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Abstract

Single cell RNA sequencing (scRNA-seq) data makes
studying the development of cells possible at unparalleled
resolution. Given that many cellular differentiation pro-
cesses are hierarchical, their scRNA-seq data is expected
to be approximately tree-shaped in gene expression space.
Inference and representation of this tree-structure in two
dimensions is highly desirable for biological interpreta-
tion and exploratory analysis. Our two contributions are
an approach for identifying a meaningful tree structure
from high-dimensional scRNA-seq data, and a visualiza-
tion method respecting the tree-structure. We extract the
tree structure by means of a density based minimum span-
ning tree on a vector quantization of the data and show that
it captures biological information well. We then introduce
DTAE, a tree-biased autoencoder that emphasizes the tree
structure of the data in low dimensional space. We com-
pare to other dimension reduction methods and demonstrate
the success of our method experimentally. Our implementa-
tion relying on PyTorch [15] and Higra [16] is available at
github.com/hci-unihd/DTAE.

1. Introduction
Single-cell RNA sequencing (scRNA-seq) data allows

analyzing gene expression profiles at the single-cell level,
thus granting insights into cell behavior at unparalleled res-
olution. In particular, this permits studying the cell devel-
opment through time more precisely.

[21]’s popular metaphor likens the development of cells
to marbles rolling down a landscape. While cells are all

*quentin.garrido@edu.esiee.fr

grouped at the top of the hill when they are not yet differ-
entiated (e.g. stem cells), as they start rolling down, they
can take multiple paths and end up in distinct differentiated
states, or cell fates. In the illustrated case, the typical result-
ing topology of the trajectories is a tree.

However, for every cell, hundreds or thousands of ex-
pressed genes are recorded and this data is noisy. To sum-
marize such high-dimensional data, it is useful to visualize
it in two or three dimensions.

Our goal, then, is to identify the hierarchical (tree) struc-
ture of the scRNA-seq data and subsequently reduce its
dimensionality while preserving the extracted hierarchical
properties present. We address this in two steps, illustrated
in figure 1.

First, we cluster the scRNA-seq data in high-dimensional
space to obtain a more concise and robust representa-
tion. Then, we capture the hierarchical structure as a min-
imum spanning tree (MST) on our cluster centers with
edge weights reflecting the data density in high-dimensional
space. We dub the resulting tree “density tree”.

Second, we embed the data to low dimension with an au-
toencoder, a type of artificial neural network. In addition to
the usual aim of reconstructing its input, we bias the autoen-
coder to also reproduce the density tree in low-dimensional
space. As a result, the hierarchical properties of the data are
emphasized in our visualization.

2. Related Work
There are various methods for visualizing scRNA-seq

data and trajectory inference and many of them have been
reviewed for instance in [19]. We therefore mention only
some exemplary approaches here. SCORPIUS [5] was one
of the first such methods. It is limited to linear topolo-
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Figure 1. Schematic method overview. a) High-dimensional data. b) Proposed density tree. After computing the k-means centroids on the
data, we build a tree based on the data density between pairs of centroids. c) DTAE. An autoencoder is used to learn a representation of
our data. This embedding is regularized by the previously computed tree in order to preserve its hierarchical structure in low-dimensional
space. d) The final DTAE embedding. After training of the autoencoder, the bottleneck layer visualizes the data in low dimension and
respects the density structure.

gies rather than trees. Improvements include SLINGSHOT
[20] which infers trajectories using any dimensionality re-
duction method; MONOCLE 2 [18] which embeds a tree
on k-means centroids without relying on a neural network;
SPADE [4, 17] which downsamples to equalize the data
density and computes an MST on agglomerative clusters,
but does not inform the MST by the actual data density and
only visualizes the tree itself; PAGA [22] which learns a hi-
erarchical graph representation of the data and PHATE [13]
which computes diffusion probabilities on the data before
applying multi-dimensional scaling.

Another noteworthy method, Poincaré maps [9], pro-
duces an embedding in hyperbolic space which is better
suited for representing trees than Euclidean space.

The general purpose dimension reduction methods t-
SNE [10] and UMAP [12, 3] are also popular for visualizing
scRNA-seq data.

