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Abstract

Using the in silico experimental evolution platform Aevol, we have tested the existence of a

\complexity ratchet" by evolving populations of digital organisms under environmental conditions

in which simple organisms can very well thrive and reproduce.

We observed that in most simulations, organisms become complex although such organisms

are a lot less �t than simple ones and have no robustness or evolvability advantage. This excludes

selection from the set of possible explanations for the evolution of complexity. However, comple-

mentary experiments showed that selection is nevertheless necessary for complexity to evolve, also

excluding non-selective e�ects.

Analyzing the long-term fate of complex organisms, we showed that complex organisms almost

never switch back to simplicity despite the potential �tness bene�t. On the contrary, they consis-

tently accumulate complexity on the long term, meanwhile slowly increasing their �tness but never

overtaking that of simple organisms. This suggests the existence of a complexity ratchet powered

by negative epistasis: mutations leading to simple solutions, that are favourable at the beginning

of the simulation, become deleterious after other mutations | leading to complex solutions |

have been �xed. This also suggests that this complexity ratchet cannot be beaten by selection,

but that it can be overthrown by robustness because of the constraints it imposes on the coding

capacity of the genome.

Keywords: in silico experimental evolution, complexity, epistasis, robustness, evolvability.
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1 Introduction

Despite decades of deep interest by di�erent scienti�c communities (including arti�cial life, population

genetics, computational biology and, of course, evolutionary biology), the question of the evolutionary

origin of biological complexity is still controversial. While there is a general agreement | tempered

by the recognition that complexity has decreased in some organisms [4] | that biological complexity

has globally increased during geological time, there is no general agreement on whether or not this

is a general trend [19]. But the most discussed point is the ultimate causes of complexity increase.

Roughly, two classes of theories are competing to explain this increase: those based upon selection and

those invoking the variation process itself. According to theories of the former class, complexity rises

because complex organisms are more likely to outcompete simple ones in a demanding environment

(but the precise mechanisms vary among the authors). For theories belonging to the latter class,

complexity is rooted in the properties of the variation process that is supposed to be biased toward

an increase in complexity (there again, the origin of the bias varies among the authors). Arti�cial

Life has provided many examples of the former [2, 35]. A famous tenant of the latter is Stephen

Jay Gould who proposed that, since complexity has a lower bound, it can only increase through a

random variational process (the \drunkard's walk" model), hence the observed trend [12]. Following

a similar \neutral" hypothesis, Soyer and Bonhoe�er proposed that the complexi�cation trend is due

to duplication being less deleterious than deletion, an unbiased mutational process hence being likely

to produce increasingly complex organisms on the long run [30]. More recently, Brandon and McShea

have proposed the \Zero-Force Evolutionary Law" (ZFEL, [21]) stating that \ In any evolutionary

system in which there is variation and heredity, there is a tendency for diversity and complexity to

increase, one that is always present but may be opposed or augmented by natural selection, other forces,

or constraints acting on diversity or complexity" ([21], chapter 1, page 4). According to the authors,

the ZFEL spontaneously pushes evolving systems toward an increase in diversity and complexity even

in the absence of selection and even when the mutational process is unbiased or when the considered

system is far from its lower complexity bound, making it a strong universal mechanism.

There are many reasons why evolution of complexity is controversial [22]. Two of them are central:

First, the lack of universally accepted measure of complexity (although an elegant way to bypass this

di�culty has been proposed by Adami who considers complexity as equivalent to the quantity of infor-

mation an organism integrates about its environment [1]); Second, biological organisms are multi-scale

systems that can increase their complexity | or not | at di�erent organization levels or even increase
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| or decrease | the number of organization levels ( i.e. horizontal and vertical complexity respectively

[20]). A striking example is the strong loss of complexity undergone by endosymbionts that is directly

linked to the emergence of a new system through the association of an eukaryote and a bacterium [4].

Even when considering single organisms, there is no reason to suppose that the variations in complexity

(or quantity of information) are homogeneous across the genome/transcriptome/proteome/phenotype

levels: some well known paradoxes such as the C-Value paradox [31] and the G-Value paradox [13]

illustrate the fact that the quantity of information encoded in the genome may not be linked to the

quantity of information at the phenotypic level. Hence, while most models used to investigate the

evolution of complexity focus on a single organization level, it is necessary to consider the evolution of

complexity at a given level in the context of the complexity needed at higher levels. Following this idea,

in order to investigate whether or not the complexity increase is selected, one has to use a multi-scale

model and let organisms evolve in an environment requiring only a simple phenotype (hence excluding

the selective hypothesis). By observing whether this simple phenotype will be encoded by a simple or

a complex functional organization, it is then possible to distinguish between passive and active trends

towards complex structures.

Here we used the Aevol model [14, 15, 5] to implement this research program. Aevol is a digital

evolution platform in which organisms are encoded at the genome level but with a decoding procedure

directly inspired from the biological genotype-to-phenotype mapping and an abstract description of

the functional levels (proteins and phenotype). Since this decoding procedure includes many degrees

of freedom, Aevol allows the di�erent organization levels (typically genome, proteome and phenotype)

to evolve di�erent degrees of complexity. For instance a simple phenotypic function can be encoded

either by a combination of many di�erent genes or by one single gene. Similarly, the genome can evolve

to be more or less compact depending on the amount of non-coding sequence and depending on the

sharing of sequences among multiple genes bye.g. operons or gene overlapping. This decoupling of

complexity among the di�erent organization levels makes Aevol perfectly suited to study the evolution

of complexity. In the experiments described here, we used a slightly modi�ed version of the model in

which the environment allows for very simple organisms to thrive. We then studied a very large number

of evolutionary trajectories to test whether or not these trajectories show an increase in complexity.

Our results show that even though simple organisms are likely to have a higher �tness than complex

ones, most lineages show a long-term increase in complexity during evolution. This suggests that even

in simple environments there is a \complexity ratchet" that cannot be beaten by selection. We also
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show that, contrary to a widespread intuition, complex organisms are not more evolvable or more

robust than simple ones and that, when selection is removed, all organisms quickly loose complexity,

excluding the ZFEL from the set of possible candidates to explain the complexity trend observed in our

experiments. Finally, our results show that while selection is not powerful enough to drive evolution

toward simplicity, the need for mutational robustness is: when a complex organism experiences an

increase in its mutation rate, its complexity is very likely to decrease, ultimately switching to a simple

structure.

