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Introduction

Advanced composite materials have been widely used in different areas, including aerospace, medicine, machinery, construction and other industries due to the characteristics of light weight, corrosion resistance, heat insulation, sound insulation, shock absorption and high (low) temperature resistance, etc., which typically meet the functional requirements in specific working environments [START_REF] Gay | Composite materials: design and applications[END_REF].

The application of composite materials is gradually replacing the role of conventional metal alloys in many fields. However, due to the synthesis method of composite materials, they are susceptible to several structural damages, such as fiber fracture, matrix crack and delamination. These damages are usually caused by fatigue and impact events. In the early stage of the damages, they are very small and barely visible to visual inspections, but under certain conditions they may affect the performance of structures and further lead to catastrophic consequences, especially for aircrafts, resulting in huge loss of people lives and money. Therefore, the development of Structural Health Monitoring (SHM) systems that can detect damages in a structure has been considerable concerns in the last 2 decades [START_REF] Balageas | Structural health monitoring[END_REF]. SHM aims to give, at every moment during the life of a structure, a diagnosis of the "state" of the constituent materials, of different parts, and of the full assembly of these parts constituting the structure as a whole [START_REF] Balageas | Structural health monitoring[END_REF]. Health monitoring of structures is initially assessed by visual inspection to approximate the damage location, but damages in bonded structures especially in composite materials are often within the structure and barely visible or even invisible. As a result, several non-destructing testing (NDT) methods that are capable of detecting internally hidden damages are employed during the short inspection intervals [START_REF] Lammering | Lamb-Wave Based Structural Health Monitoring in Polymer Composites[END_REF].

Two of NDT methods, vibration-based technique and guided wave-based

technique have been developed for the extraction of damage-sensitive information about the health state of structures. They are the most commonly used among others. A general process of the SHM based on these methods involves collecting relevant data, which is the structure response, from an array of sensors attached on the structure. Then necessary signal processing is carried out for the purpose of data reduction and key feature extraction from these measurements. Finally, the healthy state of the structure is determined by statistical analysis of these features.

Vibration-based damage detection focuses on the detection of the mode shape singularity and natural frequency changes created by local discontinuity due to damages [START_REF] Yang | Delamination detection in composite laminate plates using 2d wavelet analysis of modal frequency surface[END_REF][START_REF] Zhu | Debonding detection of honeycomb sandwich structures using frequency response functions[END_REF][START_REF] Huang | Damage detection using modal rotational mode shapes obtained with a uniform rate csldv measurement[END_REF][START_REF] Katunin | Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis[END_REF][START_REF] Katunin | Identification of multiple damage using modal rotation obtained with shearography and undecimated wavelet transform[END_REF][START_REF] Zhou | Damage identification method based on continuous wavelet transform and mode shapes for composite laminates with cutouts[END_REF][START_REF] Farrar C R | Vibration-based structural damage identification[END_REF][START_REF] Bayissa | Vibration-based structural damage identification using wavelet transform[END_REF][START_REF] Weijtjens | Vibration based structural health monitoring of the substructures of five offshore wind turbines[END_REF]. Several researches have successfully implemented this method in SHM of composite materials. Yang et al. [START_REF] Yang | Delamination detection in composite laminate plates using 2d wavelet analysis of modal frequency surface[END_REF] proposed a vibration-based damage detection method for composite plates with delaminations using modal frequency surface (MFS). It is found that the effectiveness of the MFS approach depends on the delamination location by analyzing the modal frequencies. Zhu et al. [START_REF] Zhu | Debonding detection of honeycomb sandwich structures using frequency response functions[END_REF] proposed a vibration-based NDT to detect debonding in honeycomb sandwich beams based on the natural frequency changes caused by damages. Honeycomb sandwich beam is considered equivalent to homogeneous materials in low frequency because the local periodic structure is much smaller than the wavelength.

