
HAL Id: hal-03136103
https://hal.science/hal-03136103v2

Preprint submitted on 3 Feb 2022 (v2), last revised 19 Apr 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualizing hierarchies in scRNA-seq data using a
density tree-biased autoencoder

Quentin Garrido, Sebastian Damrich, Alexander Jäger, Dario Cerletti,
Manfred Claassen, Laurent Najman, Fred A Hamprecht

To cite this version:
Quentin Garrido, Sebastian Damrich, Alexander Jäger, Dario Cerletti, Manfred Claassen, et al.. Visu-
alizing hierarchies in scRNA-seq data using a density tree-biased autoencoder. 2022. �hal-03136103v2�

https://hal.science/hal-03136103v2
https://hal.archives-ouvertes.fr

Visualizing hierarchies in scRNA-seq data
using a density tree-biased autoencoder

Quentin Garrido 1,5* Sebastian Damrich 1 Alexander Jäger 1 Dario Cerletti 2,3

Manfred Claassen 4 Laurent Najman 5 Fred A. Hamprecht 1

1HCI/IWR, Heidelberg University, Germany
2 Institute of Molecular Systems Biology, ETH Zürich, Switzerland

3 Institute of Microbiology, ETH Zürich, Switzerland
4 Internal Medicine I, University Hospital Tübingen, University of Tübingen, Germany

5 Université Gustave Eiffel, LIGM, Equipe A3SI, ESIEE, France

Abstract

Motivation: Single cell RNA sequencing (scRNA-seq)
data makes studying the development of cells possible at un-
paralleled resolution. Given that many cellular differentia-
tion processes are hierarchical, their scRNA-seq data is ex-
pected to be approximately tree-shaped in gene expression
space. Inference and representation of this tree-structure in
two dimensions is highly desirable for biological interpre-
tation and exploratory analysis.
Results: Our two contributions are an approach for iden-
tifying a meaningful tree structure from high-dimensional
scRNA-seq data, and a visualization method respecting the
tree-structure. We extract the tree structure by means of a
density based minimum spanning tree on a vector quanti-
zation of the data and show that it captures biological in-
formation well. We then introduce DTAE, a tree-biased au-
toencoder that emphasizes the tree structure of the data in
low dimensional space. We compare to other dimension re-
duction methods and demonstrate the success of our method
both qualitatively and quantitatively on real and toy data.
Availability: Our implementation relying on PyTorch [24]
and Higra [25] is available at github.com/hci-unihd/DTAE.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) data allows

analyzing gene expression profiles at the single-cell level,
thus granting insights into cell behavior at unparalleled res-
olution. In particular, this permits studying the cell devel-
opment through time more precisely.

*quentin.garrido[at]edu.esiee.fr

Waddington [32]’s popular metaphor likens the develop-
ment of cells to marbles rolling down a landscape. While
cells are all grouped at the top of the hill when they are
not yet differentiated (e.g. stem cells), as they start rolling
down, they can take multiple paths and end up in distinct
differentiated states, or cell fates. In the illustrated case, the
typical resulting topology of the trajectories is a tree.

However, for every cell, hundreds or thousands of ex-
pressed genes are recorded and this data is noisy. To sum-
marize such high-dimensional data, it is useful to visualize
it in two or three dimensions.

Our goal, then, is to identify the hierarchical (tree) struc-
ture of the scRNA-seq data and subsequently reduce its
dimensionality while preserving the extracted hierarchical
properties present. We address this in two steps, illustrated
in figure 1.

First, we cluster the scRNA-seq data in high-dimensional
space to obtain a more concise and robust representa-
tion. Then, we capture the hierarchical structure as a min-
imum spanning tree (MST) on our cluster centers with
edge weights reflecting the data density in high-dimensional
space. We dub the resulting tree “density tree”.

Second, we embed the data to low dimension with an au-
toencoder, a type of artificial neural network. In addition to
the usual aim of reconstructing its input, we bias the autoen-
coder to also reproduce the density tree in low-dimensional
space. As a result, the hierarchical properties of the data are
emphasized in our visualization.

2. Related Work
There are various methods for visualizing scRNA-seq

data and trajectory inference and many of them have been
reviewed for instance in [28]. We therefore mention only

1

a)

b)

c)

d)

Figure 1: Schematic method overview. a) High-dimensional data. b) Proposed density tree. After computing the k-means
centroids on the data, we build a tree based on the data density between pairs of centroids. c) DTAE. An autoencoder is used
to learn a representation of our data. This embedding is regularized by the previously computed tree in order to preserve
its hierarchical structure in low-dimensional space. d) The final DTAE embedding. After training of the autoencoder, the
bottleneck layer visualizes the data in low dimension and respects the density structure.

some exemplary approaches here. SCORPIUS [5] was one
of the first such methods. It is limited to linear topologies
rather than trees. Improvements include SLINGSHOT [29]
which infers trajectories using any dimensionality reduction
method; MONOCLE 2 [27] which embeds a tree based on
Euclidean distances on k-means centroids without relying
on a neural network; SPADE [4, 26] which downsamples to
equalize the data density and computes an MST on agglom-
erative clusters, but does not inform the MST by the actual
data density and only visualizes the tree itself; PAGA [33]
which learns a hierarchical graph representation of the data
and PHATE [22] which computes diffusion probabilities on
the data before applying multi-dimensional scaling.

The general purpose dimension reduction methods
t-SNE [19] and UMAP [21, 3] are also popular for visu-
alizing scRNA-seq data.

Other recent methods rely on neural networks, and are
thus more similar to ours. Like t-SNE and UMAP, Ivis [30]
uses neighborhood information to create a visualization, but
uses a triplet loss and a neural network as parametric map.
Many approaches are extensions of the variational autoen-
coder (VAE) [14]. For instance, scvis is a VAE tailored to
visualization [8] and uses a t-SNE-like regularization term.
A popular VAE for scRNA-seq data is scVI [17], which em-
ploys a larger dimensional latent space but explicitly mod-
els batch effects and library sizes. Instead, scVAE [10] in-

vestigates likelihood functions suitable for scRNA-seq data
and proposes a clustering model in latent space. While
scVI needs an additional application of t-SNE to achieve a
two-dimensional visualization, scVAE and the adversarially
trained DR-A [16] can work directly with two latent dimen-
sions. Non-variational autoencoders [11] have also been ex-
plored. DCA [9] replaces the usual reconstruction loss by
a count-based ZINB loss and aims at denoising scRNA-seq
data. In addition, scDeepCluster [31] jointly trains a clus-
tering model in latent space. SAUCIE [1] also relies on an
autoencoder and focuses on batch effect removal. In or-
der to exploit more relational information, scGAE [18] uses
a graph autoencoder architecture and achieves good visual-
ization results both for clustered and continuous scRNA-seq
data, but without our inductive prior of placing graph edges
in dense data regions. Topological autoencoders [23] are
closest to our idea of retaining topological properties dur-
ing dimension reduction. They use Euclidean distance and
compute the MST on all points which produces less stable
results than our proposed density-based approach on cluster
centroids.