Other recent methods rely on neural networks, and are
thus more similar to ours. Like our method, SAUCIE [1]
relies on an autoencoder but focuses more on batch effect
removal than hierarchical properties. Topological autoen-
coders [14] are closest to our idea of retaining topologi-
cal properties during dimension reduction. Their method
is couched in terms of Persistent Homology, but as they
use only 0-dimensional topological features, this actually
amounts to preserving the MST of the data. They use Eu-
clidean distance and compute the MST on all points which

produces less stable results than the proposed density-based
approach on cluster centroids.

3. Approximating the High-dimensional
scRNA-seq Data with a Tree

To summarize the high-dimensional data in terms of a
tree the minimum spanning tree (MST) on the Euclidean
distances is an obvious choice. This route is followed
by [14] who reproduce the MST obtained on their high-
dimensional data in their low-dimensional embedding.

However, scRNA-seq data can be noisy, and an MST
built on all of our data is very sensitive to noise. Therefore,
we first run k-means clustering on the original data yielding
more robust centroids for the MST construction and also
reducing downstream complexity.

A problem with the Euclidean MST, illustrated in fig-
ure 2, is that two centroids can be close in Euclidean space
without having many data points between them. In such a
case an Euclidean MST would not capture the skeleton of
our original data well.

But it is crucial that the extracted tree follows the dense
regions of the data if we want to visualize developmental
trajectories of differentiating cells: A trajectory is plausible
if we observe intermediate cell states and unlikely if there
are jumps in the development. By preferring tree edges in
high density regions of the data we ensure that the computed
spanning tree is biologically plausible.
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Figure 2. (a, b) Comparison of MST on k-means centroids using Euclidean distance or density weights. The data was generated using the
PHATE library [13], with 3 branches in 2D. Original data points are transparently overlayed to better visualize their density. While the
MST based on the Euclidean distance places connections between centroids that are close but have only few data points between them (see
red ellipse), our MST based on the data density instead includes those edges that lie in high density regions (see pink ellipse). (c) Complete
graph over centroids and its Hebbian edge weights. Infinite-weight edges, that is edges not supported by data, are omitted for clarity.

Following this rationale, we build the MST on the com-
plete graph over centroids whose edge weights are given
by the density of the data along each edge instead of its
Euclidean distance. This results in a tree that we believe
captures Waddington’s hypothesis better than merely con-
sidering cumulative differences in expression levels.

To estimate the support that a data sample provides for
an edge, we follow [11]. Consider the complete graph
G = (C,E) such that C = {c1, . . . , ck} is the set of
centroids. In the spirit of Hebbian learning, we count, for
each edge, how often its incident vertices are the two closest
centroids to any given datum. As pointed out by [11] this
amounts to an empirical estimate of the integral of the den-
sity of observations across the second-order Voronoı̈ region
associated with this pair of cluster centers. Finally, we com-
pute the maximum spanning tree over these Hebbian edge
weights or, equivalently, the minimum spanning tree over
their inverses. Our strategy for building the tree is summa-
rized in algorithm 1.

Our data-density based tree follows the true shape of the
data more closely than a MST based on the Euclidean dis-
tance weights as illustrated in figure 2. We claim this in-
dicates it being a better choice for capturing developmental
trajectories.

Having extracted the tree shape in high dimensions our
goal is to reproduce this tree as closely as possible in our
embedding.

4. Density-Tree biased Autoencoder (DTAE)
We use an autoencoder to faithfully embed the high-

dimensional scRNA-seq data in a low-dimensional space
and bias it such that the topology inferred in high-
dimensional space is respected. An autoencoder is an
artificial neural network consisting of two concatenated
subnetworks, the encoder f , which maps the input to
lower-dimensional space, also called embedding space, and
the decoder g, which tries to reconstruct the input from

the lower-dimensional embedding. It can be seen as a
non-linear generalization of PCA. We visualize the low-
dimensional embeddings hi = f(xi) and hence choose
their dimension to be 2.

The autoencoder is trained by minimizing the following
loss terms, including new ones that bias the autoencoder to
also adhere to the tree structure.

Algorithm 1 Density tree generation
Require: High-dimensional data X ∈ Rn×d
Require: Number of k-means centroids k

procedure GENERATETREE(X, k)
C ← KMEANS(X, k) . O(nkdt) with t the number

of iterations
G = (C,E) the complete graph on our centroids
for {i, j} a two-element subset of {1, . . . , k} do .