However, the proposed method cannot effectively detect small damages in large structures. A damage indicator based on modal rotational mode shapes obtained with a uniform rate continuously scanning laser Doppler vibrometer (CSLDV) technique was proposed by Huang et al. [START_REF] Huang | Damage detection using modal rotational mode shapes obtained with a uniform rate csldv measurement[END_REF] for crack damage detection. The proposed method is proved potential for practical applications, such as ultra-light or composite structures. It is worth mentioning that in vibration-based NDT, wavelet analysis has been applied in many studies for the post-processing of vibrational mode shapes to extract features for damage detection. Vibration-based NDT with wavelet analysis was applied to a composite sandwich plate to detect different types of damages by extracting modal shapes of vibration in the research of Katunin [START_REF] Katunin | Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis[END_REF]. Sandwich plate with damages was scanned by two laser Doppler vibrometers (LDV) by experiment and the amplitudes of wavelet analysis coefficients were used to represent the presence and location of damages. Results show that the proposed method is capable to detect and localize different damages using wavelet analysis. But the proposed method should not be limited to the laboratory scale test.

A novel method for identification of multiple damage by combining shearographic NDT and 2D undecimated wavelet transform based on modal data was proposed by Katunin et al. [START_REF] Katunin | Identification of multiple damage using modal rotation obtained with shearography and undecimated wavelet transform[END_REF]. The proposed method with wavelet analysis shows high sensitivity compared to the analysis of raw shearographic results. Similar result was observed in another research conducted by Zhou et al. [START_REF] Zhou | Damage identification method based on continuous wavelet transform and mode shapes for composite laminates with cutouts[END_REF] based on continuous wavelet transform, which shows that the sensitivity for damage detection is increased by wavelet analysis.A thorough review of vibration-based damage detection is presented in [START_REF] Montalvao | A review of vibration-based structural health monitoring with special emphasis on composite materials[END_REF][START_REF] Zou | Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-a review[END_REF][START_REF] Doebling | A summary review of vibration-based damage identification methods[END_REF].

Guided wave-based damage detection focuses on the detection of discriminative features such as the difference of amplitudes, elastic wave energy variation and changes in wave propagation pattern due to the interaction between propagated waves and material discontinuity where damage occurs [START_REF] Yu | Damage detection in quasi-isotropic composite bends using ultrasonic feature guided waves[END_REF][START_REF] Aryan | A model-based method for damage detection with guided waves[END_REF][START_REF] Sikdar | Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves[END_REF][START_REF] Mitra | Guided wave based structural health monitoring: A review[END_REF]. Yu et al. [START_REF] Yu | Damage detection in quasi-isotropic composite bends using ultrasonic feature guided waves[END_REF] used ultrasonic feature guided waves (FGW) which focused on the wave propagation energy to detect damages on quasi-isotropic composite laminates. The interaction of the identified FGW mode with different types of defects was studied by both simulation and experiment. Close agreement was observed between the numerical measurement and experimental measurement. It is demonstrated that the proposed FGW method has good potential for efficient damage detection in composite bends.

Aryan et al. [START_REF] Aryan | A model-based method for damage detection with guided waves[END_REF] proposed a model-based method for damage detection with guided wave. Normally guided wave-based method is conducted by comparing a baseline signal recorded for a damage-free structure with or subtracted from the signal recorded during the inspection. In the proposed method, the uncontrollable factors that may affect the accuracy such as temperature variation, sensor errors and material property changes due to degradation were compensated. Experimental and numerical approaches were conducted and demonstrated the feasibility of the proposed method. Nevertheless, the utilisation of 3D measurement system together with transient finite element simulations will significantly increase the cost. Theoretical and numerical studies were conducted by Sikdar et al. to identify disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves [START_REF] Sikdar | Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves[END_REF]. Laboratory experiment was then carried out to validate theoretical and numerical results. Interaction of guided waves with damages was analyzed through the structural response signals. A good agreement was observed between analytical, numerical and experimental results. It is found that the presence of high density core region results in a decrease in amplitude of the propagating guided wave modes and the presence of debond results in a significant amplification of the primary anti-symmetric mode. Similar method was also adopted in [START_REF] Chakraborty | Guided wave based detection of damage in honeycomb core sandwich structures[END_REF][START_REF] Song | Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system[END_REF][START_REF] Thwaites | Non-destructive testing of honeycomb sandwich structures using elastic waves[END_REF]. A thorough review of guided wave-based damage detection methods is presented in [START_REF] Mitra | Guided wave based structural health monitoring: A review[END_REF][START_REF] Willberg | Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review[END_REF][START_REF] Su | Guided lamb waves for identification of damage in composite structures: A review[END_REF].