3. Approximating the High-dimensional
scRNA-seq Data with a Tree

To summarize the high-dimensional data in terms of
a tree the minimum spanning tree (MST) on the Eu-

2

clidean distances is an obvious choice. This route is fol-
lowed by [23] who reproduce the MST obtained on their
high-dimensional data in their low-dimensional embedding.
However, scRNA-seq data can be noisy, and an MST built
on all of our data is very sensitive to noise. Therefore, we
first run k-means clustering on the original data yielding
more robust centroids for the MST construction and also
reducing downstream complexity.

A problem with the Euclidean MST, illustrated in fig-
ure 2, is that two centroids can be close in Euclidean space
without having many data points between them. In such a
case an Euclidean MST would not capture the skeleton of
our original data well. But it is crucial that the extracted tree
follows the dense regions of the data if we want to visualize
developmental trajectories of differentiating cells: A trajec-
tory is plausible if we observe intermediate cell states and
unlikely if there are jumps in the development. By prefer-
ring tree edges in high density regions of the data we ensure
that the computed spanning tree is biologically plausible.
Following this rationale, we build the MST on the com-
plete graph over centroids whose edge weights are given
by the density of the data along each edge instead of its
Euclidean distance. This results in a tree that we believe
captures Waddington’s hypothesis better than merely con-
sidering cumulative differences in expression levels.

To estimate the support that a data sample provides for
an edge, we follow [20]. Consider the complete graph
G = (C,E) such that C = {c1, . . . , ck} is the set of
centroids. In the spirit of Hebbian learning, we count, for
each edge, how often its incident vertices are the two closest
centroids to any given datum. As pointed out by [20] this
amounts to an empirical estimate of the integral of the den-
sity of observations across the second-order Voronoı̈ region
associated with this pair of cluster centers. Finally, we com-
pute the maximum spanning tree over these Hebbian edge
weights or, equivalently, the minimum spanning tree over
their inverses. Our strategy for building the tree is summa-
rized in algorithm 1.

Our data-density based tree follows the true shape of the
data more closely than a MST based on the Euclidean dis-
tance weights as illustrated in figure 2. We claim this in-
dicates it being a better choice for capturing developmental
trajectories. Having extracted the tree shape in high dimen-
sions our goal is to reproduce this tree as closely as possible
in our embedding.

Algorithm 1 Density tree generation

Require: High-dimensional data X ∈ Rn×d
Require: Number of k-means centroids k

procedure GENERATETREE(X, k)
C ← KMEANS(X, k) . O(nkdt) with t the number

of iterations
G = (C,E) the complete graph on our centroids
for {i, j} a two-element subset of {1, . . . , k} do .

O(k2)
di,j = 0

end for
for i = 1, . . . , |X| do . O(nk)

a← arg min
j=1,...,k

||xi − cj ||2 . Nearest centroid

b← arg min
j=1,...,k
j 6=a

||xi − cj ||2 . Second nearest

centroid
da,b = da,b + 1 . Increase nearest centroids’

edge strength
end for
for {i, j} a two-element subset of {1, . . . , k} do .

O(k2)
Wi,j ← d−1

i,j . Edge weights are inverse edge
strengths

end for
T ← MST(G,W) . O(k2 log k)
return T, d . Retains the density tree and the edge

strengths
end procedure

4. Density-Tree biased Autoencoder (DTAE)

We use an autoencoder to faithfully embed the high-
dimensional scRNA-seq data in a low-dimensional space
and bias it such that the topology inferred in high-
dimensional space is respected. An autoencoder is an
artificial neural network consisting of two concatenated
subnetworks, the encoder f , which maps the input to
lower-dimensional space, also called embedding space, and
the decoder g, which tries to reconstruct the input from
the lower-dimensional embedding. It can be seen as a
non-linear generalization of PCA. We visualize the low-
dimensional embeddings hi = f(xi) and hence choose
their dimension to be 2.

The autoencoder is trained by minimizing the following
loss terms, including new ones that bias the autoencoder to
also adhere to the tree structure.

3

Figure 2: (left, middle) Comparison of MST on k-means centroids using Euclidean distance or density weights. The data
was generated using the PHATE library [22], with 3 branches in 2D. Original data points are transparently overlayed to better
visualize their density. While the MST based on the Euclidean distance places connections between centroids that are close
but have only few data points between them (see red ellipse), our MST based on the data density instead includes those
edges that lie in high density regions (see pink ellipse). (right) Complete graph over centroids and its Hebbian edge weights.
Infinite-weight edges, that is edges not supported by data, are omitted for clarity.

4.1. Reconstruction Loss

The first term of the loss is the reconstruction loss, de-
fined as

Lrec = MSE(X, g(f(X))) =
1

N

∑
xi∈X

||xi − g(f(xi))||22.

(1)
This term is the typical loss function for an autoencoder

and ensures that the embedding is as faithful to the original
data as possible, forcing it to extract the most salient data
features.

4.2. Push-Pull Loss

The main loss term that biases the DTAE towards the
density tree is the push-pull loss. It trains the encoder to
embed the data points such that the high-dimensional data
density and in particular the density tree are reproduced in
low-dimensional-space.

We find a centroid in embedding space by averaging
the embeddings of all points assigned to the corresponding
k-means cluster in high-dimensional space. In this way, we
can easily relate the centroids in high and low dimension
and will simply speak of centroids when the ambient space
is clear from the context.

To reproduce the density structure in low-dimensional
space we want that the closest two high-dimensional cen-
troids to a point xi ∈ X correspond to the two low-
dimensional centroids that are closest to its embedding
hi = f(xi), We denote the latter centroids by ci,1 and ci,2.
and low-dimensional centroids that actually correspond to
the closest high-dimensional centroids by c′i,1 and c′i,2. As
long as c′i,1, c′i,2 differ from ci,1 and ci,2, the encoder places
hi next to different centroids than in high-dimensional
space. To ameliorate this, we want to move c′i,1, c′i,2 and
hi towards each other while separating ci,1 and ci,2 from

hi. The following preliminary version of our push-pull loss
implements this:

L̃push(hi) = − (||hi − ci,1||2 + ||hi − ci,2||2)
2 (2)

L̃pull(hi) =
(
||hi − c′i,1||2 + ||hi − c′i,2||2

)2
(3)

L̃push-pull =
1

N

∑
xi∈X

L̃push(f(xi)) + L̃pull(f(xi)). (4)

We have inserted hi = f(xi) in equation (4).

The push loss decreases as hi and the currently closest
centroids, ci,1 and ci,2 are placed further apart from each
other, while the pull loss decreases when hi gets closer to
the correct centroids c′i,1 and c′i,2. Indeed, the push-pull loss
term is minimized if and only if each embedding hi lies in
the second-order Voronoı̈ region of those low-dimensional
centroids whose high-dimensional counterparts contain the
data point xi in their second-order Voronoı̈ region. In other
words, the loss is zero precisely when we are reproducing
the edge densities from high dimension in low dimension.

Note that we let the gradient flow through both the in-
dividual embeddings and through the centroids which are
means of embeddings themselves.