O(k2)
di,j = 0

end for
for i = 1, . . . , |X| do . O(nk)

a← arg min
j=1,...,k

||xi − cj ||2 . Nearest centroid

b← arg min
j=1,...,k
j 6=a

||xi − cj ||2 . Second nearest

centroid
da,b = da,b + 1 . Increase nearest centroids’

edge strength
end for
for {i, j} a two-element subset of {1, . . . , k} do .

O(k2)
Wi,j ← d−1i,j . Edge weights are inverse edge

strengths
end for
T ← MST(G,W ) . O(k2 log k)
return T, d . Retains the density tree and the edge

strengths
end procedure
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4.1. Reconstruction Loss

The first term of the loss is the reconstruction loss, de-
fined as

Lrec = MSE(X, g(f(X))) =
1

N

∑
xi∈X

||xi − g(f(xi))||22.

(1)
This term is the typical loss function for an autoencoder

and ensures that the embedding is as faithful to the original
data as possible, forcing it to extract the most salient data
features.

4.2. Push-Pull Loss

The main loss term that biases the DTAE towards the
density tree is the push-pull loss. It trains the encoder to
embed the data points such that the high-dimensional data
density and in particular the density tree are reproduced in
low-dimensional-space.

We find a centroid in embedding space by averaging the
embeddings of all points assigned to the corresponding k-
means cluster in high-dimensional space. In this way, we
can easily relate the centroids in high and low dimension
and will simply speak of centroids when the ambient space
is clear from the context.

For a given state of the encoder and a resulting embed-
ding hi = f(xi), xi ∈ X , we define chi,1 and chi,2 as the
two centroids closest to hi in embedding space. We simi-
larly define c′hi,1

and c′hi,2
as the low-dimensional centroids

corresponding to the two closest centroids of xi in high-
dimensional space. As long as c′hi,1

, c′hi,2
differ from chi,1

and chi,2, the encoder places hi next to different centroids
than in high-dimensional space. To ameliorate this, we want
to move c′hi,1

, c′hi,2
and hi towards each other while sepa-

rating chi,1 and chi,2 form hi. The following preliminary
version of our push-pull loss implements this:

L̃push(hi) = − (||hi − chi,1||2 + ||hi − chi,2||2)
2 (2)

L̃pull(hi) =
(
||hi − c′hi,1||2 + ||hi − c

′
hi,2||2

)2
(3)

L̃push-pull =
1

N

∑
xi∈X

L̃push(f(xi)) + L̃pull(f(xi)). (4)

We have inserted hi = f(xi) in equation (4).
The push loss decreases as hi and the currently closest

centroids, chi,1 and chi,2 are placed further apart from each
other, while the pull loss decreases when hi gets closer
to the correct centroids c′hi,1

and c′hi,2
. Indeed, the push-

pull loss term is minimized if and only if each embed-
ding hi lies in the second-order Voronoı̈ region of those
low-dimensional centroids whose high-dimensional coun-
terparts contain the data point xi in their second-order
Voronoı̈ region. In other words, the loss is zero precisely

Figure 3. Density-tree on the low-dimensional centroids and super-
imposed on the DTAE embedded data, which is colored by ground
truth branches. The vertex colors correspond to their geodesic dis-
tance to the red vertex. The data was generated using the PHATE
library.

when we are reproducing the edge densities from high di-
mension in low dimension.

Note that we let the gradient flow through both the in-
dividual embeddings and through the centroids which are
means of embeddings themselves.