To achieve a better accuracy in damage detection, Radzienski et al. [START_REF] Radzienski | Combined vibration and guided wave-based approach for composite panels health assessment[END_REF] combined vibration-based and guided wave-based approaches without reducing the effectiveness of NDT techniques for detection of debonding in honeycomb core panels, and higher defect detection reliability was achieved by a double verification.

Both vibration-based and guided wave-based techniques have been proved capable of detecting damages occurred in composite structures and other materials. They have good performance in some certain conditions and show a good potential in the application in more fields. However, a common process of these two methods is that the vibration responses of a structure should be analysed all by human labor, which leads to two disadvantages: firstly, they are time-consuming and labor-intensive; secondly, there will be high requirements of expertise for practitioners during the analysis of structural vibration responses, especially for complex structures, which is not always available.

With the development of Artificial Intelligence (AI) in the last two decades, the problems encountered in the traditional approaches have been solved. In this study, a machine learning algorithm Gaussian Process is proposed to predict crack damages of a thick composite sandwich panel by numerical simulations addressing the difficulty in constructing a database for structural health monitoring of real composite structures and the inconvenience in conventional expertise-based SHM approaches. The goal of the study is to obtain a data-driven probabilistic interpretation of damage detection. A squared panel constituted of two composite faces in carbon/epoxy and a honeycomb core is modelled by commercial software.

The investigation of this structure is carried out based on two status of the model: healthy model and damaged model. Instantaneous signals with different frequencies are applied to the structure and finite element analysis is performed to obtain vibration responses in healthy and damaged status, respectively. Features extracted by discrete Wavelet Transform (DWT) from these responses are fused and defined as input to the Gaussian Process. The Gaussian Process model is trained and tested to assess the health status of the structure. The DWT can speed up the computation time with proper selection of mother wavelet without major loss of information.

The impact of likelihood function and inference methods employed in Gaussian

Process on the classification accuracy is investigated. It is observed that with more iterations, the classification is slightly better than with less iterations, which is consistent with common sense. The pertinence of data from sensors located at different positions is also investigated. Finally, an overall classification accuracy of 100% is obtained, which proves the proposed method is effective for crack-type damage detection in the studied composite sandwich structure.

The rest of this paper is organized as follows: the basic theoretical background including the feature extraction method DWT as well as machine learning approach GP will be introduced in section 2. The proposed damage detection system and data processing technique are explained in section 3. Model description together with simulation approach are described in section 4, followed by results and discussions in section 5. Finally, section 6 concludes the paper and suggests potential future works.

Theoretical background

The development of data-driven approaches has provided great convenience in scientific research, but the problem of data redundancy has been an obstacle to efficiency. Ideally, data containing key information are used while useless data are eliminated. For this purpose, a signal processing and feature extraction method, Discrete wavelet transform (DWT) is firstly introduced in the current research.

Then conventional machine learning method Gaussian Process will be applied.

Feature extraction by Discrete Wavelet Transform

DWT was proposed, on one hand, to extract information in both time and frequency domain through multi-resolution analysis, on the other hand to reduce the dimension of data, which resolves the problem of redundancy. Since the time domain signal is a discrete time sequence, we denote the sequence as x[n] with n an integer. The transform is computed by passing the signal through a half band digital lowpass filter with impulse response h[n] and a half band highpass filter with impulse response g[n] simultaneously. The filtering, from a mathematical point of view, is convolution of the signal with the filter. A half band lowpass filter removes all frequencies above half of the highest frequency in the signal, whereas a half band highpass filter removes all frequencies below half of the highest frequency. After passing the signal through filters, detail coefficients from the output of highpass filter and approximation coefficients from the output of lowpass filter are obtained. Since half the frequencies of the signal have been removed, half the samples can be discarded according to Nyquist's theorem. Thus, the output of lowpass filter is subsampled by 2. This constitutes one decomposition level. This decomposition has halved the time resolution since the number of samples has been halved, but has doubled the frequency resolution since the frequency band has been halved. The subsampled output of lowpass filter is further processed by passing it again through a new lowpass filter h[n] and a highpass filter g [n] constituting another decomposition level. It should be noted that the highpass and lowpass filters are known as the Quadrature Mirror Filters (QMF) and are related by:

g[L -n -1] = (-1) n × h[n] (1) 

