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Abstract

Structural damage of composite materials used in aeronautics and aerospace has
attracted increasing attention. Efficient and reliable Structural Health Monitoring
(SHM) systems are required to provide a probabilistic interpretation of diagnos-
tics. In this study, crack damage identification of a thick composite sandwich
structure based on Gaussian Processes (GP) classification is reported by numerical
simulations. The goal of the study is to obtain a data-driven probabilistic interpre-
tation of damage detection. The investigation is carried out based on healthy and
damaged status of a sandwich panel with a honeycomb core modelled in ANSYS.
Instantaneous signals with different frequencies are applied to the structure and
finite element analysis is performed to obtain vibration responses in both statuses.
Features extracted by Discrete Wavelet Transform (DWT) are used to train and
test the GP model to assess the health status of the structure. Impacts of mother
wavelet in DWT, likelihood function and inference method, as well as iteration
numbers are investigated on the classification accuracy. The pertinence of sensors
located at different positions is also investigated. This proposed method is effective
for crack-type damage detection in the studied composite sandwich structure. It is
expected to be suitable for damage detection of more complex structures.
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1. Introduction1

Advanced composite materials have been widely used in different areas, in-2

cluding aerospace, medicine, machinery, construction and other industries due3

to the characteristics of light weight, corrosion resistance, heat insulation, sound4

insulation, shock absorption and high (low) temperature resistance, etc., which5

typically meet the functional requirements in specific working environments [1].6

The application of composite materials is gradually replacing the role of con-7

ventional metal alloys in many fields. However, due to the synthesis method of8

composite materials, they are susceptible to several structural damages, such as9

fiber fracture, matrix crack and delamination. These damages are usually caused10

by fatigue and impact events. In the early stage of the damages, they are very small11

and barely visible to visual inspections, but under certain conditions they may12

affect the performance of structures and further lead to catastrophic consequences,13

especially for aircrafts, resulting in huge loss of people lives and money. Therefore,14

the development of Structural Health Monitoring (SHM) systems that can detect15

damages in a structure has been considerable concerns in the last 2 decades [2].16

SHM aims to give, at every moment during the life of a structure, a diagnosis of17

the ”state” of the constituent materials, of different parts, and of the full assembly18

of these parts constituting the structure as a whole [2]. Health monitoring of19

structures is initially assessed by visual inspection to approximate the damage20

location, but damages in bonded structures especially in composite materials are21

often within the structure and barely visible or even invisible. As a result, several22

non-destructing testing (NDT) methods that are capable of detecting internally23

hidden damages are employed during the short inspection intervals [3].24

Two of NDT methods, vibration-based technique and guided wave-based25

technique have been developed for the extraction of damage-sensitive information26

about the health state of structures. They are the most commonly used among27

others. A general process of the SHM based on these methods involves collecting28

relevant data, which is the structure response, from an array of sensors attached on29

the structure. Then necessary signal processing is carried out for the purpose of30

data reduction and key feature extraction from these measurements. Finally, the31

∗Corresponding author
Email addresses: zeyu.liu@ec-lyon.fr (Zeyu Liu),

mohsen.ardabilian@ec-lyon.fr (Mohsen Ardabilian),
abdel-malek.zine@ec-lyon.fr (Abdelmalek Zine),
mohamed.ichchou@ec-lyon.fr (Mohamed Ichchou)

2



healthy state of the structure is determined by statistical analysis of these features.32

Vibration-based damage detection focuses on the detection of the mode shape33

singularity and natural frequency changes created by local discontinuity due to34

damages [4–12]. Several researches have successfully implemented this method in35

SHM of composite materials. Yang et al. [4] proposed a vibration-based damage36

detection method for composite plates with delaminations using modal frequency37

surface (MFS). It is found that the effectiveness of the MFS approach depends38

on the delamination location by analyzing the modal frequencies. Zhu et al. [5]39

proposed a vibration-based NDT to detect debonding in honeycomb sandwich40

beams based on the natural frequency changes caused by damages. Honeycomb41

sandwich beam is considered equivalent to homogeneous materials in low fre-42

quency because the local periodic structure is much smaller than the wavelength.43

However, the proposed method cannot effectively detect small damages in large44

structures. A damage indicator based on modal rotational mode shapes obtained45

with a uniform rate continuously scanning laser Doppler vibrometer (CSLDV)46

technique was proposed by Huang et al. [6] for crack damage detection. The pro-47

posed method is proved potential for practical applications, such as ultra-light or48

composite structures. It is worth mentioning that in vibration-based NDT, wavelet49

analysis has been applied in many studies for the post-processing of vibrational50

mode shapes to extract features for damage detection. Vibration-based NDT with51

wavelet analysis was applied to a composite sandwich plate to detect different types52

of damages by extracting modal shapes of vibration in the research of Katunin53

[7]. Sandwich plate with damages was scanned by two laser Doppler vibrometers54

(LDV) by experiment and the amplitudes of wavelet analysis coefficients were55

used to represent the presence and location of damages. Results show that the56

proposed method is capable to detect and localize different damages using wavelet57

analysis. But the proposed method should not be limited to the laboratory scale test.58

A novel method for identification of multiple damage by combining shearographic59

