lower than this upper bound, as expected from
our theoretical analysis.

4.2. Example 2: joint object-background decomposition and super resolution reconstruction

4.2.1. Problem statement. In this example, we focus on a joint super resolution reconstruction
and decomposition task. Flat panel detectors commonly sample projections with small pixels
but at a slow frame rate, so that the angular sampling is comparatively poor. Then reconstruct-
ing the entire object on a fine grid is time consuming and produces large volumes that are
also difficult to manipulate. We thus look at reconstructing a relevant ROI only, as is the case
when the clinical goal is to assess the precise position of metallic needles within a soft-tissue
background. With metallic device, subsampling artifacts have a minor impact on contrasted
soft tissue background. A priori knowledge about the device (e.g. sparsity, high contrast, and
direction [10, 40]) can be used, given that the object is separated from the background.

The phantom grid is of 256 × 256 pixels of size 0.53 mm of which the ROI, denoted by
xr, is a patch of size 88 × 88. The simulated phantom x and the ROI are displayed in figure 9.
The phantom projection is computed for a detector of 500 bins of 0.4 mm. The detector bins
are sampled on a twice thinner grid than the pixels. The number of uniformly spaced angular
positions is set to 100 only over interval [0◦, 180◦] leading to M = 100 × 500. The source-
to-object distance and the source-to-image distance were set as in our first experiment. The
operators are rescaled by π/100. The noise standard deviation σ is chosen equal to 0.35, so
that ‖b‖/‖Hx‖ ≈ 3.32 × 10−5.

The acquired projections contain information regarding pixels outside the ROI. In order to
reduce reconstruction artifacts, we define a larger reconstruction grid, with size N = 140 × 140
containing the ROI. Let us introduce the sampling operator S ∈ R882×1402

, which selects the
ROI within this extended image. We then aim at decomposing the spacial contents xr within
this ROI into two maps Sxm ∈ R88×88 and Sxb ∈ R88×88 which describe respectively the metal
component of the ROI (needles) and the tissues of the ROI as shown in figure 10, so that
xr = Sxm + Sxb. Estimates of the two maps (xm, xb) ∈ R2N on the extended grid of size N, are
obtained by solving the following penalized least-squares problem:

minimize
(xm ,xb)∈R2N

1
2
‖y − Hr(xm + xb)‖2

2 + g(xm, xb) +
κ

2
(‖xm‖2

2 + ‖xb‖2
2). (86)
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Figure 10. Sxm (left) and Sxb (right).

Furthermore, we define g(xm, xb) = ρDTVa,θ(xm) + βTV(xb) + α‖xm‖1 + ι[0,+∞[N (xm) +
ι[0,+∞[N (xb) where ιC denotes the indicator function of set C and (ρ, β,α,κ) ∈ [0,+∞[4.
Hereabove, the TV term, acting on the background image, stands for the total variation
regularization [53], defined as

(∀u ∈ R
N) TV(u) =

N∑
i=1

√
(Δh

i u)2 + (Δv
i u)2 (87)

with (Δh
i )∗ ∈ RN , (Δv

i )∗ ∈ RN , the horizontal and vertical discrete gradient operators at
location i (assuming zero-padding), respectively. Furthermore, given that the sought map
xm is sparse, and contains needles following about the same direction, we use both an �1

penalty and the directional total variation introduced in [5], defined, for every u ∈ RN , as
DTVa,θ(u) =

∑N
i=1‖Di,a,θu‖where Di,a,θ ∈ R2×N allows to compute the two directional deriva-

tives at the pixel i, parametrized by an angular direction θ ∈ [0
◦
, 180

◦
[, and a scaling factor

a > 0, i.e.