Gaussian Processes classification

Supervised machine learning has been widely used to learn a function that maps an input to an output based on example input-output pairs [START_REF] Russell | Artificial intelligence: a modern approach[END_REF]. As one sub-field of machine learning, it helps to improve the efficiency and reduce error in problem solving. It can be divided into regression and classification problems. The outputs for regression are continuous values whereas for classification are discrete class labels. The idea of machine learning-based SHM is to learn the relations between input variables and output variables. One machine learning algorithm that is capable of learning features from data and providing a probabilistic interpretation of predictions is Gaussian Process (GP). A GP can be considered as a Gaussian distribution over functions rather than over variables, and inference takes place directly in the space of functions [START_REF] Torres-Arredondo | An acousto-ultrasonics approach for probabilistic modelling and inference based on gaussian processes[END_REF]. A machine learning algorithm involving GP takes a measure of the similarity between points to predict the value for an unseen point from the training data. There are several GP models for regression problems, but in this study, a GP model for classification is employed.

An introduction of a GP model for regression problems is firstly carried out because it is a necessary step for understanding GP model for classification problems. Given an input vector variable x with dimension D, the corresponding output target t is related with the input vector by a nonlinear smooth mapping function f with an additional Gaussian noise

t = f (x) + (2) 
In the same way, for a given input training data set

D = {X, t} containing input training matrix X = [x 1 , x 2 , ...,
x N ] T constituted by vectors x i and corresponding training target vector t, in which each element is expressed as

t i = f (x i ) + , i = 1, 2, .
.., N , we are interested in making inferences about the relationship between inputs and targets as well as making predictions for a new input. Therefore, GP is involved by modeling the mapping function f with a zero mean and covariance matrix K, see Eq. (3):

p(f |D) ∼ N (f |0, K) (3) 
where f = [f (x 1 ), f (x 2 ), ..., f (x N )] T , K is the covariance matrix, computed by covariance function k(x i , x j ), also called kernel function, expressed by Eq. ( 4).

The covariance function is expected to make similar predictions of target values t i and t j for similar input points x i and x j . Therefore, the squared exponential with automatic relevance determination distance (SE-ARD) measure expressed by Eq. ( 4) is adopted in the present study:

k(x i , x j ) = cov(f (x i ), f (x j )) = σ 2 f exp(- 1 2 (x i -x j ) T M(x i -x j )) (4) 
where M = diag(λ 1 , λ 2 , ..., λ N ), with each λ i corresponding to input dimension characteristic length scale. σ 2 f is the signal variance. λ and σ 2 f are hyperparameters.

In the training step, the objective is to model an appropriate mapping function f so that the training target t i corresponds well to the training input vector x i .

The learning task is achieved by tuning the hyperparameters denoted by Θ in the covariance function. And the optimization is accomplished by minimizing the negative logarithmic likelihood function with respect to the hyperparameters in Eq.

(5), which corresponds to choosing the value of Θ for which the probability of the observed data set is maximized.

L (Θ) = -log (p (t|X)) = 1 2 log |K| + 1 2 t T K -1 t + N 2 log (2π) (5) 
where |K| refers to the determinant of the matrix K.