NDT and 2D undecimated wavelet transform based on modal data was proposed60

by Katunin et al. [8]. The proposed method with wavelet analysis shows high61

sensitivity compared to the analysis of raw shearographic results. Similar result62

was observed in another research conducted by Zhou et al. [9] based on contin-63

uous wavelet transform, which shows that the sensitivity for damage detection64

is increased by wavelet analysis.A thorough review of vibration-based damage65

detection is presented in [13–15].66

Guided wave-based damage detection focuses on the detection of discrimi-67

native features such as the difference of amplitudes, elastic wave energy variation68

and changes in wave propagation pattern due to the interaction between propagated69
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waves and material discontinuity where damage occurs [16–19]. Yu et al. [16] used70

ultrasonic feature guided waves (FGW) which focused on the wave propagation71

energy to detect damages on quasi-isotropic composite laminates. The interaction72

of the identified FGW mode with different types of defects was studied by both73

simulation and experiment. Close agreement was observed between the numerical74

measurement and experimental measurement. It is demonstrated that the proposed75

FGW method has good potential for efficient damage detection in composite bends.76

Aryan et al. [17] proposed a model-based method for damage detection with77

guided wave. Normally guided wave-based method is conducted by comparing a78

baseline signal recorded for a damage-free structure with or subtracted from the79

signal recorded during the inspection. In the proposed method, the uncontrollable80

factors that may affect the accuracy such as temperature variation, sensor errors81

and material property changes due to degradation were compensated. Experimental82

and numerical approaches were conducted and demonstrated the feasibility of83

the proposed method. Nevertheless, the utilisation of 3D measurement system84

together with transient finite element simulations will significantly increase the85

cost. Theoretical and numerical studies were conducted by Sikdar et al. to identify86

disbond and high density core region in a honeycomb composite sandwich structure87

using ultrasonic guided waves [18]. Laboratory experiment was then carried out88

to validate theoretical and numerical results. Interaction of guided waves with89

damages was analyzed through the structural response signals. A good agreement90

was observed between analytical, numerical and experimental results. It is found91

that the presence of high density core region results in a decrease in amplitude92

of the propagating guided wave modes and the presence of debond results in a93

significant amplification of the primary anti-symmetric mode. Similar method94

was also adopted in [20–22]. A thorough review of guided wave-based damage95

detection methods is presented in [19, 23, 24].96

To achieve a better accuracy in damage detection, Radzienski et al. [25]97

combined vibration-based and guided wave-based approaches without reducing the98

effectiveness of NDT techniques for detection of debonding in honeycomb core99

panels, and higher defect detection reliability was achieved by a double verification.100

Both vibration-based and guided wave-based techniques have been proved capable101

of detecting damages occurred in composite structures and other materials. They102

have good performance in some certain conditions and show a good potential in the103

application in more fields. However, a common process of these two methods is that104

the vibration responses of a structure should be analysed all by human labor, which105

leads to two disadvantages: firstly, they are time-consuming and labor-intensive;106

secondly, there will be high requirements of expertise for practitioners during the107
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analysis of structural vibration responses, especially for complex structures, which108

is not always available.109

With the development of Artificial Intelligence (AI) in the last two decades,110

the problems encountered in the traditional approaches have been solved. In this111

study, a machine learning algorithm Gaussian Process is proposed to predict crack112

damages of a thick composite sandwich panel by numerical simulations address-113

ing the difficulty in constructing a database for structural health monitoring of114

real composite structures and the inconvenience in conventional expertise-based115

SHM approaches. The goal of the study is to obtain a data-driven probabilistic116

interpretation of damage detection. A squared panel constituted of two composite117

faces in carbon/epoxy and a honeycomb core is modelled by commercial software.118

The investigation of this structure is carried out based on two status of the model:119

healthy model and damaged model. Instantaneous signals with different frequen-120

cies are applied to the structure and finite element analysis is performed to obtain121

vibration responses in healthy and damaged status, respectively. Features extracted122

by discrete Wavelet Transform (DWT) from these responses are fused and defined123

as input to the Gaussian Process. The Gaussian Process model is trained and tested124

to assess the health status of the structure. The DWT can speed up the computation125

time with proper selection of mother wavelet without major loss of information.126

The impact of likelihood function and inference methods employed in Gaussian127

Process on the classification accuracy is investigated. It is observed that with more128

iterations, the classification is slightly better than with less iterations, which is129

consistent with common sense. The pertinence of data from sensors located at130

different positions is also investigated. Finally, an overall classification accuracy of131

100% is obtained, which proves the proposed method is effective for crack-type132

damage detection in the studied composite sandwich structure.133

The rest of this paper is organized as follows: the basic theoretical background134

including the feature extraction method DWT as well as machine learning approach135

GP will be introduced in section 2. The proposed damage detection system and data136

processing technique are explained in section 3. Model description together with137

simulation approach are described in section 4, followed by results and discussions138

in section 5. Finally, section 6 concludes the paper and suggests potential future139

works.140

2. Theoretical background141

The development of data-driven approaches has provided great convenience142

in scientific research, but the problem of data redundancy has been an obstacle to143
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efficiency. Ideally, data containing key information are used while useless data are144

eliminated. For this purpose, a signal processing and feature extraction method,145

Discrete wavelet transform (DWT) is firstly introduced in the current research.146