This naı̈ve formulation of the push-pull loss has the
drawback that it can become very small if all embeddings
are nearly collapsed into a single point, which is undesirable
for visualization. Therefore, we normalize the contribution
of every embedding hi by the distance between the two cor-
rect centroids in embedding space. This prevents the col-
lapsing of embeddings and also ensures that each datapoint
xi contributes equally regardless of how far apart c′1 and c′2

4

are. The push-pull loss thus becomes

Lpush(hi) = −

(
||hi − ci,1||2 + ||hi − ci,2||2

||c′i,1 − c′i,2||2

)2

(5)

Lpull(hi) =

(
||hi − c′i,1||2 + ||hi − c′i,2||2

||c′i,1 − c′i,2||2

)2

(6)

Lpush-pull =
1

N

∑
xi∈X

Lpush(f(xi)) + Lpull(f(xi)). (7)

So far, we only used the density information from high-
dimensional space for the embedding, but not the extracted
density tree itself. The push-pull loss in equation (7) is ag-
nostic to the positions of the involved centroids within the
density tree, only their Euclidean distance to the embed-
ding hi matters. In contrast, the hierarchical structure is
important for the biological interpretation of the data: It is
much less important if an embedding is placed close to two
centroids that are on the same branch of the density tree
than it is if the embedding is placed between two different
branches. In the first case, cells are just not ordered cor-
rectly within a trajectory, while in the second case we get
false evidence for an altogether different pathway. The sit-
uation is illustrated on toy data in figure 3. There are many
points between the red centroid on the cyan branch and the
purple branch, which can falsely indicate a circluar trajec-
tory.

We tackle this problem by reweighing the push-pull loss
with the geodesic distance along the density tree. The
geodesic distance dgeo(ca, cb) with ca, cb ∈ C is defined
as the number of edges in the shortest path between ca
and cb in the density tree. Centroids at the end of differ-
ent branches in the density have a higher geodesic distance
than centroids nearby on the same branch, see figure 3. By
weighing the push-pull loss contribution of an embedded
point by the geodesic distance between its two currently
closest centroids, we focus the push-pull loss on embed-
dings which erroneously lie between different branches.

The geodesic distances can be computed quickly in
O(k2) via breadth first search and this only has to be done
once before training the autoencoder.

The final version of our push-pull loss becomes

Lpush-pull =
1

N

∑
xi∈X

(
dgeo(ci,1, ci,2)

· (Lpush(f(xi)) + Lpull(f(xi)))
)
.

(8)

Note, that the normalized push-pull loss in equation (7) and
the geodesically reweighted push-pull loss in (8) both also
get minimized if and only if the closest centroids in em-
bedding space correspond to the closest centroids in high-
dimensional space.

Figure 3: Density-tree on the low-dimensional centroids
and superimposed on the DTAE embedded data, which is
colored by ground truth branches. The vertex colors corre-
spond to their geodesic distance to the red vertex. The data
was generated using the PHATE library.

4.3. Compactness loss

The push-pull loss replicates the empirical high-
dimensional data density in embedding space by moving
the embeddings into the correct second-order Voronoı̈ re-
gion, which can be large or unbounded. For optimal vis-
ibilty of the tree structure, an embedding should not only
be in the correct second-order Voronoı̈ region, but lie com-
pactly around the line between its two centroids. To achieve
this, we add the compactness loss, which is just another in-
stance of the pull loss

Lcomp =
1

N

∑
xi∈X

(
||hi − c′i,1||2 + ||hi − c′i,2||2

||c′i,1 − c′i,2||2

)2

(9)

=
1

N

∑
xi∈X

Lpull(hi), (10)

where we wrote hi instead of f(xi) for succinctness. The
compactness loss is minimized if the embedding hi is ex-
actly between the correct centroids c′i,1 and c′i,2 and has el-
liptic contour lines with foci at the centroids.

4.4. Cosine loss

Since the encoder is a powerful non-linear map it can
introduce artifactual curves in the low-dimensional tree
branches. However, especially tight turns can impede the
visual clarity of the embedding. As a remedy, we pro-
pose an optional additional loss term that tends to straighten
branches.

Centroids at which the embedding should be straight are
the ones within a branch, but not at a branching event of
the density tree. The former can easily be identified as the
centroids of degree 2.

5

Let c be a centroid in embedding space of degree 2 with
its two neighboring centroids nc,1 and nc,2. The branch is
straight at c if the two vectors c− nc,1 and nc,2 − c are par-
allel or, equivalently, if their cosine is maximal. Denoting
by C2 = {c ∈ C | deg(c) = 2} the set of all centroids
of degree 2, considered in embedding space, we define the
cosine loss as

Lcosine = 1− 1

|C2|

∑
c∈C2

(c− nc,1) · (nc,2 − c)
||c− nc,1||2 ||nc,2 − c||2

. (11)

Essentially, it measures the cosine of the angles along the
tree branch and becomes minimal if all these angles are zero
and the branches straight.

A generalisation of this criterion that deals with noisy
edges in the density tree is discussed in the appendix.

4.5. Complete loss function

Combining the four loss terms of the preceding sections,
we arrive at our final loss

L = λrecLrec + λpush-pullLpush-pull + λcompLcomp + λcosLcos.
(12)

The relative importance of the loss terms, especially of
Lcomp and Lcos, which control finer aspects of the visualiza-
tion, might depend on the use-case. In practice, we found
λrec = λpush-pull = λcomp = 1 and λcos = 50 to work well.

An ablation study of the different losses’ contribution is
available in the appendix. Its main conclusion is that while
the push-pull loss and reconstruction loss are sufficient to
obtain satisfactory results, the addition of the compactness
and cosine loss helps to improve the visualizations further
and facilitates reproducibility. Empirically, we found that
adding the compactness loss without the cosine loss some-
times leads to discontinuous embeddings. The two loss
terms should therefore be added or omitted jointly.

4.6. Training procedure

Firstly, we compute the k-means centroids, the edge den-
sities, the density tree, and geodesic distances. This has to
be done only once as an initialization step. Secondly, we
pretrain the autoencoder with only the reconstruction loss
via stochastic gradient descent on minibatches. This pro-
vides a warm start for finetuning the autoencoder with all
losses in the third step.

During finetuning, all embedding points are needed to
compute the centroids in embedding space. Therefore, we
perform full-batch gradient descent during finetuning. The
full training procedure is described in algorithm 2.

We always used k = 50 centroids for k-means
clustering in our experiments. Our autoencoder always
has a bottleneck dimension of 2 for visualization. In
the experiments we used intermediate layer dimensions
d(input dimension), 2048, 256, 32, 2, 32, 256, 2048, d. We

Algorithm 2 Training loop

Require: Autoencoder (g ◦ f)θ
Require: Pretraining epochs np, batch size b and learning

rate αp
Require: Finetuning epochs nf and learning rate αf
Require: Weight parameters for the loss

λrec,λpush-pull,λcomp,λcos
1: T,C,C2, dgeo ← INITIALIZATION(X)
2: #Pretraining
3: for t = 0, 1, . . . , np do
4: for i = 0, 1, . . . , np/b do
5: Sample a minibatch m from X
6: m̂← g(f(m))
7: L ← Lrec
8: θt+1 ← θt − αp∇L
9: end for

10: end for
11: #Finetuning
12: for t = np, . . . , np + nf do
13: h← f(X)
14: X̂ ← g(h)
15: L ← λrecLrec + λpush-pullLpush-pull + λcompLcomp +

λcosLcos
16: θt+1 ← θt − αf∇L
17: end for

omitted hidden layers of dimension larger than the input.
We use fully connected layers and ReLU activations after
every layer but the last encoder and decoder layer and em-
ploy the Adam [13] optimizer with learning rate 2 × 10−4

for pretraining and 1 × 10−3 for finetuning unless stated
otherwise. We used a batch size of 256 for pretraining in all
experiments.