This article is an extended version of V. Liard, D. Parsons, J. Rouzaud-Cornabas, and G. Beslon

(2018) The complexity ratchet: Stronger than selection, weaker than robustness. In:Proceedings of

the Arti�cial Life Conference, Tokyo (Japan), July 2018, MIT Press, pages 250-257 [17].

2 Methods

2.1 The Aevol model

Aevol (www.aevol.fr and references therein) is anin silico experimental evolution platform developed

by the INRIA Beagle team (https://team.inria.fr/beagle ). Figure 1 presents an overview of the

model. Since Aevol has been extensively described in previous publications, we only describe its basic

organization and focus on the structure of the information coding as it is at the core of our experiments.

2.1.1 Overview

The rationale of Aevol is that the structure of the �tness landscape of an organism is likely to be strongly

determined by the structure of the biological information coding of this organism. Hence, Aevol mimics

precisely the biological genomic structure as well as the structure of genotype-to-phenotype mapping.

Organisms are then embedded in an evolutionary loop that includes classical selection operators and

a large variety of mutational operators including base switch (ipping the bits on both strands), small

insertions and small deletions (aka. InDels) and large scale chromosomal rearrangements (duplications,

deletions, inversions and translocations). All mutation operators have their own rate expressed in

mutations:base-pair� 1:generation� 1 (mut :bp� 1:gen� 1).
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Figure 1: The Aevol model. (A) Overview of the genotype-to-phenotype map. Note that the organism

shown here is a real organism evolved within Aevol for 200,000 generations with a typical Aevol target

(see main text and Figure 2 for the target used in the experiments presented here). Hence it contains

many genes on both strands (left panel), many proteins (central panel) and it is well adapted to

its environment (i.e. its phenotypic function | black curve on the right panel | is very close to

the target function | light red plain curve). (B) Population on a grid and evolutionary loop. (C)

Local selection and replication processes occur within a Moore neighborhood. (D) Variation operators

include chromosomal rearrangements (duplications, deletions, translocations and inversion | here a

translocation and an inversion are shown) and local mutations (switches and InDels).
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2.1.2 Information coding in Aevol

In Aevol, each individual owns a genome containing its heritable information. The genome is a binary

double-strand sequence. It is decoded in two steps:Transcription and Translation . The transcription

process relies on consensus signals (promoters) and hairpin-like structures (terminators) for transcrip-

tion initiation and termination respectively. The translation process involves consensus Ribosome-

Binding-Sites (RBS) and an arti�cial genetic code based on triplet codons (includingStart and Stop

codons). The sequence of codons of a gene then constitutes the primary structure of a protein. Im-

portantly, this decoding process introduces degrees of freedom between the genome and the proteome:

complex genomes can encode for simple proteomes (e.g. if all genes have the same sequence) and com-

plex proteomes can be encoded on small sequences (if genes share sequences throughe.g. polycistronic

mRNAs or overlapping genes). These degrees of freedom are similar to those found in real organisms.

Given the primary structure of a protein, Aevol computes its functional contribution. Although

mimicking biological processes at the sequence level is feasible, it is | at least to date | impossible

to compute the function of a protein from its primary structure in a realistic way. That is why Aevol

uses an abstract mathematical formalism to describe the functional levels (i.e. protein functional

contribution and phenotype). In Aevol all functions are expressed in a one-dimensional continuous

\functional space" (more precisely on the [0; 1] interval) by an activation value in the [ � 1; 1] interval

(upper and lower bounds corresponding to maximum activation and maximum inhibition respectively).

In this space, proteins are described as isosceles-triangle-shaped kernel functions. These triangles can

themselves be described by three parameters (their meanm, height h and half-width w) which are

computed from three interlaced variable-length binary codes in the primary structure of the protein

(hence the longer the gene the more precise them, w and h values). Once all the kernels have

been computed from the protein set (Figure 1.A, center), they are summed to compute the phenotype

(Figure 1.A, right). Just as the transcription-translation process introduces degrees of freedom between

the genome and the proteome, this step introduces degrees of freedom between the proteome and the

phenotype. Indeed, the combination of di�erent proteins can result in a simple functional shapee.g.

if the proteins share the samem and w values (seeComplexity measuressection below).

Finally, in Aevol, the �tness is computed as the exponential of the di�erence between the phenotypic

function and a target function indirectly representing the abiotic conditions the organisms evolve in

(in light red on Figure 1.A, right). Classically in Aevol the target function is de�ned by a sum of

Gaussians, hence requiring a virtually in�nite number of triangular kernels to be perfectly �t. In the
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experiment described here, we used a modi�ed version of Aevol (code available athttp://www.aevol.

fr/publications/ressources/Liard2018_ALife_src.tgz ) in which the target function is described

by triangles, hence being perfectly �ttable by the phenotype (see below).

2.2 Experimental design

In order to test whether evolution has a spontaneous tendency to increase complexity or whether the

complexity increase is due to the environmental pressure, we let evolve populations of 1,024 individuals

in Aevol in a null model where the environment is so simple that it does not require a complex proteome

nor a complex genome. To this aim, we designed an environmental target which shape is an isosceles

triangle (Figure 2.A | to be compared to the classical environment used in Aevol experiments, Figure

1.A, light red �lled curve). Hence, the target can be �tted by a single protein and thus a single gene.

More precisely, the target is an isosceles triangle with meanm = 0 :5, height h = 0 :5 and half-width

w = 0 :1. Note that although this target can be �tted with a single gene, it is still hard to �t since it

requires that the corresponding gene be long to get enough precision (see the description of the model

above).