Then conventional machine learning method Gaussian Process will be applied.147

2.1. Feature extraction by Discrete Wavelet Transform148

DWT was proposed, on one hand, to extract information in both time and149

frequency domain through multi-resolution analysis, on the other hand to reduce150

the dimension of data, which resolves the problem of redundancy. Since the time151

domain signal is a discrete time sequence, we denote the sequence as x[n] with n152

an integer. The transform is computed by passing the signal through a half band153

digital lowpass filter with impulse response h[n] and a half band highpass filter154

with impulse response g[n] simultaneously. The filtering, from a mathematical155

point of view, is convolution of the signal with the filter. A half band lowpass156

filter removes all frequencies above half of the highest frequency in the signal,157

whereas a half band highpass filter removes all frequencies below half of the highest158

frequency. After passing the signal through filters, detail coefficients from the159

output of highpass filter and approximation coefficients from the output of lowpass160

filter are obtained. Since half the frequencies of the signal have been removed, half161

the samples can be discarded according to Nyquist’s theorem. Thus, the output of162

lowpass filter is subsampled by 2. This constitutes one decomposition level. This163

decomposition has halved the time resolution since the number of samples has164

been halved, but has doubled the frequency resolution since the frequency band165

has been halved. The subsampled output of lowpass filter is further processed166

by passing it again through a new lowpass filter h[n] and a highpass filter g[n]167

constituting another decomposition level. It should be noted that the highpass and168

lowpass filters are known as the Quadrature Mirror Filters (QMF) and are related169

by:170

g[L− n− 1] = (−1)n × h[n] (1)

2.2. Gaussian Processes classification171

Supervised machine learning has been widely used to learn a function that172

maps an input to an output based on example input-output pairs [26]. As one173

sub-field of machine learning, it helps to improve the efficiency and reduce error in174

problem solving. It can be divided into regression and classification problems. The175

outputs for regression are continuous values whereas for classification are discrete176

class labels. The idea of machine learning-based SHM is to learn the relations177

between input variables and output variables. One machine learning algorithm that178
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is capable of learning features from data and providing a probabilistic interpretation179

of predictions is Gaussian Process (GP). A GP can be considered as a Gaussian180

distribution over functions rather than over variables, and inference takes place181

directly in the space of functions [27]. A machine learning algorithm involving GP182

takes a measure of the similarity between points to predict the value for an unseen183

point from the training data. There are several GP models for regression problems,184

but in this study, a GP model for classification is employed.185

An introduction of a GP model for regression problems is firstly carried186

out because it is a necessary step for understanding GP model for classification187

problems. Given an input vector variable x with dimension D, the corresponding188

output target t is related with the input vector by a nonlinear smooth mapping189

function f with an additional Gaussian noise ε190

t = f(x) + ε (2)

In the same way, for a given input training data set D = {X, t} containing input191

training matrix X = [x1,x2, ...,xN ]T constituted by vectors xi and corresponding192

training target vector t, in which each element is expressed as ti = f(xi) + ε, i =193

1, 2, ..., N , we are interested in making inferences about the relationship between194

inputs and targets as well as making predictions for a new input. Therefore, GP is195

involved by modeling the mapping function f with a zero mean and covariance196

matrix K, see Eq. (3):197

p(f |D) ∼ N (f |0,K) (3)

where f = [f(x1), f(x2), ..., f(xN)]T , K is the covariance matrix, computed by198

covariance function k(xi,xj), also called kernel function, expressed by Eq. (4).199

The covariance function is expected to make similar predictions of target values ti200

and tj for similar input points xi and xj . Therefore, the squared exponential with201

automatic relevance determination distance (SE-ARD) measure expressed by Eq.202

(4) is adopted in the present study:203

k(xi,xj) = cov(f(xi), f(xj)) = σ2
fexp(−

1

2
(xi − xj)

TM(xi − xj)) (4)

where M = diag(λ1, λ2, ..., λN), with each λi corresponding to input dimension204

characteristic length scale. σ2
f is the signal variance. λ and σ2

f are hyperparameters.205

In the training step, the objective is to model an appropriate mapping function206

f so that the training target ti corresponds well to the training input vector xi.207

The learning task is achieved by tuning the hyperparameters denoted by Θ in the208

covariance function. And the optimization is accomplished by minimizing the209
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negative logarithmic likelihood function with respect to the hyperparameters in Eq.210

(5), which corresponds to choosing the value of Θ for which the probability of the211

observed data set is maximized.212

L (Θ) = − log (p (t|X)) =
1

2
log |K|+ 1

2
tTK−1t +

N

2
log (2π) (5)

where |K| refers to the determinant of the matrix K.213

The role of the GP model is to use known data X and t = [t1, t2, ..., tN ] to214

predict the output target of a new input vector xN+1. As the covariance matrix K215

is composed of the covariance between each of the first N input vectors, for a new216

input vector xN+1, the joint probability distribution can be expressed as:217

p(tN+1) = N (tN+1|0,KN+1) (6)

where tN+1 = [t1, t2, ..., tN+1]
T, and the covariance matrix KN+1 is expressed as:218

KN+1=

[
K + σ2

nI k
kT c

]
(7)

with k a vector with elements k(xn, xN+1) for n = 1, 2, ..., N , and c a scalar with219

value c = k(xN+1, xN+1) + σ2
n. It’s clear to see that the vector k and the scalar c220

are both dependant on the test point input vector xN+1. The predictive conditional221

distribution over tN+1 is a Gaussian distribution with mean and covariance given222

by [28]:223

µ (xN+1) = kTKt,
σ2 (xN+1) = c− kTKk

(8)

These two items are the most important for the regression because they provide both224

prediction mean value and uncertainty information. In a GP regression example,225

the regression problem is resolved by making a prediction of a new target for a226

new input with a predictive mean value and uncertainty information indicated by a227

confidential interval. It shows the more sparse the data, the larger the uncertainty228

interval of the prediction.229

For a classification problem, our goal is to model the posterior probability230

distribution of the target for a new input vector, given a set of training data. The231

predictive probabilities should be in the interval [0, 1], but the prediction result of232

the Gaussian Process is within the entire real range. However, GP model can be233

adapted to classification problems by transforming the output using an appropriate234

nonlinear activation function, such as logistic sigmoid:235

σ(f) =
1

1 + exp(−f)
(9)
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Consider a binary classification problem with target value t ∈ {−1, 1}. A236