5. Results
In this section we show the performance of our method

on toy and real scRNA-seq datasets and compare it to a
vanilla autoencoder, PHATE, UMAP, SAUCIE, DCA, scVI,
Force Atlas 2 and PCA.

5.1. PHATE generated data

We applied our method to an artificial dataset created
with the library published alongside [22], to demonstrate
its functionality in a controlled setting. We generated a toy
dataset whose skeleton is a tree with one backbone branch
and 9 branches emanating from the backbone consisting in
total of 10,000 points in 100 dimensions.

We pretrained for 150 epochs with a learning rate of
10−3 and finetuned for another 150 epochs with a learning
rate of 10−2.

Figure 4 shows the visualization results. The finetun-
ing significantly improves the results of the pretrained au-

6

Figure 4: Results obtained using data generated by the PHATE library. Branches are coloured by groundtruth labels.

toencoder, whose visualisation collapses the grey and green
branch onto the blue branch. All methods other than DCA,
scVI and PCA achieve satisfactory results that make the true
tree structure of the data evident. While PHATE, UMAP
and Force Atlas 2 produce overly crisp branches compared
to the PCA result, the reconstruction loss of our autoen-
coder guards us from collapsing the branches into lines.
PHATE appears to overlap the cyan and yellow branches
near the backbone and UMAP introduces artificially curved
branches. scVI collapses the green and brown as well as the
pink and cyan branches together, giving hard to interpret vi-
sualizations. The results on this toy dataset demonstrate that
our method can embed high-dimensional hierarchical data
into 2D and emphasize its tree-structure while avoiding to
collapse too much information compared to state-of-the-art
methods. In our method all branches are easily visible.

5.2. Endocrine pancreatic cell data

We evaluated our method on the data from [2]. It repre-
sents endocrine pancreatic cells at different stages of their
development and consists of gene expression information
for 36351 cells and 3999 genes. Preprocessing information
can be found in [2]. We pretrained for 300 epochs and used
250 epochs for finetuning.

Figures 5 and 12 in the appendix depicts visualizations of
the embryonic pancreas development with different meth-
ods. Our method can faithfully reproduce the tree structure
of the data, especially for the endocrine subtypes. The vi-

sualized hierarchy is biologically plausible, with a particu-
larly clear depiction of the α-, β- and ε-cell branches and
a visible, albeit too strong, separation of the δ-cells. This
is in agreement with the results from [2]. UMAP also per-
forms very well and attaches the δ-cells to the main tra-
jectory. However the α- and β-cell branches are not as
prominent as in DTAE. PHATE does not manage to sepa-
rate the δ- and ε-cells discernibly from the other endocrine
subtypes. As on toy data in figure 4, it produces overly
crisp branches for the α- and β-cells. PCA mostly overlays
all endocrine subtypes. All methods but the vanilla autoen-
coder show a clear branch with tip and ancinar cells and one
via EP and Fev+ cells to the endocrine subtypes, but only
DTAE, DCA, SAUCIE and scVI manage to also hint at the
more generic trunk and multipotent cells from which these
two major branches emanate. However SAUCIE, DCA and
scVI fail to produce a meaningful separation between the
α- and β-cell branches. The ductal and Ngn3 low EP cells
overlap in all methods.

It is worth noting that the autoencoder alone was not able
to visualize meaningful hierarchical properties of the data.
However, the density tree-biased finetuning in DTAE made
this structure evident, highlighting the benefits of our ap-
proach.

In figure 5, we also overlay DTAE’s embedding with a
pruned version of the density tree and see that the visual-
ization closely follows the tree structure around the differ-
entiated endocrine cells. This combined representation of

7

Figure 5: Pruned density MST superimposed over our results on the endocrine pancreatic cell dataset, coloured by cell
subtypes. We use finer labels for the endocrine cells. Darker edges represent denser edges. Only edges with more than 100
points contributing to them are plotted here

low-dimensional embedding and overlaid density tree fur-
ther facilitates the identification of branching events, most
notably for the α- and β-cells, and shows the full power
of our method. It also provides an explanation for the ap-
parent separation of the δ-cells. Since there are relatively
few δ-cells, they are not represented by a distinct k-means
centroid.

Our method places more k-means centroids in the dense
region in the lower right part of DTAE’s panel in figure 5
than is appropriate to capture the trajectories, resulting in
many small branches. Fortunately, this does not result in
an exaggerated tree-shaped visualization that follows ev-
ery spurious branch, which we hypothesize is thanks to the
successful interplay between the tree bias and the recon-
struction aim of the autoencoder: If the biological signal
encoded in the gene expressions can be reconstructed by
the decoder from an embedding with enhanced hierarchi-
cal structure, the tree-bias shapes the visualization accord-
ingly. Conversely, an inappropriate tree-shape is prevented
if it would impair the reconstruction. Overall, the density
tree recovers the pathways identified in [2] to a large extent.
Only the trajectory from multipotent via tip to ancinar cells
includes an unexpected detour via the trunk and ductal cells,
which the autoencoder mends by placing the tip next to the
multipotent cells.

The density tree also provides useful information in con-

junction with other dimension reduction methods. In fig-
ure 5, we also overlay their visualizations with the pruned
density tree by computing the centroids in the respective
embedding spaces according to the k-means cluster as-
signments. The density tree can help finding branching
events and gain insights into the hierarchical structure of the
data that is visualized with an existing dimension reduction
method. For instance, together with the density tree, we can
identify the ε-cells as a separate branch and find the location
of the branching event into different endocrine subtypes in
the UMAP embedding.

subsectionT-cell infection data

We further applied our method to T-cell data of a chronic
and an acute infection, which was shared with us by the au-
thors of [6]. The data was preprocessed using the method
described in [34], for more details confer [6]. It con-
tains gene expression information for 19029 cells and 4999
genes. While we used the combined dataset to fit all dimen-
sion reduction methods, we only visualize the 13707 cells
of the chronic infection for which we have phenotype anno-
tations from [6] allowing us to judge visualization quality
from a biological viewpoint. We pretrained for 600 epochs
and used 250 epochs for finetuning.

Figures 6 and 13 in the appendix demonstrate that our
method makes the tree structure of the data clearly visi-
ble. The visualized hierarchy is also biologically signif-

8

Figure 6: Pruned density MST superimposed over our results on the chronic part of the T-cell data, coloured by phenotypes.
Darker edges represent denser edges. Only edges with more than 100 points contributing to them are plotted here

icant: The two branches on the right correspond to the
memory-like and terminally exhausted phenotypic states,
which are identified as the main terminal fates of the dif-
ferentiation process in [6]. Furthermore, the purple branch
at the bottom contains the proliferating cells. Since the cell
cycle affects cell transcription significantly, those cells are
expected to be distinct from the rest.