All simulations are initialized with a random 5,000 bp genome containing at least one functional

gene. We tested three mutation rates: � = 10 � 4, � = 10 � 5 and � = 10 � 6 mut:bp� 1:gen� 1. Note

that we also tested� = 10 � 7 mut:bp� 1:gen� 1 but evolution was too slow for the data to be usable on

270,000 generations only. Each population evolved for 270,000 generations. We then reconstructed the

lineage of the best �nal individual and the statistics of the �tness, genome size, number of genes and

structure of the protein network along this line of descent from generation 0 to generation 250,000 (i.e.

all statistics are recorded on common ancestors of the �nal population | the last 20,000 generations

being ignored because, due to coalescence time, there no such thing as a �xed lineage when getting

too close to the �nal generation). We then repeated the experiment 100 times for each mutation rate

for a total of 300 simulated evolutions.

2.3 Complexity measures

Generally speaking, there is no consensus on complexity measures. Moreover, since Aevol is a multiscale

model, one has to choose di�erent measures at the di�erent levels (i.e. di�erent measures of horizontal

complexity [20]; vertical complexity | the number of levels | being constant in the model). Typically

here we will measure complexity at the sequence level | the genome | and at the functional level

7
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Figure 2: (A) Phenotypic target used during the experiment. (B, C) Genome (top, black arcs represent

the coding segments | the genes | on both strands of the circular chromosome) and proteome

(bottom, red dashed line indicates the target function and black triangles indicate the proteins function)

of a simple (B) and a complex (C) individual (both evolved exactly in the same conditions;� = 10 � 5

mut:bp� 1:gen� 1). (D) Zoom on the proteome of the complex individual shown in (C).
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| the proteome (complexity is not measured at the phenotypic level since it is directly driven by

selection which imposes that this level remain as simple as possible). We thus adopted two strategies.

First, we adapted principles from [2] to Aevol in order to get quantitative measures at the genome

and proteome levels by estimating the quantity of information stored in both structures. Second, we

designed a qualitative classi�cation of Simple vs. Complex organisms based upon the structure of the

model.

2.3.1 Quantitative measure at the sequence level

Aevol provides numerous statistics on the lineage of a given organism. In particular, it provides

statistics about the number of \essential" base pairs (i.e. base pairs which, if mutated, change the

phenotype of the organism). Hence, this measure can be directly used to estimate the quantity of

information stored on the genomei.e. the genome complexityCG . Note that it may be very di�erent

from the genome size since the genome can accumulate non-coding sequences. It can also be shorter

than the sum of gene lengths since genes can share sequences through gene overlapping on the same

strand or on the opposite strand (see Figure 2.C for examples of overlapping genes).

2.3.2 Quantitative measure at the functional level

While measuring complexity on the genome is relatively straightforward, measuring complexity at the

proteome level (i.e. functional complexity) is a more di�cult. Indeed, in a �rst approximation, one

could consider that the proteome complexity is given by the number of non-degenerated proteins1.

However, since di�erent proteins can perform similar functions (e.g., in case of gene duplication), this

would overestimate the quantity of information contained in the proteome. Hence, we considered

proteome information in a more precise way by estimating the number of di�erent parameters in

the proteome. CP , the functional complexity measure, is then the sum of the number of di�erent

m, di�erent w and di�erent h values (all with a small tolerance " = 0 :001 to account for rounding

errors) used to encode the protein set. Note that this de�nition of functional complexity is close to

the Brandon and McShea's notion of \pure complexity" ( i.e. number of di�erent part types within an

organism [21]).

1Degenerated proteins encode for triangles which area is equal to zero ( i.e. h = 0 and/or w = 0). These proteins

hence don't contribute to the phenotype.
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2.3.3 Qualitative classi�cation

To study the long-term fate of simple vs. complex organisms, we de�ned a qualitative classi�cation

procedure. Since the environmental target constrains the phenotypic level, the phenotypic function

cannot be used to classify the organisms. We then chose to classify organisms according to their

functional structure, hence focusing on the proteome level. A simple solution would have been to

de�ne a threshold on the quantitative measure but this threshold would be arbitrary. To avoid this,

we used knowledge from the model structure to de�ne the two classes. In Aevol, if all the non-

degenerated proteins of an organism have the same meanm and the same half-width w, then their

functions linearly sum-up to produce a triangular phenotype with the same characteristics (in other

words, all the proteins have the same function, but possibly with di�erent levels of activity h). We

used this property to de�ne the two following classes:

Simple organisms ( Simples ) are organisms for which all the non-degenerated proteins have the same

function ( i.e., the samem and w values, both with an " = 0 :001 tolerance), possibly with di�erent

activity levels ( h). Figure 2.B shows an example of a simple individual. Note that all organisms owning

a single protein are necessarily simple but thatSimples may contain many genes and many proteins

(possibly di�ering in their h values). Hence,Simples can have di�erent levels of functional complexity

CP .

Complex organisms ( Complexes ) are organisms owning at least two non-degenerated proteins for

which either the triangle mean m or the triangle half-width w values are di�erent (with the same

tolerance "). Figures 2.C and 2.D show an example of a complex individual.

2.4 Measure of robustness and evolvability

To measure robustness and evolvability in Aevol, we used a Monte-Carlo sampling procedure: starting

from the �nal populations, we �rst retrieved the common ancestor at generation 250,000. Then, we

used Aevol to produce 10,000,000 o�spring of this ancestor. By measuring the �tness of these o�spring

and comparing it to their parent's, we were able to measure the local curvature of the �tness landscape

and hence to estimate robustness and evolvability of the ancestral clone.

2.4.1 Measure of robustness

Robustness can be de�ned in several ways. Here we consideredreplication robustness, i.e. the ability

of an organism to replicate neutrally. Replication robustness must not be confused withmutational
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robustness(the ability of an organism to conserve its �tness in spite of the mutations it has undergone)

as replication robustness also accounts for the fraction of organisms replicating without undergoing

any mutation.

From the 10,000,000 o�spring, replication robustness can be estimated directly by measuringF�

the fraction of o�spring that retain the �tness of their parent [14].