Di,a,θu =

(
1 0
0 a

) (
cos θ sin θ
− sin θ cos θ

) (
Δh

i u
Δv

i u

)
. (88)

Let H = (Hr, Hr) in RM×2N . Equation (86) can be rewritten as

minimize
z=(x�m ,x�b )�∈R2N

1
2
‖y − Hz‖2

2 + h(z) +
κ

2
‖z‖2

2 + i[0,+∞[2N (z), (89)

with h: z = (x�m , x�b )� �→ ρDTVa,θ(xm) + α‖xm‖1 + βTV(xb).
The coupling ratio between H and its associated adjoint approximation K = (Kr, Kr) is

ξ = 0.75 and the asymmetry metric is μ = 0.0418. The proximity operator of h does not have
a closed form, hence it will be approximated by using inner iterations of the dual forward-
backward algorithm [18, 19] with a stopping precision of 10−8. We set θn ≡ 1, ρ = 5500,
β = 2950, α = 500, a = 0.2, and θ = 10◦. Initial estimates for both maps are zero-valued.
As in our first experiment, two values of κ are tested, namely κ1 = 10−2 and κ2 = 0.2438. L
is guaranteed to be cocoercive for κ = κ2, but not for κ = κ1. Here again the existence and
uniqueness of the fixed point of scheme (12) are guaranteed for κ = κ2 because the condition in
proposition 3.10(iii)(e) is fulfilled. Furthermore, for the settings (H∗,κ1), (K,κ1) and (H∗,κ2),
the step-size γ is set respectively to 2 × 10−3 while for (K,κ2), γ is set to 1.5 × 10−3. The
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Figure 11. Evolution of the error, inside the ROI region, of the metal and tissue maps
(Sxm,n)n and (Sxb,n)n estimated along iterations by algorithms (11) and two choices of κ
parameter and algorithm (12) with κ2.

Figure 12. Evolution of the error, inside the ROI region, of the metal and tissue maps
(Sxm,n)n and (Sxb,n)n estimated along iterations by algorithm (12) with κ1.

stopping precision on the relative distance between two consecutive iterates is 10−7 and the
maximum number of iterations is 2 × 104.

4.2.2. Results. In figures 11 and 12, we plot the relative errors between the ground truth
metal map Sxm and tissues map Sxb, cropped to the ROI, and their estimates along the itera-
tions. In figure 12, one sees that the iterates obtained from (12) with κ1 are unstable. Oscilla-
tions hamper the convergence of scheme (12). The stopping convergence criterion is never
met and at the end of the 2 × 104 iterations, the maps cannot be reconstructed. Figure 11
shows that for the three other cases, the algorithm stops in a phase where the errors associ-
ated with both maps are simultaneously decreasing. These plots confirm that, with setting κ1,
only algorithm (11) (i.e. PGA without adjoint mismatch) converges.Forκ2, algorithms (11) and
(12) converge to two fixed points that are quite close to each other and to the exact solution.
Figure 13 shows the reconstructed maps within the ROI, obtained with algorithm (11) and
κ1, algorithm (11) and κ2, algorithm (12) and κ2. Upon visual inspection, the two restored
components Sx̂b and Sx̂m are efficiently separated and well reconstructed in all three cases.
Furthermore, no visible deterioration arises on the images reconstructed with κ2.
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Figure 13. Reconstructed maps within the ROI Sx̂m (left) and Sx̂b (right) using κ1 (first
row) or κ2 (last two rows), and either algorithm (11) (first two rows) and algorithm (12)
(last row).

5. Conclusion

We have established, in a general setting, necessary conditions to ensure the convergence of the
proximal gradient algorithm when the adjoint of the linear operator involved in the quadratic
part of the objective function is inexact. The associated fixed point properties have been inves-
tigated. Our analysis mostly makes use of mathematical tools revolving around cocoercivity
and monotone operators.

A broad class of signal recovery problems is captured by the proposed framework. The
mismatched PGA can be seen as a generalization of the original PGA method. Simulations
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carried out in the context of x-ray tomographic imaging have shown that the proposed strategy
offers an effective solution. Thus, approximate adjoints, that are, for instance, less computa-
tionally demanding, can be employed without compromising the convergence properties of
the algorithm. Our theoretical results also pave the way for applications involving the refine-
ment of the operators Kn on-the-fly or the learning of those using deep learning architectures.
It would be interesting to extend our analysis to other types of data fidelity terms that may
be more suitable in the presence of noise outliers such as the convex �1 or more robust non-
convex �p potentials (p < 1) [63]. Finally, other classes of algorithms [25, 57] could be used to
solve our minimization problem (10). A similar stability analysis could be performed for these
algorithms.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.
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