It is encouraging that DTAE makes the expected bio-
logical structure apparent even without relying on known
marker genes or differential cell expression, which were
used to obtain the phenotypic annotations in [6].

Interestingly, our method places the branching event to-
wards the memory-like cells in the vicinity of the exhausted
cells, as does UMAP, while [6] recognized a trajectory di-
rectly from the early stage cells to the memory-like fate.
The exact location of a branching event in a cell differen-
tiation process is difficult to determine precisely. We con-
jecture that fitting the dimensionality reduction methods on
the gene expression measurements of cells from an acute
infection in addition to those from the chronic infection an-
alyzed in [6] provided additional evidence for the trajectory
via exhausted cells to the memory-like fate. Unfortunately,
an in-depth investigation of this phenomenon is beyond the
scope of this methodological paper.

The competing methods expose the tree-structure of the
data less obviously than DTAE. The finetuning significantly
improves the results from the autoencoder, which shows
no discernible hierarchical structure. PHATE separates the

early cells, proliferating cells and the rest. But its layout
is very tight around the biologically interesting branching
event towards memory-like and terminally exhausted cells.
PCA exhibits only the coarsest structure and fails to sepa-
rate the later states visibly. The biological structure is de-
cently preserved in the UMAP visualization but the hierar-
chy is less apparent than in DTAE. SAUCIE, scVI and Force
Atlas 2 produce results that are very similar to PCA, with
later states that are hard to distinguish. DCA produces re-
sults that are very similar to the vanilla autoencoder, where
even though the later states are visible, there is a significant
amount of noise in the embedding, making the analysis dif-
ficult. Overall, our method outperforms the other visualiza-
tion methods on this dataset.

In figure 6, we have also overlaid our embedding with
a pruned version of the density tree and see that DTAE’s
visualization indeed closely follows the tree structure. It
is noteworthy that even the circular behavior of prolifera-
tion cells is accurately captured by a self-overlaid branch
although our tree-based method is not directly designed to
extract circular structure.

Figure 6 also shows the other dimension reduction meth-
ods in conjunction with the pruned density tree. Reassur-
ingly, we find that all methods embed the tree in a plausi-
ble way, i.e. without many self-intersections or oscillating
branches. This is evidence that our density tree indeed cap-
tures a meaningful tree structure of the data. As for the
endocrine pancreas dataset, the density tree can enhance hi-

9

Type of metric Local Global Voronoi

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order All

Pearson Spearman Pearson Spearman
DTAE (Ours) 93.75 48.70 85.51 72.91 82.39 87.19 98.24 94.21 82.86
AE 74.83 70.96 87.41 77.20 70.16 73.23 89.83 58.43 75.26
PHATE 84.76 73.48 45.43 46.04 74.15 78.45 85.27 44.04 66.45
UMAP 78.88 87.75 53.42 54.31 79.40 80.12 83.31 55.94 71.64
SAUCIE 89.99 67.43 82.22 78.50 84.03 85.41 96.43 78.58 82.83
DCA 49.79 64.37 76.54 90.95 40.40 65.92 63.26 49.33 62.57
scVI 74.80 54.30 87.82 67.68 75.45 82.75 86.42 57.77 73.37
Force Atlas 2 72.88 72.23 37.28 48.06 35.67 76.65 77.27 43.27 57.91
PCA 60.40 40.78 73.42 66.02 96.44 96.40 80.76 56.82 71.38

Table 1: Relative quantitative performances averaged over all studied datasets. For each metric we give the best performing
method a value of 100 and scale other results proportionally. The metrics are described in section 6 and higher values indicate
better performance. The rightmost column contains the average relative performance over all metrics. DTAE and SAUCIE
have the best performance overall, with DTAE excelling in Voronoı̈ metrics and ARI.

erarchical structure in visualizations of existing dimension
reduction methods. It, for example, clarifies in the UMAP
plot that the pathway towards the terminally exhausted cells
is via the exhausted and effector like cells and not directy
via the proliferating cells.

6. Quantitative analysis
The purpose of a visualization method is to make the

most salient, qualitative properties of a dataset visible. Nev-
ertheless, a quantitative evaluation can support the compar-
ison of visualization methods and provide evidence that the
data and its visualization are structurally similar. Unfortu-
nately, there is to our knowledge no consensus as to which
metric aligns with practitioners’ notion of a useful visual-
ization. Hence, any single metric cannot validate the qual-
ity of a method. This is why it is important to use multiple
metrics, so that one can hope for a more reliable result.

We selected eight different metrics, some of which
have been employed to judge visualization methods be-
fore [22, 15, 3]. The first group of metric considers the lo-
cal structure. We compute the Adjusted Rand Index (ARI)
between a k-means clustering in high and low dimension
and the number of correct neighbours in the k-NN graph
in high and low dimension. The next category are global
metrics, which rely on distance preservation. Euclidean
distances are computed in low dimension and euclidean or
geodesic distances are computed in high dimension. Then
correlations are computed between those distances. Pear-
son correlation measures linear correlations and Spearman
correlation measures non-linear correlations. Finally, we
use Voronoı̈ diagram based metrics. First or second order
Voronoı̈ diagrams on the k-means centroids are computed
using the k-means assignments to obtain the seeds in low-

dimensional space. Then the ratio of points placed in the
correct Voronoı̈ region is computed. When using the sec-
ond order Voronoı̈ diagram with k = 50, there is a bias to-
wards DTAE since we optimize this criterion. For local and
Voronoı̈ diagram based metrics we have to adjust a param-
eter k (either for k-means clustering or for a k-NN graph).
We vary the value of k between 10 and 100 with a step of
10 and report the area under the curve.

We report results aggregated on all three datasets in ta-
ble 1 and full results are available in table 6 in the ap-
pendix. This aggregation makes it easier to deduce general
patterns of performance among multiple datasets. From the
results on all datasets, we can clearly see that DTAE out-
performs other methods on Voronoı̈ diagram based metrics,
in part due to the bias towards them for k = 50. On lo-
cal metrics, DTAE achieves the best performance on ARI,
followed closely by SAUCIE. However for k-NN preserva-
tion UMAP performs better than other methods by a signif-
icant margin which is consistent with the criterion it opti-
mizes [7]. For euclidean distance preservation, autoencoder
based methods perform the best, with no clear winner over-
all. An interesting result is that DTAE obtains similar or
worse performance to a simple autoencoder, meaning that
the finetuning negatively impacted the quantitative perfor-
mance, even though it greatly improved visualization. This
shows again that care must be taken when using quantita-
tive metrics to evaluate visualization methods. For geodesic
distance preservation, PCA performs the best, even though
it produced poor visualizations. This is in line with previ-
ous findings [15]. Most other methods obtained very similar
performance on this metric, making it hard to conclude that
any method performs better than another.

In order to more easily compare methods, aggregated

10

performances over all metrics are reported in the rightmost
column of table 1. This aggregation makes it easier to evalu-
ate the overall performance of a method when using a wide
variety of criteria. We chose the arithmetic mean to com-
bine the results for simplicity’s sake. From this, we can see
that DTAE and SAUCIE perform significantly better than
other methods, with DTAE surpassing SAUCIE by a small
margin. However, from a qualitative point of view, DTAE
produced superior visualizations compared to SAUCIE, as
discussed previously.