2.4.2 Measure of evolvability

Evolvability is a complex concept for which many de�nitions have been proposed in the literature

[26]. Here we use the de�nition inspired by [34]: evolvability | or evolutionary potential | is here

quanti�ed as the expectation of gain at the next generation. Hence, provided the sampling is large

enough, evolvability can be estimated by the same procedure as robustness. However, obviously,

such an evolvability measure is strongly dependent on the distance to the optimum (the closer to the

optimum, the less evolvable an individual is likely to be). Hence, contrary to robustness, evolvability

cannot be estimated directly from the naive replication of an ancestral clone: since simple organisms

are closer to the optimum than complex ones (see results), their respective evolvability measures would

not be directly comparable. To avoid this pitfall, we measured evolvability of the ancestor in a modi�ed

environment (i.e. an environment which target function is still an isosceles triangle but which meanm

has been slightly drifted from 0.5 to 0.495). In this new environment, all the organisms are positioned

away from the (new) optimum whatever their complexity, and the �tness of the Complexesand of

the Simples become indistinguishable (data not shown). Then, from the 10,000,000 o�spring (see

above), we recorded the favorable mutants (i.e., o�spring whose �tness is higher than their parent's)

and computed evolvability as the expectation of �tness gain at the next generation, i.e. the sum of

the �tness gain of these mutants divided by the number of samples (10,000,000).

2.5 Evolution with no selection

In order to test whether the ZFEL [21] could be a driver of the increase in diversity and complexity

in our experiments, we evolved populations without selection. To this aim, we �rst selected two

individuals, one Simple and oneComplex, in the lineages at generation 250,000. These two individuals

were chosen as follows: we �rst extracted the 100 ancestors at generation 250,000 in each of the

populations that evolved under a low mutation rate (10� 6 mut:bp� 1:gen� 1). These 100 individuals

were then classi�ed into Simplesand Complexes. We computed the median functional complexity (CP )
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of each group and, in each group, selected the individual whichCP value was closest to this median.

We thus selected the most representative individual in each complexity class.

We used these two individuals, to initialize 20 clonal populations (10 for theSimple and 10 for

the Complex). These populations were then evolved for 10,000 generations under a 10� 6 mutation

rate with no selection (i.e. each individual has the same probability of replication regardless of its

distance to the environmental target). Meanwhile we measured (i. ) the fraction of Complexes in

each population, (ii. ) the diversity of genomic complexity (CG ) and functional complexity ( CP ) in each

population (estimated by CG and CP variances) and (iii. ) the mean genomic and functional complexity

in each population.

3 Results

Among the 300 simulations we analyzed (3 mutations rates with 100 repeats each), 229 were classi�ed

as Complexes(see section 2.3) at generation 250,000. Table 1 shows the distribution of simple and

complex organisms for the three mutation rates we analyzed.

Mutation rate ( � ) Number of Simples Number of Complexes

10� 4 mut:bp� 1:gen� 1 32 [24 { 43] 68 [58 { 76]
10� 5 mut:bp� 1:gen� 1 25 [18 { 34] 75 [66 { 82]
10� 6 mut:bp� 1:gen� 1 14 [9 { 22] 86 [78 { 91]

Table 1: Number of simple and complex lineages at generation 250,000 for the three tested mutation

rates. Brackets show the 95% con�dence intervals (CI95% ) estimated from the number of samples in

both classes using Wilson method.

We �rst veri�ed that the complex organisms (respectively the simple ones) correspond to those

accumulating information (resp. not). Figure 3 shows the quantity of information stored on the

genomes (Genomic complexity,CG ) and on the proteomes (Functional complexity, CP ) for simple and

complex organisms and for all the mutation rates. Note that CG and CP cannot be quantitatively

compared since they account for information content in a binary sequence and in a set of real values

respectively.

Figure 3 clearly shows that Simples tend to accumulate less information in their proteome. The

quantity of information stored on the genome also tends to be smaller forSimples although the di�er-

ence is less pronounced (Figure 3, left). This is not surprising given that our qualitative classi�cation

is based on the proteome structure and that Aevol allows degrees of freedom between the information
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Figure 3: Distribution of complexity measures for the Complexes (top) and Simples (bottom) at

generation 250,000. Left: Genomic complexity (CG ). Right: Functional complexity ( CP ). Col-

ors indicate the mutation rates. Blue: 10� 4 mut:bp� 1:gen� 1; Red: 10� 5 mut:bp� 1:gen� 1; Green:

10� 6 mut:bp� 1:gen� 1

coding in the genome and the information coding in the proteome (see model description in section

2.1). Both measures also show a strong e�ect of mutation rates: the higher the mutational pressure,

the lower CG and CP . This is not a surprise either, since the e�ect of mutation rate on genome structure

has already been described in the literature [14, 11]. Contrary to the trend on the amount of informa-

tion, this e�ect is more pronounced on the genome, probably because mutational e�ects directly a�ect

the genome but only indirectly a�ect the proteome.

3.1 Simple organisms are �tter than complex ones

Having observed organisms evolving either simple or complex functional structure in the same simple

environment, the decisive question is whether or not complexity is driven by selection. Figure 4

shows the �tness of the common ancestor at generation 250,000 (see section 2.2) againstCG (left) and

CP (right). It clearly shows that simple organisms have a higher �tness than complex ones. This

is con�rmed by the �tness distribution among the two qualitative classes: Figure 5 shows that all

Simples reach a �tness that approaches 1, the best possible �tness in Aevol (mean �tness ofSimples:

0:99 � 0:008). By contrast, the �tnesses of Complexesrange on the whole interval, most Complexes

having a �tness below 0:5 (mean �tness of Complexes: 0:42� 0:32)

This result demonstrates that in our simulations, it is not selection that drives the populations
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Figure 4: Fitness of the common ancestor at generation 250,000 as a function of (left) genomic com-

plexity � log(CG ) and (right) functional complexity � log(Cp). Triangles and circles indicate lineages

classi�ed as Simple or Complex respectively; Same color code as in Figure 3.
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Figure 5: Distribution of �tness values at generation 250,000 forComplexes(top) and Simples (bot-

tom). Same color code as in Figure 3.

toward functional simplicity or complexity. On the opposite, here, complex functional structures

evolve in spite of selection.
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3.2 Complex organisms are neither more robust nor more evolvable than

simple ones

It has been shown that, in some situations, indirect selection (i.e. selection for robustness or evolvabil-

ity) can be strong enough to overcome direct selection for �tness [33]. We thus estimated robustness

and evolvability of simple and complex organisms at generation 250,000 (see section 2.4) to check

whether these properties could explain the evolution of complex functional structures.