This naı̈ve formulation of the push-pull loss has the
drawback that it can become very small if all embeddings
are nearly collapsed into a single point, which is undesirable
for visualization. Therefore, we normalize the contribution
of every embedding hi by the distance between the two cor-
rect centroids in embedding space. This prevents the col-
lapsing of embeddings and also ensures that each datapoint
xi contributes equally regardless of how far apart their two
closest centroids are in embedding space. The push-pull
loss thus becomes

Lpush(hi) = −

(
||hi − chi,1||2 + ||hi − chi,2||2

||c′hi,1
− c′hi,2

||2

)2

(5)

Lpull(hi) =

(
||hi − c′hi,1

||2 + ||hi − c′hi,2
||2

||c′hi,1
− c′hi,2

||2

)2

(6)

Lpush-pull =
1

N

∑
xi∈X

Lpush(f(xi)) + Lpull(f(xi)). (7)

So far, we only used the density information from high-
dimensional space for the embedding, but not the extracted
density tree itself. The push-pull loss in equation (7) is ag-
nostic to the positions of the involved centroids within the
density tree, only their Euclidean distance to the embed-
ding hi matters. In contrast, the hierarchical structure is
important for the biological interpretation of the data: It is
much less important if an embedding is placed close to two
centroids that are on the same branch of the density tree
than it is if the embedding is placed between two different

4



branches. In the first case, cells are just not ordered cor-
rectly within a trajectory, while in the second case we get
false evidence for an altogether different pathway. The sit-
uation is illustrated on toy data in figure 3. There are many
points between the red centroid on the cyan branch and the
purple branch, which can falsely indicate a circluar trajec-
tory.

We tackle this problem by reweighing the push-pull loss
with the geodesic distance along the density tree. The
geodesic distance dgeo(ci, cj) with ci, cj ∈ C is defined as
the number of edges in the shortest path between ci and cj
in the density tree. By correspondence between centroids in
high- and low-dimensional space, we can extend the defini-
tion to centroids in embedding space.

Centroids at the end of different branches in the density
have a higher geodesic distance than centroids nearby on
the same branch, see figure 3. By weighing the push-pull
loss contribution of an embedded point by the geodesic dis-
tance between its two currently closest centroids, we focus
the push-pull loss on embeddings which erroneously lie be-
tween different branches.

The geodesic distances can be computed quickly in
O(k2) via breadth first search and this only has to be done
once before training the autoencoder.

The final version of our push-pull loss becomes

Lpush-pull =
1

N

∑
xi∈X

(
dgeo(cf(xi),1, cf(xi),2)

· (Lpush(f(xi)) + Lpull(f(xi)))
)
.

(8)

Note, that the normalized push-pull loss in equation (7) and
the geodesically reweighted push-pull loss in (8) both also
get minimized if and only if the closest centroids in em-
bedding space correspond to the closest centroids in high-
dimensional space.

4.3. Compactness loss

The push-pull loss replicates the empirical high-
dimensional data density in embedding space by moving the
embeddings into the correct second-order Voronoı̈ region,
which can be large or unbounded. This does not suffice
for an evidently visible tree structure in which the skeleton
of the embedded data should be locally one-dimensional.
More precisely, an embedding should not only be in the cor-
rect second-order Voronoı̈ region, but lie compactly around
the line between its two centroids. To achieve this, we add
the compactness loss, which is just another instance of the

Figure 4. Illustration of a ghost point and its addition to the min-
imum spanning tree. The pink vertex is obtained as the mean of
the red points. It represent the end of a branch and the red vertex
the corresponding ghost point. Without the ghost point, all pink
points want to lie on the edge on the left of the pink vertex. This
is incompatible with the definition of the pink vertex as the mean
of the pink points, motivating the addition of ghost points.

pull loss

Lcomp =
1

N

∑
xi∈X

(
||hi − c′hi,1

||2 + ||hi − c′hi,2
||2

||c′hi,1
− c′hi,2

||2

)2

(9)

=
1

N

∑
xi∈X

Lpull(hi), (10)

where we wrote hi instead of f(xi) for succinctness. The
compactness loss is minimized if the embedding hi is ex-
actly between the correct centroids c′hi,1

and c′hi,2
and has

elliptic contour lines with foci at the centroids.

4.4. Cosine loss

Since the encoder is a powerful non-linear map it can
introduce artifactual curves in the low-dimensional tree
branches. However, especially tight turns can impede the
visual clarity of the embedding. As a remedy, we pro-
pose an optional additional loss term that tends to straighten
branches.

Centroids at which the embedding should be straight are
the ones within a branch, but not at a branching event of
the density tree. The former can easily be identified as the
centroids of degree 2.