Gaussian Process is defined over a function f(x) and then this function is trans-237

formed by a logistic sigmoid y = σ(f), with y ∈ (0, 1). The probability distribu-238

tion of the target variable is given by the Bernoulli distribution:239

p(t|f) = σ(f)t(1− σ(f))1−t (10)

Similar to the regression, the training input vectors are denoted by x1,x2, ...,xN ,240

the corresponding observed targets are denoted by tN = [t1, t2, ..., tN ]T. The241

objective is to determine the predictive distribution of p(tN+1|tN). In classification242

problems, the Gaussian noise ε in covariance matrix no longer exists because243

it is assumed that every training input vector is correctly labelled. In a two-244

class problem, predicting p(tN+1 = 1|t) is enough because the probability of245

p(tN+1 = −1|t) is obtained by 1 − p(tN+1 = 1|t). The expected predictive246

distribution is obtained by a marginal distribution expressed as:247

p(tN+1 = 1|t) =

∫
p(tN+1 = 1|fN+1)p(fN+1|t)dfN+1 (11)

where fN+1 = f(xN+1). However, this integral is analytically intractable. To248

approximate the integral, several inference methods can be taken into account, such249

as Laplace approximation, variational inference, expectation propagation, etc.250

3. Proposed Gaussian Processes classification method for composite sand-251

wich structure252

The proposed Gaussian Process includes 2 main steps: training step and253

testing step for the purpose of classification using the processed signals from254

sensors. In the first step, training for each case corresponding to healthy and255

damaged structural status is performed. The training data is correctly labeled. In256

the second step, the GP model obtained from previous step is used to evaluate257

unknown features so as to determine if damages appear in the structure or not.258

3.1. Training step259

Damage detection of a structure is achieved by a SHM system consisting of260

several sensors permanently attached on the structure. Each sensor can be used261

as an actuator to apply an pulse excitation signal or as a receiver to collect data.262

In each simulation scenario, a pre-defined pulse signal is applied on the actuator.263

The signal interacts with elements of the structure during the propagation over264
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the whole structure. Sensors located at three corners are considered capable of265

collecting signals that have interacted with potential damages without missing266

information. These raw time series signals are processed with Discrete Wavelet267

Transform. This step can be regarded as reduction of data dimension and feature268

extraction because DWT is used to extract information in both time and frequency269

domains as well as discarding data that is not dominant without any major loss of270

information. The Coiflet 5 is chosen as mother wavelet after comparing with other271

wavelets. This wavelet is the optimal among others in terms of errors.272

In each simulation case, one file containing signals collected by three sensors273

is obtained. It should be noted that, the duration of each simulation is 0.01s and274

the sampling frequency depends on the input signal frequency, thus the number275

of sampling points for a fixed time duration is different for different signals. Note276

that in DWT the successive subsampling is by 2, the collected signal length should277

be a power of 2 or a multiple of power of 2 in order to make the scheme efficient.278

Thus, the first 512 sampled points for signals whose length is more than 512 are279

used for DWT, while for collected signals whose length is less than 512, zeros280

are added after each signal until its length becomes 512. DWT is employed for281

each collected signal, and the corresponding coefficients are saved as one vector.282

Since the frequency bands that are not very prominent in the original signal will283

have very low amplitudes, that part of the DWT signal can be discarded without284

any major loss of information. For this reason, only the first 256 coefficients are285

used, as shown in figure 1. In each simulation, the three vectors after reduction286

obtained by DWT are merged into one vector which contains all features from287

different sensors in the order of the sensors. The same procedure is performed for288

all simulation cases. All the vectors are organized in one matrix in which each row289

consists of one transposed vector representing one simulation. This matrix contains290

all features of the structures and this procedure is considered as data fusion.291

The matrix after data fusion is in the form of:292

X=

 x111 . . . x11K
... . . . ...
x1I1 · · · x1IK

x211 . . . x21K
... . . . ...
x2I1 · · · x2IK

· · ·
xJ11 . . . xJ1K

... . . . ...
xJI1 · · · xJIK

 (12)

where the element is denoted by xjik in which i indicates the simulation number293

(ith simulation), j indicates the sensor number (jth sensor) and k indicates the294

coefficient number (kth coefficient). Group scaling is performed on this matrix in295

order to remove the mean trajectories of each sensor and to make sure that data296

from any sensor have the same variance [29]. The element in the matrix is scaled297
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by:298

x̄jik =
xjik − µ

j
k

σj
(13)

where µj
k = 1

I

I∑
i=1

xjik is the mean of the I measurements of sensor j for the299

kth coefficient, σj =

√
1
IK

I∑
i=1

K∑
k=1

(
xjik − µj

)2
is the standard deviation of all300

measurements of sensor j, and µj is the mean of all measurements of sensor j.301

This scaled matrix X̄ is used as input of Gaussian Process for subsequence analysis.302