Figure 6 displays the replication robustness (left) and evolvability (right) measures for the simple

and complex organisms and for all mutation rates. It clearly shows that simple organisms are more

robust than complex ones, whatever the mutation rate. On the opposite, there is no clear trend

on evolvability since Simples or Complexescan be more or less evolvable from each other (or even

indistinguishable) depending on the mutation rates.
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Figure 6: Estimate of the replication robustness (left) and evolvability (right) of the complex (red)

and simple (blue) organisms at generation 250,000 for each tested mutation rate.

The di�erence of robustness between theSimplesand the Complexesis relatively straightforward to

explain. Indeed, complex individuals own a larger genome on which they accumulate more information

(Figures 3 and 8). Consequently, they present a larger mutational target and | for a given mutation

rate | a larger number of mutational events. Hence, their replication robustness is lower [10, 11, 14].

Our results on evolvability deserve attention as it is often assumed that complex structures are more

evolvable than simple ones [29]. However, this common assumption is strongly rooted in modularity

[8], a property that has no reason to evolve here. To better understand our results, we distinguished

the two components of evolvability: the fraction of positive o�spring and the mean �tness gain of the

positive o�spring (Figure 7). This shows that Simples have a signi�cantly lower fraction of favourable
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Figure 7: Fraction of positive o�spring (left) and �tness gain among positive mutants (right) of the

complex (red) and simple (blue) organisms at generation 250,000 for each tested mutation rate. Simple

organisms have a lower fraction of positive mutants but these mutants are often closer to the optimum

than those issued from complex organisms.
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Figure 8: Genome size for theComplexes(red) and Simples (blue) at generation 250,000 for each

tested mutation rate. Genomes ofComplexesare signi�cantly larger than genomes ofSimples

o�spring than Complexesand that the �tness gain of the former is slightly higher than the �tness

gain of the latter even though they are already closer to the environmental target (the di�erence

between mutation rates being explained by the di�erence of �tness betweenSimples having evolved

under di�erent mutation rates, see Figure 5). In other words, the Complexeshave more possibilities

to increase their �tness | which is coherent with their lower robustness and larger mutational target
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| but these possibilities result a lower �tness gain.

These results show that, although the �tness landscape is the same in all our experiments,Simples

and Complexes lie in very di�erent parts of the landscape. Simples lie in high, steep, regions but

with a low connectivity while Complexeslie in low, at, highly connected regions. This may seem

contradictory with the higher robustness of the Simples (as mutational robustness is higher in at

regions of the landscape [33]) but one has to remember that we estimatedreplication robustness; a

property that not only depends on the �tness landscape but also on the amount of non-coding sequences

[14]. Indeed, in our simulations, mutational robustness of theComplexesis approximately twice that

of the Simples (except for the highest mutation rates where they are not signi�cantly di�erent | data

not shown).

To conclude, our measures of robustness and evolvability demonstrate that in our simulations, the

choice between functional simplicity and functional complexity is not driven by indirect selection for

either robustness or evolvability. On the opposite, here again, complex functional structures evolve in

spite of indirect selection.

3.3 In the absence of selection, complexity quickly drops to zero

Previous results claim for a non-selective driving of complexity increase,e.g., by the ZFEL [21]. We

assessed the e�ects of selection by letting organisms evolve in new conditions where selection had

been neutralized. Starting from two homogeneous populations (one populated by complex individuals

and the other by simple ones), we let them evolve for 10,000 generations, in the absence of selective

pressure, and measured the diversity and complexity at both the genomic and the functional levels.

This process was repeated ten times for the two initial conditions (see section 2.5).

Figure 9 shows the proportion ofComplexesin these experiments (top: initial population of Com-

plexes; bottom: initial population of Simples). It shows that, when a population of complex individuals

replicates with mutations but without selection, the proportion of Complexesquickly drops to zero.

When a population of Simples replicates in the same conditions, the proportion ofComplexesinitially

grows, up to 20% in the conditions of our experiment, which could seem to support the ZFEL. How-

ever, after a few hundred generations, the number ofComplexesstarts to decrease, eventually reaching

zero (i.e. virtually none of the individual in the population is complex at generation 10,000).

To understand this result, we analyzed the variation of diversity and complexity in the populations,

both at the genomic and functional levels. Figures 10 and 11 show the evolution of variance (left) and
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Figure 9: Fraction of complex individuals in populations evolving with no selection for a population

initially composed of Complex clones (top) or Simple clones (bottom). Colors indicate the di�erent

repetitions.

mean (right) of complexity measures among the populations for the ten repetitions initiated with a

Complex (resp. Simple) individual, at the genomic (top) and functional (bottom) levels. In accordance

with the ZFEL prediction, both �gures show that the variance of complexity levels initially increases

for the two complexity measures (left panels in Figures 10 and 11). This shows that, in the absence

of selection, there is an increase of the level of diversity in the population. However, similarly to the

proportion of Complexesshown on Figure 9, this trend only lasts for a few hundred generations after

which the diversity at the genetic level slowly decreases, that of the functional level quickly dropping,

eventually reaching zero. Both e�ects contradict the ZFEL prediction that, in the absence of selection,

diversity should increase.

The contradiction is even more clear when looking at the mean levels of complexity in the popula-

tions (Figures 10 and 11, right panels). Whatever the initial conditions (Simples or Complexes) and

the complexity measure (CG or CP ), in the absence of selection complexity immediately drops, quickly

reaching values close to zero.

Taken together, these results show that, in the absence of selection, populations quickly lose com-

plexity, the initial increase of diversity being only due to the di�erent individuals following di�erent

paths during this degradation process. Hence, contrary to the prediction of the ZFEL, selection appears

as a necessary element to evolve | and actually maintain | horizontal complexity.
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Figure 10: Evolution of the variance (left) and mean (right) of complexity measures among the popu-

lations for the ten repetitions initiated with a Complex individual, at the genomic (top) and functional

(bottom) levels.