Let c be a centroid in embedding space of degree 2 with
its two neighboring centroids nc,1 and nc,2. The branch is
straight at c if the two vectors c− nc,1 and nc,2 − c are par-
allel or, equivalently, if their cosine is maximal. Denoting
by C2 = {c ∈ C | deg(c) = 2} the set of all centroids
of degree 2, considered in embedding space, we define the
cosine loss as

Lcosine = 1− 1

|C2|

∑
c∈C2

(c− nc,1) · (nc,2 − c)
||c− nc,1||2 ||nc,2 − c||2

. (11)
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Essentially, it measures the cosine of the angles along the
tree branch and becomes minimal if all these angles are zero
and the branches straight.

4.5. Complete loss function

Combining the four loss terms of the preceding sections,
we arrive at our final loss

L = λrecLrec + λpush-pullLpush-pull + λcompLcomp + λcosLcos.
(12)

The relative importance of the loss terms, especially of
Lcomp and Lcos, which control finer aspects of the visualiza-
tion, might depend on the use-case. In practice, we found
λrec = λpush-pull = λcomp = 1 and λcos = 15 to work well.

4.6. Ghost points

As defined, our loss function can never be zero, as not
all points at the end of a branch can lie between the desired
centroids. To illustrate the problem consider a leaf centroid
c and the set S of embedding points whose mean it is. Typ-
ically, these embeddings should lie on the line from the leaf
centroid to the penultimate centroid c̃ of the branch accord-
ing to the compactness loss. In particular, the compactness
loss pulls them all to one side of the leaf centroid, which is
futile as the leaf centroid is by construction their mean, see
figure 4. To alleviate this small technical issue we add pairs
of “ghost points” g in high- and low-dimensional space at

g = c̃+
1

2
× (c− c̃). (13)

After computing the density tree, we change it by adding
the ghost points as new leaves and allowing the data points
corresponding to S to choose ghost points as one of their
nearest centroids. The push-pull and compactness losses
consider ghost points in embedding space like normal cen-
troids. As the ghost points are not a mean of embedding
points, all loss terms can now theoretically reach zero. As
an additional benefit the ghost centroids help to separate the
ends of branches from other branches in embedding space.

4.7. Training procedure

Firstly, we compute the k-means centroids, the edge den-
sities, the density tree, ghost points and geodesic distances.
This has to be done only once as an initialization step, see
algorithm 2. Secondly, we pretrain the autoencoder with
only the reconstruction loss via stochastic gradient descent
on minibatches. This provides a warm start for finetuning
the autoencoder with all losses in the third step.

During finetuning, all embedding points are needed to
compute the centroids in embedding space. Therefore, we
perform full-batch gradient descent during finetuning. The
full training procedure is described in algorithm 3.

We always used k = 50 centroids for k-means
clustering in our experiments. Our autoencoder always

Algorithm 2 Initialization
Require: Input data X

1: T ← TREEGENERATION(X)
2: Cghost ← GHOSTPOINTS(C)
3: C ← C ∪ Cghost
4: UPDATECLOSESTCENTROIDS(X,C) . Allow

choosing a ghost point
5: dgeo ← GEODESICDISTANCE(T )
6: C2 ← {c ∈ C | deg(c) = 2}

Algorithm 3 Training loop
Require: Autoencoder (g ◦ f)θ
Require: Pretraining epochs np, batch size b and learning

rate αp
Require: Finetuning epochs nf and learning rate αf
Require: Weight parameters for the loss

λrec,λpush-pull,λcomp,λcos
1: T,C,C2, dgeo ← INITIALIZATION(X)
2: #Pretraining
3: for t = 0, 1, . . . , np do
4: for i = 0, 1, . . . , np/b do
5: Sample a minibatch m from X
6: m̂← g(f(m))
7: L ← Lrec
8: θt+1 ← θt − αp∇L
9: end for

10: end for
11: #Finetuning
12: for t = np, . . . , np + nf do
13: h← f(X)
14: X̂ ← g(h)
15: L ← λrecLrec + λpush-pullLpush-pull + λcompLcomp +

λcosLcos
16: θt+1 ← θt − αf∇L
17: end for

has a bottleneck dimension of 2 for visualization. In
the experiments we used intermediate layer dimensions
d(input dimension), 2048, 256, 32, 2, 32, 256, 2048, d. We
omitted hidden layers of dimension larger than the input.
We use fully connected layers and ReLU activations after
every layer but the last encoder and decoder layer and em-
ploy the Adam [8] optimizer with learning rate 2×10−4 for
pretraining and 1 × 10−3 for finetuning unless stated oth-
erwise. We used a batch size of 256 for pretraining in all
experiments.