Overall, DTAE produced excellent results both from a
quantitative and qualitative point of view, highlighting its
usefulness as a visualization method for tree-shaped data.

7. Limitations
7.1. Hierarchy assumption

Our method is tailored to Waddington’s hierarchical
structure assumption of developmental cell populations in
which highest data density is along the developmental tra-
jectory. It produces convincing results in this setting as
shown above. However, if the assumption is violated, for in-
stance because the dataset contains multiple separate devel-
opmental hierarchies or a mixture of hierarchies and distinct
clusters of fully differentiated cell fates, the density tree
cannot possibly be a faithful representation of the dataset.
Indeed, in such a case our method yields a poor result. As
an example confer figure 7 with visualizations of the den-
tate gyrus dataset from [12], preprocessed according to [34].
This dataset consists of a mostly linear cell trajectory and
several distinct clusters of differentiated cells and conse-
quently does not meet our model’s assumption. Indeed,
DTAE manages to only extract some linear structures, but
overall fails on this dataset similar to PHATE. UMAP seems
to produce the most useful visualization here.

One could adapt our method by extracting a forest of
disconnected density trees by cutting edges below a den-
sity threshold. However, if little is known a priori about the
structure of the dataset a more general dimension reduction
method might be preferable for initial data exploration.

7.2. Neural network limitations

Artificial neural networks are powerful non-linear func-
tions that can produce impressive results. Unfortunately,
they require the choice of a number of hyperparameters,
such as the dimension of the hidden layers and the learning
rate, making them less end-user friendly than their classical
counterparts

8. Conclusion
We have introduced a new way of capturing the hierar-

chical properties of scRNA-seq data of a developing cell
population with a density based minimum spanning tree.

Figure 7: Failure case: Highly clustered data violates our
underling assumption of a tree structure. Dentate gyrus data
from [12] with clusters coloured by groundtruth cluster as-
signments.

This tree is a hierarchical representation of the data that
places edges in high density regions and thus captures bi-
ologically plausible trajectories. The density tree can be
used to inform any dimension reduction method about the
hierarchical nature of the data.

Moreover, we used the density tree to bias an autoen-
coder and were thus able to produce promising visualiza-
tions exhibiting clearly visible tree-structure both on syn-
thetic and real world scRNA-seq data of developing cell
populations.

Acknowledgments
Supported, in part, by Informatics for Life funded by the

Klaus Tschira Foundation.

References
[1] Amodio, M. et al. Exploring single-cell data with deep mul-

titasking neural networks. Nature Methods, 16(11):1139–
1145, Nov. 2019.

[2] Bastidas-Ponce, A. et al. Comprehensive single cell mRNA
profiling reveals a detailed roadmap for pancreatic en-
docrinogenesis. Development, 146(12):dev173849, June
2019.

[3] Becht, E. et al. Dimensionality reduction for visualiz-
ing single-cell data using UMAP. Nature Biotechnology,
37(1):38–44, Jan. 2019. Number: 1 Publisher: Nature Pub-
lishing Group.

[4] Bendall, S.C. et al. Single-cell mass cytometry of differential
immune and drug responses across a human hematopoietic
continuum. Science, 332(6030):687–696, 2011.

[5] Cannoodt, R. et al. SCORPIUS improves trajectory infer-
ence and identifies novel modules in dendritic cell develop-
ment. preprint, Bioinformatics, Oct. 2016.

[6] Cerletti, D. et al. Fate trajectories of CD8 + T cells in chronic
LCMV infection. preprint, Immunology, Dec. 2020.

11

[7] Damrich, S. and Hamprecht, F.A. On UMAP’s true loss
function. arXiv:2103.14608 [cs, stat], Apr. 2021. arXiv:
2103.14608.

[8] Ding, J., Condon, A. and Shah, S.P. Interpretable dimen-
sionality reduction of single cell transcriptome data with
deep generative models. Nature communications, 9(1):1–13,
2018.

[9] Eraslan, G. et al. Single-cell rna-seq denoising using a
deep count autoencoder. Nature communications, 10(1):1–
14, 2019.

[10] Grønbech, C.H. et al. scvae: Variational auto-encoders
for single-cell gene expression data. Bioinformatics,
36(16):4415–4422, 2020.

[11] Hinton, G.E. and Salakhutdinov, R.R. Reducing the
dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[12] Hochgerner, H. et al. Conserved properties of dentate
gyrus neurogenesis across postnatal development revealed
by single-cell RNA sequencing. Nature Neuroscience,
21(2):290–299, Feb. 2018.

[13] Kingma, D.P. and Ba, J. Adam: A method for stochastic
optimization, 2017.

[14] Kingma, D.P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[15] Kobak, D. and Berens, P. The art of using t-SNE for single-
cell transcriptomics. Nature Communications, 10(1):5416,
Dec. 2019.

[16] Lin, E., Mukherjee, S. and Kannan, S. A deep adversarial
variational autoencoder model for dimensionality reduction
in single-cell rna sequencing analysis. BMC bioinformatics,
21(1):1–11, 2020.

[17] Lopez, R. et al. Deep generative modeling for single-cell
transcriptomics. Nature methods, 15(12):1053–1058, 2018.

[18] Luo, Z. et al. scgae: topology-preserving dimensionality re-
duction for single-cell rna-seq data using graph autoencoder.
bioRxiv, 2021.

[19] Maaten, L.v.d. and Hinton, G. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(86):2579–2605,
2008.

[20] Martinetz, T. and Schulten, K. Topology representing net-
works. Neural Networks, 7(3):507–522, Jan. 1994.

[21] McInnes, L., Healy, J. and Melville, J. UMAP: Uniform
Manifold Approximation and Projection for Dimension Re-
duction. arXiv:1802.03426 [cs, stat], Sept. 2020. arXiv:
1802.03426.

[22] Moon, K.R. et al. Visualizing structure and transitions in
high-dimensional biological data. Nature Biotechnology,
37(12):1482–1492, Dec. 2019.

[23] Moor, M. et al. Topological Autoencoders.
arXiv:1906.00722 [cs, math, stat], Feb. 2020. arXiv:
1906.00722.

[24] Paszke, A. et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. arXiv:1912.01703 [cs,
stat], Dec. 2019. arXiv: 1912.01703.

[25] Perret, B. et al. Higra: Hierarchical Graph Analysis. Soft-
wareX, 10:100335, July 2019.

[26] Qiu, P. et al. Extracting a cellular hierarchy from high-
dimensional cytometry data with spade. Nature biotechnol-
ogy, 29(10):886–891, 2011.

[27] Qiu, X. et al. Reversed graph embedding resolves complex
single-cell trajectories. Nature Methods, 14(10):979–982,
Oct. 2017.

[28] Saelens, W. et al. A comparison of single-cell trajectory
inference methods. Nature Biotechnology, 37(5):547–554,
May 2019.

[29] Street, K. et al. Slingshot: cell lineage and pseudotime
inference for single-cell transcriptomics. BMC Genomics,
19(1):477, June 2018.