3.4 Complex organisms evolve greater complexity

So far we have analyzed only one time point: generation 250,000. To address thedynamics of the

evolution of complexity, we analyzed the fate of simple and complex organisms between generations

10,000 and 250,000. Table 2 shows that most organisms classi�ed asSimples or Complexesat genera-

tion 10,000 conserved this identity thereafter. These values are to be contrasted with the proportion

of Simples at generation 0 (99%, this high proportion being due to the initialization procedure | see

section 2.2), suggesting that most organisms switched fromSimple to Complex between generation 0

and generation 10,000 but that the class they belong to at that time is then part of their identity.

Figure 12 shows the evolution ofCG (left) and CP (right) during the 250,000 generations of the

experiment for the simple (blue) and the complex (red) organisms and for the three di�erent mutation

rates. It shows that the evolutionary trend is completely di�erent between the two classes: while

Simples slightly decrease inCG and are almost constant in CP , Complexesincrease inCP while only
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Figure 11: Evolution of the variance (left) and mean (right) of complexity measures among the popu-

lations for the ten repetitions initiated with a Simple individual, at the genomic (top) and functional

(bottom) levels.

� = 10 � 4 � = 10 � 5 � = 10 � 6

PS! S
100% [100% { 87:9%]

(28/28)
100% [100% { 85:7%]

(23/23)
92:3% [98:6% { 66:7%]

(12/13)

PC ! C
94:4% [97:8% { 86:6%]

(68/72)
97:4% [99:3% { 91%]

(75/77)
97:7% [99:4% { 92%]

(85/87)

Table 2: Fraction of organisms that conserved their Simple/ Complex identity between generation

10,000 and generation 250,000 (resp.PS! S and PC ! C ). Brackets show the CI95% computed using

Wilson method; Values in parentheses give the number of individuals withSimple identity { resp.

Complex { at generations 250,000 and 10,000.

those with a low mutation rate (10 � 6 mut:bp� 1:gen� 1) increase in CG . Indeed, in mean, between

generations 10,000 and 250,000, �CG = � 43:8 � 2:2 in simple individuals (for all mutation rates)

while � CG = +25 :3 � 1:62 in complex ones. On the same period, �CP = � 0:32 � 0:31 for simple

individuals while � CP = +3 :58 � 0:27 for complex ones (CI95% computed from the standard deviation

and the number of individuals: CI95% = 1 :96
p

� 2=NI 10k ).
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Figure 12: Evolution of genomic complexity (CG , left) and functional complexity ( CP , right) between

generations 0 and 250,000 for complex (red) and simple (blue) individuals. Plain lines: low mutation

rate (10� 6 mut:bp� 1:gen� 1); Dotted lines: medium mutation rate (10 � 5 mut:bp� 1:gen� 1); Dashed

lines: high mutation rate (10� 4 mut:bp� 1:gen� 1).

Figure 13 shows the evolution of �tness for theSimples and the Complexesfor the three mutation

rates. It shows that, whatever the mutation rates, the �tness of Simples quickly reaches a very high

value, close to the optimum | indirectly con�rming the evolvability of simple organisms | and then

almost plateaus for the rest of the experiment (mean �tness gain of theSimples between generations

10,000 and 250,000: +0:09 � 0:1). On the opposite, Complexesslowly grow in �tness all along the

experiment with sustained di�erences between the di�erent mutation rates (the higher the mutation

rate, the higher the �tness): between generation 10,000 and generation 250,000 the mean �tness of the

Complexeshas increased of �Fitness = +0 :16 � 0:05.

The evolution of CG and CP for the Simples can be easily understood by combining two factors.

During the very �rst generations, their evolution is strongly driven by direct selection and their �tness

quickly raise to nearly optimal values (Figure 13). However, after this initial period, direct selection

becomes less e�cient as there is almost no room for further improvement. The evolution of the

Simples is then mainly driven by indirect selection for replication robustness. This leads to genome

streamlining, speci�cally in organisms submitted to a high mutation rate (Figure 12, Left, blue dashed

line), hence the drop ofCG . However, this mechanism has no clear e�ect onCP , becauseCP is already

very low and because in theSimples there is no selective pressure to increase functional complexity.

The evolution of CG and CP in the Complexescan also be explained by a combination of the e�ect of

direct and indirect selection although the mechanism is di�erent. SinceComplexesremain far from the
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Figure 13: Evolution of Fitness between generations 0 and 250,000 for complex (red) and simple (blue)

individuals. Plain lines: low mutation rate (10 � 6 mut:bp� 1:gen� 1); Dotted lines: medium mutation

rate (10� 5 mut:bp� 1:gen� 1); Dashed lines: high mutation rate (10� 4 mut:bp� 1:gen� 1).

optimum, direct selection is active all along the experiment andCP continuously increases, although

at a decreasing pace over evolutionary time (Figure 12, Right, Red lines). But this mechanism is

constrained by the genomic level that cannot accumulate too much information because of robustness

pressures (Figure 12, Left, Red lines; [10, 11, 14]). This robustness pressure imposes a bound onCG

that strongly depends on the mutation rate. These bounds are clearly visible on Figure 12 (left, red

lines), at least for high and medium mutation rates. However, since in AevolCG and CP are only

softly linked (see model description in section 2.1), theseCG bounds still allows for the accumulation

of functional complexity (Figure 12, right, red lines) and �tness improvement (Figure 13, red lines).

3.5 E�ect of harsh robustness constraints on complexity

It is well known that under elevated mutational stress, robust lineages can be selected over �tter ones

[33] and that genome compactness is a direct driver of mutational robustness [14]. Here, we have shown

that, in our experiments, simple organisms have a higher robustness than complex ones (Figures 4 and

12). Hence, if �tness cannot drive evolution toward complexity reduction, as also shown previously,

we hypothesized that robustness might, by imposing a strong complexity limit on the genome.

To test this hypothesis, we submitted the 300 �nal populations to a harsh mutation rate during

100,000 generations.

Speci�cally, each population was further evolved with mutation rates � new 10, 100 and 1,000 times

greater than the initial rate (without exceeding the extreme rate of � new = 10 � 3). Table 3 shows, for
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the di�erent levels of mutation rate increase, the percentage of organisms that, while being complex

at generation 250,000, had switched to simple (C! S) at generation 350,000.