5. Results

In this section we show the performance of our method
on toy and real scRNA-seq datasets and compare it to a
vanilla autoencoder, PHATE, UMAP and PCA.
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Figure 5. Results obtained using data generated by the PHATE library. Branches are coloured by groundtruth labels.

5.1. PHATE generated data

We applied our method to an artificial dataset created
with the library published alongside [13], to demonstrate
its functionality in a controlled setting. We generated a toy
dataset whose skeleton is a tree with one backbone branch
and 9 branches emanating from the backbone consisting in
total of 10,000 points in 100 dimensions.

We pretrained for 150 epochs with a learning rate of
10−3 and finetuned for another 150 epochs with a learning
rate of 10−2.

Figure 5 shows the visualization results. The finetun-
ing significantly improves the results of the pretrained au-
toencoder, whose visualisation collapses the grey and green
branch onto the blue branch. Overall, DTAE, PHATE and
UMAP achieve satisfactory results that make the true tree
structure of the data evident. While PHATE and UMAP
produce overly crisp branches compared to the PCA result,
the reconstruction loss of our autoencoder guards us from
collapsing the branches into lines. PHATE appears to over-
lap the cyan and yellow branches near the backbone and
UMAP introduces artificially curved branches. The results
on this toy dataset demonstrate that our method can embed
high-dimensional hierarchical data into 2D and emphasize
its tree-structure while avoiding to collapse too much infor-
mation compared to state-of-the-art methods. In our method
all branches are easily visible.

5.2. Endocrine pancreatic cell data

We evaluated our method on the data from [2]. It repre-
sents endocrine pancreatic cells at different stages of their
development and consists of gene expression information
for 36351 cells and 3999 gens. Preprocessing information
can be found in [2]. We pretrained for 300 epochs and used
250 epochs for finetuning.

Figures 6 and 7 depicts visualizations of the embryonic
pancreas development with different methods. Our method
can faithfully reproduce the tree structure of the data, espe-
cially for the endocrine subtypes. The visualized hierarchy
is biologically plausible, with a particularly clear depiction
of the α-, β- and ε-cell branches and a visible, albeit too
strong, separation of the δ-cells. This is in agreement with
the results from [2]. UMAP also performs very well and at-
taches the δ-cells to the main trajectory. But it does not ex-
hibit the ε-cells are a distinct branch and the α- and β-cell
branches are not as prominent as in DTAE. PHATE does
not manage to separate the δ- and ε-cells discernibly from
the other endocrine subtypes. As on toy data in figure 5, it
produces overly crisp branches for the α- and β-cells. PCA
mostly overlays all endocrine subtypes. All methods but the
vanilla autoencoder show a clear branch with tip and anci-
nar cells and one via EP and Fev+ cells to the endocrine
subtypes, but only our method manages to also hint at the
more generic trunk and multipotent cells from which these
two major branches emanate. The ductal and Ngn3 low EP
cells overlap in all methods.
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Figure 6. Pruned density MST superimposed over our results on the endocrine pancreatic cell dataset, coloured by cell subtypes. We use
finer labels for the endocrine cells. Darker edges represent denser edges. Only edges with more than 100 points contributing to them are
plotted here

Figure 7. Results obtained on the endocrine pancreatic cells
dataset. Colours correspond to cell types, with finer labels for the
endocrine cells.

It is worth noting that the autoencoder alone was not able
to visualize meaningful hierarchical properties of the data.
However, the density tree-biased finetuning in DTAE made
this structure evident, highlighting the benefits of our ap-
proach.

In figure 6, we overlay DTAE’s embedding with a pruned
version of the density tree and see that the visualization
closely follows the tree structure around the differentiated
endocrine cells. This combined representation of low-
dimensional embedding and overlayed density tree further
facilitates the identification of branching events and shows
the full power of our method. It also provides an explana-
tion for the apparent separation of the δ-cells. Since there

are relatively few δ-cells, they are not represented by a dis-
tinct k-means centroid.