[30] Szubert, B. et al. Structure-preserving visualisation of high
dimensional single-cell datasets. Scientific reports, 9(1):1–
10, 2019.

[31] Tian, T. et al. Clustering single-cell rna-seq data with a
model-based deep learning approach. Nature Machine In-
telligence, 1(4):191–198, 2019.

[32] Waddington, C.H. The strategy of the genes : a discussion
of some aspects of theoretical biology. Routledge Library
Editions: 20th Century Science. Routledge, 1957.

[33] Wolf, F.A. et al. PAGA: graph abstraction reconciles cluster-
ing with trajectory inference through a topology preserving
map of single cells. Genome Biology, 20(1):59, Mar. 2019.

[34] Zheng, G.X.Y. et al. Massively parallel digital transcriptional
profiling of single cells. Nature Communications, 8(1), Apr.
2017.

12

A. Cosine loss generalization

The definition of a vertex’ degree in a graph as the num-
ber of incident edges to it is not perfect as it does not take
into account the noisiniess of the graph. On real datasets,
we may have stray clusters which lead to noisy edges in the
density graph. These usually manifest as edges with only
one point contributing to them in high dimension. This
leads to vertices with an effective degree of 2 that have a
higher degree due to these noisy edges, and are thus ignored
by the cosine loss.

To remedy this we introduce a different definition of de-
gree. We consider a threshold t ∈ [0, 100] and define the
degree of a vertex as the smallest number of incident edges
that account for t% of all points contributing to the vertex’s
incident edges. As t gets closer to a hundred we converge
to the original definition of degree.

More formally put, consider a weighted graph
G = (V,E,W) and a function Γ that returns incident
edges to a given vertex sorted by their weights. This
alternative definition of a vertex’s degree is then:

deg(v, t) = min
n=1...|Γ(v)|

n

s.t.
∑n
i=1WΓ(v)i∑|Γ(v)|
j=1 WΓ(v)j

≥ t

100

We can clearly see that when t = 100 we obtain the
classical definition of degree. As this generalization has not
improved the visualization quality drastically, we opted for
the simpler version of the cosine loss in the main paper.

B. Ablation study

In order to better visualize the contributions of each ele-
ment of our method, we conducted an ablation study of the
different loss parameters and evaluated their impact both
qualitatively and quantitatively.

B.1. Loss parameters

The first phenomenon that is studied is the influence of
dropping loss terms entirely. The reconstruction loss is al-
ways kept since it is necessary for the embeddings to con-
tain salient information about the data. Not all combinations
of loss parameters will be studied but only those that should
be interesting (for example, using only the cosine loss does
not make much sense so it is not an interesting scenario).

We will not study the influence of the weights for every
loss since the default weights of 1 lead to good performance
and this configuration significantly reduces the dimension
of the hyperparameter space. All experiments are described
in table 2.

Experiment Lrec Lpush-pull Lcomp Lcos (weight)
A X
B X X
C X X
D X X X
E X X X(50)
F X X X X(50)

Table 2: List of loss parameters for our ablations.

Figure 8: Results of the ablations on the PHATE generated
dataset, coloured by groundtruth clusters.

Figure 9: Results of the ablations on the T-cell dataset,
coloured by phenotypes.

Figure 10: Results of the ablations on the endocrine pan-
creas dataset, coloured by cell types.

13

Type of metric Local Global Voronoi

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

λpp = 0, λcomp = 0, λcos = 0 34.62 19.09 0.66 0.66 0.56 0.56 70.01 38.98
λpp = 0, λcomp = 1, λcos = 0 38.54 23.20 0.80 0.79 0.74 0.73 70.44 35.24
λpp = 1, λcomp = 0, λcos = 0 48.19 25.05 0.78 0.76 0.72 0.70 79.68 56.02
λpp = 1, λcomp = 1, λcos = 0 48.70 26.40 0.81 0.78 0.74 0.72 79.26 55.93
λpp = 1, λcomp = 0, λcos = 50 45.54 22.71 0.80 0.77 0.74 0.72 78.94 52.97
λpp = 1, λcomp = 1, λcos = 50 46.00 24.60 0.81 0.80 0.75 0.74 78.85 53.77

(a) PHATE generated dataset.

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

λpp = 0, λcomp = 0, λcos = 0 34.52 4.17 0.81 0.85 0.57 0.62 65.37 30.83
λpp = 0, λcomp = 1, λcos = 0 24.88 2.32 0.65 0.69 0.53 0.59 46.30 11.11
λpp = 1, λcomp = 0, λcos = 0 43.07 3.07 0.77 0.79 0.71 0.77 73.79 50.68
λpp = 1, λcomp = 1, λcos = 0 44.69 2.93 0.73 0.79 0.66 0.75 72.95 46.75
λpp = 1, λcomp = 0, λcos = 50 35.64 2.77 0.73 0.75 0.70 0.75 68.44 38.82
λpp = 1, λcomp = 1, λcos = 50 39.79 2.85 0.71 0.74 0.71 0.78 69.24 38.04

(b) Endocrine pancreas dataset.

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

λpp = 0, λcomp = 0, λcos = 0 29.24 2.20 0.40 0.33 0.40 0.42 35.17 4.50
λpp = 0, λcomp = 1, λcos = 0 40.65 1.24 0.15 0.17 0.20 0.20 28.75 2.75
λpp = 1, λcomp = 0, λcos = 0 29.72 1.28 0.42 0.26 0.36 0.39 47.19 18.63
λpp = 1, λcomp = 1, λcos = 0 45.55 1.15 0.38 0.23 0.35 0.38 37.71 16.29
λpp = 1, λcomp = 0, λcos = 50 29.24 1.23 0.37 0.24 0.42 0.44 44.73 12.16
λpp = 1, λcomp = 1, λcos = 50 37.25 1.15 0.31 0.19 0.40 0.41 38.41 12.85

(c) T-cells dataset.

Table 3: Quantitative results in different scenarios for DTAE’s loss weights.

Rel. Perf.
λpp = 0, λcomp = 0, λcos = 0 81.27
λpp = 0, λcomp = 1, λcos = 0 67.60
λpp = 1, λcomp = 0, λcos = 0 92.04
λpp = 1, λcomp = 1, λcos = 0 90.66
λpp = 1, λcomp = 0, λcos = 50 87.24
λpp = 1, λcomp = 1, λcos = 50 86.99

Table 4: Relative performance out of a hundred over all
datasets and metrics.

The performance will be evaluated both qualitatively and
quantitatively on all three discussed datasets to demonstrate
as clearly as possible the impact of every loss term.