� = 10 � 4 � = 10 � 5 � = 10 � 6

� new = 10 � 3 45:9% [58:3% { 34%]
(28/61)

64:4% [74:4% { 52:9%]
(47/73)

81:2% [88:1% { 71:6%]
(69/85)

� new = 10 � 4 /
2:7% [9:3% { 0:7%]

(2/74)
10:6% [18:9% { 5:7%]

(9/85)

� new = 10 � 5 / /
1:2% [6:4% { 0:2%]

(1/85)

Table 3: Fraction of Complex! Simple transitions for all pairs of initial (columns) and �nal (lines)

mutation rates. CI 95% computed using Wilson method; Values in parenthesis give the number of

Complex! Simple transitions and number of Complexesat generation 250,000.

Among the 600 experiments, 463 started with complex organisms. 156 (33:7 � 4:3%) of those

switched from Complex to Simple (Table 3). Strikingly, while these Complex! Simple organisms expe-

rienced a harsh robustness constraint, their �tness strongly increased (mean variation: +0:69 � 0:055)

during the 100,000 generations of the experiment. In contrast, the 307 remaining Complex! Complex

organisms experienced a �tness variation of +0:17 � 0:34. Note that although they retained their com-

plex identity, these organisms experienced a strong complexity decrease in reaction to the mutational

pressure (CG and CP mean variation: � 126:1 � 25:6 and � 4:28 � 0:93 respectively).

Compared to the proportion of Complex! Simple switches between generations 10,000 and 250,000

in the main experiment (8 individuals among 236, see Table 2), the Complex! Simple proportion in

the robustness experiments is huge, and even more so when focusing on the extreme mutation rate

� new = 10 � 3. However, the robustness pressure needs to be very harsh to observe this e�ect (Table 3).

This is probably due to selection for robustness already acting during the �rst part of the experiment

(see above): at generation 250,000 the complex organisms we propagated in the robustness experiment

were probably already robust enough to cope with a reasonable increase in the mutational pressure.

4 Discussion

By evolving in a very simple environment populations of digital organisms whose complexity can evolve

at the genomic and functional levels independently, we were able to acquire important insights into

the evolution of complexity. First, the continuous increase in complexity in such a non-demanding

environment is a strong argument in favor of a \complexity ratchet", i.e. an irreversible mechanism
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that can add components (or information) to the evolving system but that cannot get rid of existing

ones, even though this could be more favorable [7]. Indeed, one of the most astonishing observations

is that the complexity ratchet clicks and goes on clicking despite the selective advantage of simple

solutions over complex ones and despite their greater robustness. However, by submitting the same

organisms to a harsh robustness constraint, we have shown that, contrary to selection for �tness,

selection for robustness, when severe, can overcome the ratchet and push complex organisms back

toward simplicity. These results may be interpreted as evidence of a non-selective mechanism such as

the Zero Force Evolutionary Law [21]. However, we also showed that, in the absence of selection, all

forms of complexity quickly vanish in our simulations, excluding the ZFEL as a possible explanation

of the ratchet. Given the simplicity of the ZFEL formulation, this deserve a speci�c discussion.

Actually, Brandon and McShea's argument in favor of the ZFEL are based on a few assumptions,

in particular that complexities at the di�erent organization levels are independent from one another

and that increase of diversity naturally results in an increase of complexity. But, as shown by our

simulations, both assumptions are false, �rst because complexity at the functional level is encoded at

the molecular | genetic | level, hence coupling both levels, second because an increase of diversity

at the molecular level may result in a decreaseof complexity at the functional level. The former

is self-evident but the latter deserves explanation: Molecular encoding on the genome is based on

consensus signals (promoters, RBS,Start codon...) that need to be recognized by molecular \readers"

(polymerazes, ribosomes...); now, an increase of diversity at the molecular level not only increases

diversity of the genes' sequences (hence of the functional level, as is transitorily observed in our

simulations | see Figures 10 and 11, left panels), it also increases diversity of the consensus signals,

eventually hindering their ability to be recognized by their readers. A direct consequence is that the

increase of diversity at the genomic level actually reduces the number of signals, hence the number of

encoded elements, leading to a decrease of complexity at both the genomic and the functional levels

(see Figures 10 and 11, right panels).

In our experiments, simple organisms are �tter than complex ones. Previous results with Aevol,

showed that selection for robustness favors streamlined genomes [14, 24]; and that the joint e�ect of

duplications and deletions biases mutations toward reduction [11]. Then, if selection, robustness and

mutational biases all push in the same direction | simplicity | what is the force that counterbalances

them all hence leading to complexity increases? To answer this question, we �rst have to look back at

the variation of �tness along the experiment (Figure 13). It shows that even though Complexesstay
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far worse than Simples, Complexesstill substantially gain �tness all along the simulation: although

complexity increasesin spite of selection, its increase is nevertheless driven by selection!

This immediately points toward a negative epistatis phenomenon,i.e., the di�erential e�ect of

a mutation according to the genetic context in which is occurs. Epistasis is largely documented

theoretically and experimentally [25] and, interestingly, it has been shown that in natural populations,

epistasis correlates with complexity [28]. Here, mutations that would have been bene�cial in a given

Simple individual are deleterious in the genetic context of Complex individuals (and reciprocally).

Indeed, selection only acts on the basis of the local topology of the �tness landscape, which depends

on the genetic background of the individuals. In a complex genetic context, negative epistasis forbids

the acquisition of some genes that could be highly favorable in a simple context. Since gene deletion

is obviously deleterious, the only available evolutionary path for an already complex organisms seems

to be a headlong rush toward increasing complexity by acquiring new genes. Hence the ratchet clicks,

further widening the �tness valley that separates the current genome from a simple one, soon making

it so wide it is very unlikely to be crossed.

The geometric properties of Aevol functional structure provide a good illustration of the ratchet

mechanism. In our experiments, the phenotypic target can be �tted by a single triangular ker-

nel/protein. However, as soon as the proteome contains a protein withm 6= 0 :5 or w 6= 0 :1, this

is no longer possible because the function thatremains to be �tted ( i.e. the target minus the protein

kernels) becomes multilinear... and the ratchet starts clicking. In other words, each protein added to

the proteome increases the complexity of the function that remains to be �tted, forbidding its �tting

by a single triangle and triggering further gene recruitment.