Our method places more k-means centroids in the dense
region in the lower right part of DTAE’s panel in figure 6
than is appropriate to capture the trajectories, resulting in
many small branches. Fortunately, this does not result in
an exaggerated tree-shaped visualization that follows ev-
ery spurious branch, which we hypothesize is thanks to the
successful interplay between the tree bias and the recon-
struction aim of the autoencoder: If the biological signal
encoded in the gene expressions can be reconstructed by
the decoder from an embedding with enhanced hierarchi-
cal structure, the tree-bias shapes the visualization accord-
ingly. Conversely, an inappropriate tree-shape is prevented
if it would impair the reconstruction. Overall, the density
tree recovers the pathways identified in [2] to a large extent.
Only the trajectory from multipotent via tip to ancinar cells
includes an unexpected detour via the trunk and ductal cells,
which the autoencoder mends by placing the tip next to the
multipotent cells.

The density tree also provides useful information in con-
junction with other dimension reduction methods. In fig-
ure 6, we also overlay their visualizations with the pruned
density tree by computing the centroids in the respective
embedding spaces according to the k-means cluster as-
signments. The density tree can help finding branching
events and gain insights into the hierarchical structure of the
data that is visualized with an existing dimension reduction
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Figure 8. Pruned density MST superimposed over our results on the chronic part of the T-cell data, coloured by phenotypes. Darker edges
represent denser edges. Only edges with more than 100 points contributing to them are plotted here

method. For instance, together with the density tree, we can
identify the ε-cells as a separate branch and find the location
of the branching event into different endocrine subtypes in
the UMAP embedding.

5.3. T-cell infection data

We further applied our method to T-cell data of a chronic
and an acute infection, which was shared with us by the au-
thors of [6]. The data was preprocessed using the method
described in [23], for more details confer [6]. It con-
tains gene expression information for 19029 cells and 4999
genes. While we used the combined dataset to fit all dimen-
sion reduction methods, we only visualize the 13707 cells
of the chronic infection for which we have phenotype anno-
tations from [6] allowing us to judge visualization quality
from a biological viewpoint. We pretrained for 600 epochs
and used 250 epochs for finetuning.

Figures 8 and 9 demonstrate that our method makes the
tree structure of the data clearly visible. The visualized hier-
archy is also biologically significant: The two branches on
the right correspond to the memory-like and terminally ex-
hausted phenotypic states, which are identified as the main
terminal fates of the differentiation process in [6]. Further-
more, the purple branch at the bottom contains the prolif-
erating cells. Since the cell cycle affects cell transcription
significantly, those cells are expected to be distinct from the
rest.

It is encouraging that DTAE makes the expected bio-

Figure 9. Results obtained on the chronic infection from the T-cell
dataset, coloured by phenotypes.

logical structure apparent even without relying on known
marker genes or differential cell expression, which were
used to obtain the phenotypic annotations in [6].

Interestingly, our method places the branching event to-
wards the memory-like cells in the vicinity of the exhausted
cells, as does UMAP, while [6] recognized a trajectory di-
rectly from the early stage cells to the memory-like fate.
The exact location of a branching event in a cell differen-
tiation process is difficult to determine precisely. We con-
jecture that fitting the dimensionality reduction methods on
the gene expression measurements of cells from an acute
infection in addition to those from the chronic infection an-
alyzed in [6] provided additional evidence for the trajectory
via exhausted cells to the memory-like fate. Unfortunately,
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an in-depth investigation of this phenomenon is beyond the
scope of this methodological paper.

The competing methods expose the tree-structure of the
data less obviously than DTAE. The finetuning significantly
improves the results from the autoencoder, which shows
no discernible hierarchical structure. PHATE separates the
early cells, proliferating cells and the rest. But its layout
is very tight around the biologically interesting branching
event towards memory-like and terminally exhausted cells.
PCA exhibits only the coarsest structure and fails to sepa-
rate the later states visibly. The biological structure is de-
cently preserved in the UMAP visualization but the hierar-
chy is less apparent than in DTAE. Overall, our method ar-
guably outperforms the other visualization methods on this
dataset.