As can be seen in figures 8,9 and 10, the compactness
loss alone is not sufficient to obtain a good representation

since it has no repulsive force. The reconstruction loss helps
to avoid a total collapse but is not sufficient to prevent a
partial collapse, as visible in the endocrine pancreas and the
T-cell datasets. While the push-pull loss already gives good
results when used alone, since the tree structure is visible,
adding the compactness loss yields embeddings in which
the points lie compactly along the tree. Without the cosine
loss, however, this combination can lead to sparse repre-
sentation due to the fact that seeds of second order Voronoı̈
cells do not necessarily lie in their cell. This means that
points will not necessarily be spread out along the line be-
tween two centroids but only lie inside the intersection of
the line between the two centroids and their second order
Voronoı̈ cell, which may be much smaller than the full line
between the centroids. Using only the push-pull and co-
sine loss can lead to satisfying results, but the embedding is
more spread out than with the compactness loss. Adding the

14

Type of metric Local Global Voronoi

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order All

Pearson Spearman Pearson Spearman
λcos = 1 45.83 1.15 0.37 0.24 0.38 0.39 37.30 16.36 95.68
λcos = 2 44.77 1.11 0.35 0.24 0.40 0.40 37.90 16.39 95.34
λcos = 5 45.22 1.09 0.37 0.20 0.40 0.45 37.38 14.12 93.30
λcos = 10 44.29 1.12 0.35 0.18 0.42 0.46 36.40 13.66 91.83
λcos = 15 43.50 1.14 0.29 0.15 0.44 0.46 38.78 14.59 90.28
λcos = 20 43.08 1.17 0.33 0.17 0.42 0.46 37.43 14.41 91.74
λcos = 50 37.25 1.15 0.31 0.19 0.40 0.41 38.41 12.85 87.50

Table 5: Quantitative results on the T-cells dataset when varying the cosine loss weight. The weights for the push-pull and
compactness losses are set to one. The rightmost column contains the average performance over all metrics for a given
method.

cosine loss makes all of the results cleaner and helps with
the density of the point cloud. This effect is discussed in the
next section.

From a quantitative point of view, adding all of these
losses leads to worse performances than just using the push-
pull loss alone. Since the compactness and cosine losses
are designed with visualization in mind, they can alter the
fidelity of the embedding. For example, making the points
tighter along the density tree will lead to pairwise distances
that are preserved more poorly, which is an effect that we
indeed observe in the global metrics in table 3.
Nonetheless, when looking at aggregated performances in
table 4 we can see that all experiments except when us-
ing the compactness loss alone still perform comparatively.
As such, the increase in qualitative performance stemming
from the addition of losses is not done at the expense of the
preservation of the data’s intrinsic structure. In particular,
the push-pull loss alone drastically improves the visualiza-
tion not only qualitatively, but also quantitatively.

B.2. Cosine loss weight

A parameter that is interesting to study in more detail
is the cosine loss weight. While a lot of the other losses
have a significant impact on the embeddings, the cosine
loss is mostly cosmetic and it is important to understand
its behaviour for low and high weights. The cosine loss
weight will only be studied on on the T-cell dataset since
it is enough to demonstrate its impact on quantitative and
qualitative results.

As can be seen in figure 11 the cosine loss straightens
the branches for every weight as intended. However, with
higher weights it also has a density regularizing effect. As
its weight increases, we obtain a more homogeneous and
less clumped point cloud. While there is no clear explana-
tion for this behavior, an hypothesis is that the higher weight
means that this criterion will be optimized with higher pri-

Figure 11: Results obtained on the chronic infection subset
of the T-cell dataset when varying the cosine loss weight,
coloured by phenotypes.

ority during the finetuning. Since the pretraining produces
dense embedding and this cosine loss has no incentive to
produce sparse embeddings, this denser structure is kept
during training. On the contrary, the push-pull loss can have
a sparsifying effect since the seeds of second order Voronoı̈
cells do not necessarily lie in their cells. When the cosine
loss weight is smaller, this loss is optimized with higher
priority which would lead to the sparser embeddings. All
of this is intimately linked to the dynamics of neural net-
work training and not only to minimizers of each criterion,
making a precise study of this process highly complex.

From a quantitative point of view, a slight decrease in
performance is visible in table 5 for all metrics except
for the preservation of geodesic distances or of first order
Voronoı̈ diagrams. As a result, the overall performance de-
creases noticeably when increasing the cosine loss weight,
see the rightmost column in table 5.

This again illustrates the trade-offs between quantitative
and qualitative performance, where even though a method
performs slightly worse quantitatively it might still produce
results that are easier to interpret for humans.

15

C. High resolution results

Figure 12: Results obtained on the endocrine pancreatic cells dataset, colored by cell types.

Figure 13: Results obtained on the chronic infection subset of the T-cell dataset, colored by phenotypes.

16

D. Complete quantitative results

Type of metric Local Global Voronoi

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

DTAE (Ours) 46.00 24.60 0.81 0.80 0.75 0.74 78.85 53.77
AE 34.67 19.18 0.63 0.64 0.55 0.54 70.56 38.64
PHATE 51.33 60.44 0.50 0.46 0.54 0.52 71.12 30.40
UMAP 55.13 67.92 0.53 0.48 0.54 0.51 75.18 46.19
SAUCIE 56.62 37.61 0.81 0.79 0.75 0.73 82.98 65.07
DCA 40.41 21.29 0.64 0.64 0.59 0.59 73.83 43.17
scVI 36.51 19.68 0.69 0.68 0.67 0.67 69.94 36.98
Force Atlas 2 51.85 64.38 0.59 0.55 0.56 0.54 75.79 46.44
PCA 39.87 22.36 0.77 0.74 0.67 0.66 73.14 42.53

(a) PHATE generated dataset.

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

DTAE (Ours) 39.79 2.85 0.71 0.74 0.71 0.78 69.24 38.04
AE 34.12 4.24 0.81 0.84 0.58 0.62 65.12 30.53
PHATE 30.92 3.70 0.64 0.65 0.71 0.78 57.22 22.27
UMAP 30.41 4.67 0.57 0.58 0.79 0.82 57.79 21.21
SAUCIE 38.94 3.69 0.81 0.81 0.71 0.73 69.46 37.93
DCA 30.93 5.01 0.41 0.78 0.37 0.63 64.29 27.98
scVI 32.99 3.80 0.67 0.68 0.65 0.67 61.29 27.52
Force Atlas 2 25.11 3.96 0.28 0.62 0.21 0.74 46.24 13.08
PCA 21.84 1.94 0.69 0.67 0.87 0.87 48.65 15.50

(b) Endocrine pancreas dataset.

Metric ARI k-NN Euclidean Geodesic 1st order 2nd order
Pearson Spearman Pearson Spearman

DTAE (Ours) 37.25 1.15 0.31 0.19 0.40 0.41 38.41 12.85
AE 28.87 2.17 0.38 0.32 0.43 0.43 34.84 4.58
PHATE 32.00 1.25 -0.02 0.02 0.42 0.43 33.70 3.45
UMAP 23.41 1.52 0.11 0.21 0.46 0.44 29.24 5.28
SAUCIE 26.86 1.59 0.21 0.25 0.43 0.42 34.30 4.63
DCA 0.10 1.34 0.45 0.62 0.00 0.26 3.17 1.04
scVI 28.69 1.26 0.43 0.23 0.38 0.46 33.31 5.67
Force Atlas 2 23.83 0.93 0.02 0.01 0.05 0.41 28.39 3.09
PCA 20.82 1.10 0.18 0.16 0.61 0.57 32.30 8.27

(c) T-cells dataset.

Table 6: Full Quantitative results on all studied datasets. Metrics are described in section 6 and higher values indicate better
performance.

17