In GP training step, input vectors in the matrix X are correctly labelled by the303

ground truth t with t = 1 indicating healthy status and t = −1 indicating damaged304

status. Likelihood function together with inference method are employed. These305

two functions are specified in the training step. Hyperparameters are predefined306

randomly for the purpose of initialization. The input is then fed into the GP model307

and in turn an output predicted by the model is given. During the learning process,308

negative logarithmic likelihood function is used as loss function to optimize all309

hyperparameters in kernel function and likelihood function so that the error between310

the predictive output derived from GP and the corresponding ground truth is311

minimized. The optimization process is achieved by minimizing the negative312

logarithmic likelihood function with respect to the hyperparameters Θ, which313

corresponds to choosing the value of Θ for which the probability of the observed314

data set is maximized. This procedure is illustrated in figure 2.315

3.2. Testing step316

Once the hyperparameters are optimized for the training data, the validated317

GP model can be used to make predictions for new inputs. In this study, the GP318

model is used to predict if damages occur in the structure. The testing procedure319

is the same as that of training before inserting the transformed input into the GP320

model. In testing step, only the trained GP model is used. Besides, different from321

the training phase where optimized hyperparameters are as output, the trained GP322

model will provide a predictive mean value corresponding to the new input and a323

variance of the predictive distribution based on the training data. The predictive324

mean value indicates in which label class the input is most likely distributed, that’s325

to say healthy or damaged class, while the variance provides an information of326

confidence, which indicates the reliability of the classification result. It should be327

noted that the GP model is used to predict the appearance of damages, but unable328
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to localized the probable region where damages occur. The procedure of the testing329

step is presented in figure 3.330

4. Numerical approach331

In data driven-based SHM systems, information containing the structure’s332

health status is quite important for the performance of the system. Thus, perti-333

nent structural status should be collected to construct a reliable database because334

different sets of data correspond to different healthy conditions of a structure.335

However, it is neither economic nor realistic to build real structures of different336

health status, especially for huge and expensive structures to construct a database.337

To understand the behaviour of a structure, numerical simulation of structures in338

different conditions is a promising idea. Therefore, SHM achieved by simulation339

becomes a compromise way. This study is conducted by simulation approach.340

The structure is constructed with software ANSYSr and numerical model under341

external excitation is simulated within the software.342

4.1. Composite sandwich plate model343

In the present work, a hexagonal shaped Nomex honeycomb core (3D core)344

and CFRP-skin made composite sandwich plate is selected for simulation and345

classification tasks. The plate of spatial dimensions 300 mm × 294 mm × 19346

mm consists of a honeycomb core and two face sheets. The thickness of the347

honeycomb core is H = 15mm in which the radius and wall thickness of each cell348

are r = 5mm and t = 0.2mm, respectively. The Nomex core’s material properties349

are: density ρ1 = 1240kg/m3, Poisson’s ratio ν1 = 0.33, Young’s modulus350

E1 = 5.5× 109Pa. The thickness of each face sheet is h = 2mm. The face sheets351

are laminate panels made of carbon/epoxy materials whose properties are: density352

ρ2 = 1850kg/m3, Poisson’s ratio ν2 = 0.3, Young’s modulus E2 = 70× 109Pa.353

A simplifies illustration of the sandwich structure is referred to figure 4(a).354

The honeycomb sandwich plate model consisting of a honeycomb core and355

two skin plates is shown in figure 4(b). Within our study the dimensions of the356

face sheets and the core will not change.357

The face sheets are modeled by the SOLSH190 solid-shell element which358

has 8 nodes with 3 degrees of freedom at each node: translation in x, y and z359

directions. In this manner, face sheet shear phenomena can be taken into account360

when a signal with high frequency propagates in the structure. 2D shell element361

SHELL181 is used to model the honeycomb cells. The transition area where the362

face sheet connect to the honeycomb cell is often the weakest region. In our study,363
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the elements of shell and solid-shell are connected with an automatic constrain364

equation developed by ANSYSr. The total number of meshing elements is about365

177000, which guarantees a minimum mesh density of 10 elements per wavelength366

for the model.367

Composite materials exposed to long term loads and critical working environ-368

ment may have damages due to fatigue, impact or material degradation. Cracks and369

delamination are two most common damages for composites. In the first attempt370

of this study, crack damage is designed in the sandwich structure by disconnecting371

local nodes and investigation of the capability of detecting this kind of damage is372

conducted. Models with cracks in different positions are constructed. Five crack373

damages in the x direction and one crack damage in y direction are created. Cracks374

in x direction are located at (x = L
4

, y = W
4

), (x = L
4

, y = W
2

), (x = L
2

, y = W
4

),375

(x = L
2

, y = W
2

), (x = 3L
4

, y = 3W
4

), respectively. Crack in y direction is located376

at (x = L
2

, y = W
2

). The length of cracks is 30mm which is L
10

in x direction, and377

crack length in y direction is 43mm, as illustrated in figure 5. Cracks are designed378

through the core and the top face sheet so that the interaction of the propagated379

signal with the damage is detectable.380

For each model, points located in four corners on the top face sheet are381

selected. One is used as actuator through which the pulse excitation signal is382

inserted, while the other three are used to collect propagated signals through the383

structure, as shown in figure 5(a). In actual cases, the actuator converts the input384

voltage signal into a displacement signal, whereas the sensor converts the received385

displacement signal into a voltage signal. Thus in the current study, for the sake of386

convenience, we directly input the displacement signal on the structure and extract387

the displacement signal at the corresponding position to represent the work of388

actuator and sensors. The vertical displacement of nodes are collected for further389

signal processing.390

4.2. Simulation391

In the simulation of each model, a pulse excitation signal with 7 cycles is392

applied on the actuator to stimulate vertical displacement. Transient analysis393

is performed on the sandwich plate structure. Damping coefficients are set as394

follows: matrix multiplier is set as α = 0 and stiffness matrix multiplier as395

β = 6.37 × 10−7. The calculation time is set as 0.01s, which is long enough396

for the wave to propagate through the whole plate. The sampling frequency fs397

should be no less than 2 times the signal frequency f according to the Nyquist’s398

rule. In the present research the sampling frequency is set as fs = 8f in order399

to make the recorded signal be representative. In each simulation case, vibration400
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responses of one structure are collected at three sensors for further use. They are401

saved in one file to represent the structural health status in that condition. Same402

simulations are performed for the same structure with input signals of different403

frequencies. Then the same simulations are conducted for structures with different404

health status successively. As mentioned above, we have 7 composite sandwich405

plate models among which one healthy and six with crack damages at different406

positions. On each model 3 different input signals with frequency 8kHz, 6kHz and407