Now, if selection cannot overcome the ratchet, how an increase in mutational pressure can? It is

known that severe robustness constraints can overcome selection by imposing an upper limit to the

amount of information an organism can transmit to its o�spring at the genetic [10] and at the genomic

[14, 11] levels. In our experiments, raising the mutation rate strongly decreases the storage capacity of

the genome, hence forcing gene elimination despite the �tness loss. This can lower epistatic constraints

enough to allow the transition from complexity to simplicity.

Table 1 shows that the ratchet does not systematically start clicking: in nearly one quarter of our

simulations, evolution leads to simple solutions. Moreover, we saw that the path toward simplicity or

complexity is taken very early in the simulations (often before generation 1,000, data not shown) which

indirectly con�rms that the ratchet is engaged when the organisms recruit their very �rst genes. But
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how is this initial direction determined? Starting with a single gene (see section 2.2), the organisms

can evolve in two ways: (1) optimizing this gene by mutation, (2) recruiting new genes, primarily

through a duplication-divergence mechanism. Depending on this contingent alternative, akin to a

\frozen accident" [9], evolution is more or less likely to lead to either Simple or Complex identity.

However, selection can also play its role in the identity switch: since the route to simplicity leads to

higher �tnesses, clonal interference is likely to favor simplicity. Hence, if our explanation is correct, the

fraction of Simples should increase in very large populations (clonal interference being more frequent

in large populations).

The two alternative evolutionary pathways described above also suggest that the negative epistatic

interactions that lead to the accumulation of complexity could be due to rearrangement events (typi-

cally segmental duplications). We tested this hypothesis by evolving 100 populations in conditions

where there is no rearrangement and where the mutation rate (for switches and InDels) is such

that the total number of events is equivalent to the medium mutation rate in the main experiment

(� = 10 � 5 mut:bp� 1:gen� 1). We observed that, among these 100 populations, 98 evolved simple func-

tional structures (to be compared with the 25 that evolved simple functional structures in the initial

experiment | see Table 1). This con�rms the strong role played by chromosomal rearrangements in

this process. This also explains why the mechanism we identi�ed here had not been observed previ-

ously. Indeed, to the best of our knowledge, Aevol is the sole model that is able to �nely account for

the rearrangement mechanisms. Hence, our results also strongly call for a better accounting of these

overlooked events in arti�cial life models.

Finally, if contingency can explain the initiation of the ratchet and epistasis its mechanisms, what

about its long term behavior? Will the ratchet click forever, thus reaching very high complexities? In

our simulations the �nal complexity seems to be bound despite a great room for improvement in most

of the complex organisms (Figures 4 and 12). Indeed, three e�ects can impose a bound to complexity:

(1) As complexity grows, the advantage provided by new genes may become too small for selection

to allow for their �xation. Indeed, it has been proposed that genome complexity could be mainly

driven by population genetics e�ects [18]. However this is unlikely to explain the apparent bound we

observe sinceComplexescan still improve greatly (Figure 5). (2) Proteome complexity needs to be

encoded in the genome but there is an upper bound to the amount of information a genome (hence a

proteome) can carry with given mutation [10] and rearrangement [14, 11] rates. (3) The waiting time

to the next innovation increases as the organism becomes more complex. This is directly linked to the

26



\cost of complexity" that slows adaptation down as the number of selected traits increases [23]. In

our simulation, Simples �t the target globally | as a single trait | while Complexesvirtually split

the target in parts which they �t more or less independently from one another. HenceComplexesare

likely to su�er from the cost of complexity: as complexity increases evolution slows down in such a

way that it would require virtually-in�nite waiting time to approach the two above-mentioned bounds.

When experimenting with models, a tricky question is always to tell evolutionary trends apart

from model artifacts. Here, we used Aevol, a model that has already proven its consistency, but

that nevertheless has its limits. Among them, three at least are likely to interfere with our results.

First, as in most ALife models, we deal with very small populations compared to natural populations.

As discussed previously, larger population size may change the initial direction toward simplicity or

complexity or the upper complexity bounds. However, since selection cannot invert the ratchet we

hypothesize that our general conclusions qualitatively hold whatever the size of the population. Second,

the properties of our arti�cial chemistry may di�er from real biochemistry. In particular, dosage e�ects

are stronger in Aevol than they are in Nature. However, this property is likely to limit the complexity

increase since gene duplications are more deleterious in the model than in Nature. Then, this should

not alter our main conclusions. Last but not least, although Aevol is a multi-scale model, it lacks

some scales that are likely to play a crucial role in the evolution of complexity. In particular it lacks a

complex ecosystem and a gene network. Hence, we cannot observe here the e�ect of niche construction

that could act as an important player in the evolution of complexity [27].

On the gene network side, our results match very well those we obtained when using the RAevol

version of the model to evolve genetic networks in constant vs. variable environments [6, 16, 32].

Indeed, in these experiments the complexity of the network appeared to be driven by the mutation

rate and highly complex networks evolved even in constant environments. This opens the interesting

perspective of replicating the present experiments in RAevol.

Our work opens many other perspectives. Speci�cally, we would like to analyze the evolutionary

dynamic of our populations at a �ner grain. In particular, analyzing the e�ect of every single mutation

on complexity, �tness, evolvability and robustness depending on the mutation type (point mutations

vs. rearrangements) would allow for a better characterization of the epistatic interactions in the model.

Finally, the most engaging perspective would be to generalize the mechanisms observed here to other

kinds of systems. Indeed, an open question is whether this complexity ratchet could contribute to

Open-Ended Evolution [3], hence opening the door for non-selectively-driven Open-Endedness. A
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di�cult question here is whether epistasis (and negative epistasis) has an equivalent in other Open-

Ended systems such as economy or innovation.

In conclusion, we would like to stress that our results, gathered on a null model, do not imply

that there is no such thing as selection for complexity. But importantly, they show that selection

for complexity is not mandatory for complexity to evolve. Hence, complex biological structures could

ourish in conditions where complexity is not needed. Reciprocally, the global function of these complex

structures could very well be simple. We think this result is greatly signi�cant for both evolutionary

biology and systems biology.
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