In figure 8, we again overlay our embedding with a
pruned version of the density tree and see that DTAE’s vi-
sualization indeed closely follows the tree structure. It is
noteworthy that even the circular behavior of proliferation
cells is accurately captured by a self-overlayed branch al-
though our tree-based method is not directly designed to
extract circular structure.

Figure 8 also shows the other dimension reduction meth-
ods in conjunction with the pruned density tree. Reassur-
ingly, we find that all methods embed the tree in a plausi-
ble way, i.e. without many self-intersections or oscillating
branches. This is evidence that our density tree indeed cap-
tures a meaningful tree structure of the data. As for the
endocrine pancreas dataset, the density tree can enhance hi-
erarchical structure in visualizations of existing dimension
reduction methods. It, for example, clarifies in the UMAP
plot that the pathway towards the terminally exhausted cells
is via the exhausted and effector like cells and not directy
via the proliferating cells.

6. Limitations

6.1. Hierarchy assumption

Our method is tailored to Waddington’s hierarchical
structure assumption of developmental cell populations in
which highest data density is along the developmental tra-
jectory. It produces convincing results in this setting as
shown above. However, if the assumption is violated, for in-
stance because the dataset contains multiple separate devel-
opmental hierarchies or a mixture of hierarchies and distinct
clusters of fully differentiated cell fates, the density tree
cannot possibly be a faithful representation of the dataset.
Indeed, in such a case our method yields a poor result. As an
example confer figure 10 with visualizations of the dentate
gyrus dataset from [7], preprocessed according to [23]. This
dataset consists of a mostly linear cell trajectory and sev-
eral distinct clusters of differentiated cells and consequently
does not meet our model’s assumption. Indeed, DTAE man-

Figure 10. Failure case: Highly clustered data violates our under-
ling assumption of a tree structure. Dentate gyrus data from [7]
with clusters coloured by groundtruth cluster assignments.

ages to only extract some linear structures, but overall fails
on this dataset similar to PHATE. UMAP seems to produce
the most useful visualization here.

One could adapt our method by extracting a forest of
disconnected density trees by cutting edges below a den-
sity threshold. However, if little is known a priori about the
structure of the dataset a more general dimension reduction
method might be preferable for initial data exploration.

6.2. Neural network limitations

Artificial neural networks are powerful non-linear func-
tions that can produce impressive results. Unfortunately,
they require the choice of a number of hyperparameters,
such as the dimension of the hidden layers and the learning
rate, making them less end-user friendly than their classical
counterparts.

7. Conclusion
We have introduced a new way of capturing the hierar-

chical properties of scRNA-seq data of a developing cell
population with a density based minimum spanning tree.
This tree is a hierarchical representation of the data that
places edges in high density regions and thus captures bi-
ologically plausible trajectories. The density tree can be
used to inform any dimension reduction method about the
hierarchical nature of the data.

Moreover, we used the density tree to bias an autoen-
coder and were thus able to produce promising visualiza-
tions exhibiting clearly visible tree-structure both on syn-
thetic and real world scRNA-seq data of developing cell
populations.
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Maximilian Nickel. Poincaré maps for analyzing complex
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jewsky, Lukas Simon, and Fabian J. Theis. PAGA: graph
abstraction reconciles clustering with trajectory inference
through a topology preserving map of single cells. Genome
Biology, 20(1):59, Mar. 2019.

[23] Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul
Ryvkin, Zachary W. Bent, Ryan Wilson, Solongo B. Zi-
raldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu,
Mark T. Gregory, Joe Shuga, Luz Montesclaros, Jason G.
Underwood, Donald A. Masquelier, Stefanie Y. Nishimura,
Michael Schnall-Levin, Paul W. Wyatt, Christopher M.
Hindson, Rajiv Bharadwaj, Alexander Wong, Kevin D.
Ness, Lan W. Beppu, H. Joachim Deeg, Christopher Mc-
Farland, Keith R. Loeb, William J. Valente, Nolan G. Eric-
son, Emily A. Stevens, Jerald P. Radich, Tarjei S. Mikkelsen,
Benjamin J. Hindson, and Jason H. Bielas. Massively par-
allel digital transcriptional profiling of single cells. Nature
Communications, 8(1), Apr. 2017.

11