4kHz are applied successively corresponding to 3 simulation cases. So far a total408

of 21 simulation cases are obtained. The objective is to perform the least cases409

with which machine learning approaches can detect the structure’s health status.410

A comparison of the vibration responses of a healthy structure and the structure411

in figure 5(b) to a same input signal of 8kHz with 7 cycles at the same position412

is firstly conducted, as shown in figure 6. The compared signals are from three413

sensors on the structure together with the input signal. First of all, in both structures414

it can be seen that the original input excitation signal waveform has changed after415

propagating along different directions by comparing the signals in figure 6(b-d)416

with figure 6(a). This is due to the wave dispersion in the structure. Besides, as the417

core of the structure is honeycomb that has anisotropic properties, the dispersive418

behavior of the structure is direction-dependant, which results in the differences419

in the vibration responses from 3 sensors in figure 6(b) to figure 6(d). Moreover,420

comparing the vibration responses of healthy and damaged structures from sensor421

3, we can find that in the first wave packet, the amplitude of the signal from422

damaged structure is slightly higher than that from healthy structure, as shown in423

6(d). It is due to the fact that the existence of the crack damage in this position424

reduces the bending stiffness of the structure in y direction from the actuator to425

sensor 3. Furthermore, comparing the healthy and damaged structures in 6(b)426

and (d), the signal difference occurring between wave packets might be caused by427

the interaction of input signal with the crack, but as the difference is not evident,428

machine learning algorithm should be used to learn such kind of features.429

The DWT coefficients are then compared in figure 7. As mentioned in 2.1,430

DWT can extract information in both time and frequency domain. The mismatch431

between the vibration responses of healthy and damaged structures can be extracted,432

as shown in figure 7(b) and (d). It should be noted that only the first 256 coefficients,433

which correspond to lower frequencies of the analysis, carry relevant information434

and the rest of the signal can be discarded without any major loss of information.435

In addition, discarding half of the signal can speed up the computation in further436

step.437

For the six sandwich models with cracks, simulations are conducted with438
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excitation signals of three different frequencies successively. 30 data sets for each439

model are collected. For the damage-free sandwich model, same simulations are440

conducted with excitation signals of three different frequencies successively as for441

the damage models. 90 data sets are obtained. Thus a data base is constructed with442

a total number of 270 data sets, in which 90 data for healthy model which is labeled443

by ’1’ and 180 data for damaged models labeled by ’-1’. 70% of the data base is444

used for training the GP model and the rest 30% is used for testing. The testing step445

is a step for evaluating the GP model for damage predictions in composite sandwich446

plates. In both training and testing step, several factors will affect the results, such447

as the type of mother wavelet for the DWT, the amount of data discarded by DWT,448

the selection of likelihood function and inference method for GP, and the number449

of function evaluations to optimize hyperparameters during the training step, etc.450

The influence of these factors will be evaluated successively. It is worth mentioning451

that although discarding the coefficients that have low amplitude in DWT may not452

lead to major loss of information, it will slightly reduce the accuracy of the results,453

but the effect is negligible.454

5. Results and discussions455

In this section, the influence of previously mentioned factors on the classifica-456

tion results is discussed. In binary classification case, 1 represents healthy status457

while -1 represents damaged status. It is expected that the predictive mean value458

is as close to 1 as possible for the case whose ground truth is healthy, while the459

predictive mean value is as close to -1 as possible for the case whose ground truth460

is damaged. However, in GP classification model, the predictive mean value is not461

necessarily 1 or -1. Therefore, it is necessary to define a threshold to determine if462

the prediction from the GP model is correct or not. In the testing step, an overall463

predictive mean value for each class can be calculated, µd for damaged class and464

µh for healthy class. The threshold to separate two classes is defined as the mean465

value of µd and µh. The distance from overall mean value to the threshold is called466

class distance, which is considered as a measure of the quality of the classifier. If467

the predictive mean value for a case whose ground truth is damaged is less than468

the threshold, the prediction is considered as correct, indicating a damaged status.469

The same, if the predictive mean value for a case whose ground truth is healthy is470

greater than the threshold, then it means that the status of the structure is predicted471

as healthy by GP model, which is correct. Otherwise, it is considered that the GP472

model misclassifies the case.473
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5.1. Classification with three sensors474

Firstly, the influence of the selection of mother wavelet is investigated. Control475

variate method is employed, that’s to say in each analysis, only one factor is476

considered as a variable while others are invariant. Daubechies 8 (D8) wavelet and477

Coiflet 5 (C5) wavelet are compared with 512 saved coefficients in DWT, logistic478

function as likelihood function, Variational Bayesian (VB) as inference method.479

40 iterations are adopted in the optimization step, see figure 8. The abbreviation480

of mother wavelet, saved amount of data in DWT, likelihood function, inference481

method and iteration numbers are successively listed in the legend on the up-left of482

the figure. It should be noted that in all the following figures, the first 54 testing483

points (denoted by �) along the x-axis are with ground truth ’Damage’ while the484

last 27 testing points (denoted by ∗) are with ground truth ’Health’. The global485

mean value of predictive mean value for all testing damaged cases and that for486

healthy cases are −0.885 and 0.775 using Coiflet 5 wavelet, while the results using487

Daubechies 8 wavelet are −0.858 and 0.697 respectively. In addition, every single488

case is correctly classified using Coiflet 5 wavelet, which suggests that Coiflet 5 is489

more powerful in extracting features. It should be noted that some other mother490

wavelets are also evaluated but have poorer performance and the corresponding491

results are listed in Table 1. the class distance is larger than others while the mean492

square error is lower, which indicates that the GP model performs better in the493

classification for both healthy and damaged structures using Coiflet 5 wavelet.

Haar Beylkin Coiflet5 Coiflet3 Coiflet1
Class distance 0.5261 0.8344 0.8803 0.8161 0.8697

MSE 0.0799 0.0374 0.0087 0.0214 0.0135
D20 D16 D12 D8 D4

Class distance 0.8397 0.8380 0.8408 0.8363 0.8268
MSE 0.0172 0.0140 0.0133 0.0354 0.0251

Symlet10 Symlet8 Symlet6 Symlet4 Vaidyanathan
Class distance 0.8738 0.8323 0.8575 0.8578 0.8320

MSE 0.0145 0.0329 0.0121 0.0172 0.0162

Table 1: Performance of different wavelets in GP classification.

494

Secondly, the influence of the amount of data discarded by DWT on the495

classification accuracy is discussed. According to the previous study, Coiflet496

5 mother wavelet, Logistic likelihood function, Variational Bayesian inference497

method and 40 iterations are used due to the outstanding performance. An example498
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of DWT coefficients is illustrated in figure 1. All 512 coefficients and the first499

256 coefficients are separately used for GP model to study the influence on the500

classification accuracy. Results without discarding coefficients is slightly better501

than those discarding the last 256 coefficients that have low amplitude, as shown in502

figure 9, which is reasonable and easy to understand, because although discarding503

the coefficients that have low amplitude in DWT may not lead to major loss of504

information, it will slightly reduce the accuracy of the results, but the effect is505

negligible.506

Thirdly, the influence of likelihood function and inference method is investi-507

gated simultaneously because there is an issue of compatibility among different508

likelihood functions and inference methods. Four combinations of likelihood509

function and inference method are presented in figure 10, including Logistic-VB,510

Logistic-Expectation Propagation (EP), Logistic-Laplace and Error function (Erf)-511

EP. It can be seen that the Logistic-Laplace combination performs the worst because512

the predictive mean value for almost all cases are around 0 and far from 1 or -1,513

which shows that the class distance is too short. The global predictive mean value514

for healthy and damaged cases are 0.281 and −0.22 respectively. The Logistic-EP515

combination and Erf-EP combination perform better than Logistic-Laplace, with516

a global mean value µh = 0.714, µd = −0.546 and µh = 0.745, µd = −0.622,517

respectively. However, 3 cases are misclassified with Logistic-EP combination and518

3 cases are misclassified with Erf-EP combination. A better result is achieved by519

Logistic-VB combination with global mean value µh = 0.667, µd = −0.891 where520

the class distance is larger than others, indicating a better classification quality, and521

only 1 case is misclassified.522

Finally, the influence of iteration numbers on the accuracy of the classification523

results is discussed. The iteration number is in the training step of GP model.524

Normally, the more iterations there are, the more accurate the result is. The525

result is presented in figure 11, where the horizontal axis indicates intervals of526

the predictive mean value µ and the vertical axis indicates the number of testing527

data. A comparison of 20 and 40 iterations is carried out. Here the Coiflet 5 (C5)528

mother wavelet is chosen in the DWT and the first 512 coefficients are saved to529

be used as input for GP. Logistic function is chosen as the likelihood function and530

Variational Bayesian (VB) is selected as the inference method. The global mean531

value of predictive mean value for all testing damaged cases and that for healthy532

cases µg = 1
n

n∑
i=1

µi are −0.891 and 0.667 for 20 iterations, while the results for533

40 iterations are −0.885 and 0.775 respectively. Besides, 1 case with ground truth534

(GT) ’healthy’ is misclassified in the ’damaged’ class for 20 iterations, while every535
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case is correctly classified with 40 iterations. Moreover, the class distance for 40536

iterations is larger than that for 20 iterations. It shows that with more iterations, the537

result is slightly better than with less iterations, which is consistent with common538

sense.539

It should be noted that the current research is based on simulation, and in540

real experimental data the impact of environmental noise should be taken into541

consideration. Therefore, it is necessary to add noise to the simulation data to542

simulate the influence of environmental noise, so as to verify the stability of the543

proposed method. White Gaussian noise is added into the raw vibration data that544

are collected from sensors. Signal-noise ratio (SNR) is set as 20dB. Then the same545

procedure of signal processing with DWT and Gaussian Process classification is546

conducted. A comparison of classification result based on noise-free data and data547

with noise is illustrated in figure 12. Despite the added noise, the class distance has548

only slightly decreased, and all data can be correctly classified. This proves that549

the method proposed in this paper is still practical under simulated environmental550

noise.551

5.2. Classification with one sensor552

Now that an acceptable classification result has been obtained with a certain553

setup of the GP model using the data from 3 sensors, a discussion concerning554

the reduction of the number of sensors while ensuring the classification result is555

conducted.556

Based on the results obtained in 5.1, the model configuration with mother557

wavelet C5, 256 DWT coefficients, Logistic likelihood function, VB inference558

method and 40 iterations is maintained. The pertinence of data from three sensors559

at different locations to the classification result is investigated. Data from three560

sensors are used for training and testing of the GP model independently. Results561

from the three GP models are compared between each other and also with the562

results with all data from sensor 1, 2 and 3, as shown in figure 13. It shows that563

with data from all three sensors the GP model achieves the best result in the current564

study. However, with data only from sensor 1, the classification accuracy can be565

100%, but it should be noted that as there exist several testing points so close to566

the threshold in both classes, they could probably be misclassified. With data only567

from sensor 3 , at least 2 point among 81 are misclassified, but with data only from568

sensor 2 located at the diagonal of the actuator, the result is much worse where at569

least 6 testing points are misclassified.570

In this section, Gaussian Process is evaluated by the data base collected571

through sensors attached on the sandwich plate. 70% of the database is used572
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for training and the rest 30% is used for testing. Several factors are evaluated573

successively and it is found that: to optimize hyperparameters during the training574

step, the more iterations, the better the results; during the signal processing and575

feature extraction, the mother wavelet Coiflet 5 in DWT is outperforming other576

mother wavelets; in the whole GP, the combination of Logistic function and Varia-577

tional Bayesian inference method is outstanding compared to other combinations;578

Reducing the amount of data by DWT will result in a slight loss of accuracy of579

the predictive mean value, but it can greatly reduce the computation time while580

ensuring the accuracy of classification, which is worthwhile for processing big data.581

Therefore, a GP model with mother wavelet C5, 256 DWT coefficients, Logistic582

likelihood function, VB inference method and 40 iterations is adopted in this study.583

The corresponding predictive mean values for healthy and damaged structure are584

0.800 and -0.870, respectively. As for the impact of the number of sensors, the585

result shows that data from sensor 1 and sensor 3 are more pertinent than that from586

sensor 2. It shows also that reducing of the number of sensors in the current study587

will lead to worse results.588

6. Conclusions589

This paper addresses the difficulty in constructing a database for structural590

health monitoring of real composite structures and the inconvenience in conven-591

tional expertise-based SHM approaches. A data-driven approach GP for damage592

detection in a composite sandwich plate by simulation approach is presented. Sev-593

eral factors that have impact on classification accuracy are investigated, including594

the selection of mother wavelet during the signal processing and feature extraction595

by DWT, the amount of data discarded by DWT, the likelihood function and infer-596

ence method that are used to make predictions, as well as iteration numbers in the597

training step of GP model. Based on the present results, some conclusions can be598

drawn as below:599

• The proposed method is proven effective for crack-type damage detection in600

the studied composite sandwich plate.601

• The selection of mother wavelet in discrete wavelet transform has an im-602

portant impact on the classification accuracy. Coiflet 5 performs better than603

others for the classification of both healthy and damaged structure.604

• Discarding the coefficients that have low amplitude in DWT can speed up605

the computation time and may not lead to major loss of information. The606

resulted reduction of classification accuracy is negligible.607
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• The likelihood function Logistic function and inference method Variational608

Bayesian perform better than other combinations in the present study.609

• With more iterations, the classification is slightly better than with less itera-610

tions, which is consistent with common sense.611

• Data from sensor 1 and sensor 3 are more pertinent than that from sensor 2.612

Reducing of the number of sensors in the current study will lead to worse613

results.614

• The effectiveness of the proposed method is verified under simulated envi-615

ronmental noise.616

Although the proposed approach was achieved based on simulation results,617

it is applicable for real experimental data. The same procedure of data collection,618

signal processing and the use of GP model can be conducted as for simulation data619

for the purpose of damage detection. This proposed method is capable to detect620

crack-type damages for a composite sandwich panel. It is expected to be suitable621

for damage detection of other kind of damages and for more complex structures.622
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Figure Captions727

Figure 1: Example of a DWT for a signal collected at sensor 2 (on the diagonal728

of the actuator)729

Figure 2: Gaussian Process training step730
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Figure 3: Gaussian Process testing step731

Figure 4a: Geometry of the composite sandwich panel732

Figure 4b: Numerical model of the composite sandwich panel733

Figure 5: Composite sandwich models with crack damage in different posi-734

tions: (a) in x direction x = L
4

, y = W
4

(b) in x direction x = L
4

, y = W
2

(c) in x735

direction x = L
2

, y = W
4

(d) in x direction x = L
2

, y = W
2

(e) in x direction x = 3L
4

,736

y = 3W
4

(f) in y direction x = L
2

, y = W
2

. 1 actuator (red) and 3 sensors (yellow)737

attached on the face-sheet.738

Figure 6: Comparison of structural vibration responses of a healthy model739

and a model with crack damage to an excitation signal of frequency 8 kHz.740

Figure 7: Comparison of DWT coefficients of the vibration responses in741

Figure 6742

Figure 8: Influence of the selection of mother wavelet on the classification743

accuracy744

Figure 9: Influence of the amount of data saved by DWT on the classification745

accuracy746

Figure 10: Influence of likelihood function and inference method on the747

classification accuracy748

Figure 11: Influence of iteration numbers to optimize hyperparameters during749

the training step on the classification accuracy750

Figure 12: Comparison of classification result based on (a) noise-free data751

and (b) data with noise752

Figure 13: Investigation of the pertinence of three different sensors to the753

classification result. Classification using data only from sensor 1 (a), data only754

from sensor 2 (b), data only from sensor 3 (c) and data from sensor 1-3 (d)755
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