The role of the GP model is to use known data X and t = [t 1 , t 2 , ..., t N ] to predict the output target of a new input vector x N +1 . As the covariance matrix K is composed of the covariance between each of the first N input vectors, for a new input vector x N +1 , the joint probability distribution can be expressed as:

p(t N +1 ) = N (t N +1 |0, K N +1 ) (6) 
where t N +1 = [t 1 , t 2 , ..., t N +1 ] T , and the covariance matrix K N +1 is expressed as:

K N +1 = K + σ 2 n I k k T c (7) 
with k a vector with elements k(x n , x N +1 ) for n = 1, 2, ..., N , and c a scalar with

value c = k(x N +1 , x N +1 ) + σ 2 n .
It's clear to see that the vector k and the scalar c are both dependant on the test point input vector x N +1 . The predictive conditional distribution over t N +1 is a Gaussian distribution with mean and covariance given by [START_REF] Bishop | Pattern recognition and machine learning[END_REF]:

µ (x N +1 ) = k T Kt, σ 2 (x N +1 ) = c -k T Kk (8) 
These two items are the most important for the regression because they provide both prediction mean value and uncertainty information. In a GP regression example, the regression problem is resolved by making a prediction of a new target for a new input with a predictive mean value and uncertainty information indicated by a confidential interval. It shows the more sparse the data, the larger the uncertainty interval of the prediction.

For a classification problem, our goal is to model the posterior probability distribution of the target for a new input vector, given a set of training data. The predictive probabilities should be in the interval [0, 1], but the prediction result of the Gaussian Process is within the entire real range. However, GP model can be adapted to classification problems by transforming the output using an appropriate nonlinear activation function, such as logistic sigmoid:

σ(f ) = 1 1 + exp(-f ) (9) 8 
Consider a binary classification problem with target value t ∈ {-1, 1}. A Gaussian Process is defined over a function f (x) and then this function is transformed by a logistic sigmoid y = σ(f ), with y ∈ (0, 1). The probability distribution of the target variable is given by the Bernoulli distribution: 

p(t|f ) = σ(f ) t (1 -σ(f ))
p(t N +1 = -1|t) is obtained by 1 -p(t N +1 = 1|t).
The expected predictive distribution is obtained by a marginal distribution expressed as:

p(t N +1 = 1|t) = p(t N +1 = 1|f N +1 )p(f N +1 |t)df N +1 (11) 
where

f N +1 = f (x N +1
). However, this integral is analytically intractable. To approximate the integral, several inference methods can be taken into account, such as Laplace approximation, variational inference, expectation propagation, etc.

Proposed Gaussian Processes classification method for composite sandwich structure

The proposed Gaussian Process includes 2 main steps: training step and testing step for the purpose of classification using the processed signals from sensors. In the first step, training for each case corresponding to healthy and damaged structural status is performed. The training data is correctly labeled. In the second step, the GP model obtained from previous step is used to evaluate unknown features so as to determine if damages appear in the structure or not.

Training step

Damage detection of a structure is achieved by a SHM system consisting of several sensors permanently attached on the structure. Each sensor can be used as an actuator to apply an pulse excitation signal or as a receiver to collect data.

In each simulation scenario, a pre-defined pulse signal is applied on the actuator.

The signal interacts with elements of the structure during the propagation over the whole structure. Sensors located at three corners are considered capable of collecting signals that have interacted with potential damages without missing information. These raw time series signals are processed with Discrete Wavelet

Transform. This step can be regarded as reduction of data dimension and feature extraction because DWT is used to extract information in both time and frequency domains as well as discarding data that is not dominant without any major loss of information. The Coiflet 5 is chosen as mother wavelet after comparing with other wavelets. This wavelet is the optimal among others in terms of errors.

In each simulation case, one file containing signals collected by three sensors is obtained. It should be noted that, the duration of each simulation is 0.01s and the sampling frequency depends on the input signal frequency, thus the number of sampling points for a fixed time duration is different for different signals. Note that in DWT the successive subsampling is by 2, the collected signal length should be a power of 2 or a multiple of power of 2 in order to make the scheme efficient.

Thus, the first 512 sampled points for signals whose length is more than 512 are used for DWT, while for collected signals whose length is less than 512, zeros are added after each signal until its length becomes 512. DWT is employed for each collected signal, and the corresponding coefficients are saved as one vector.

Since the frequency bands that are not very prominent in the original signal will have very low amplitudes, that part of the DWT signal can be discarded without any major loss of information. For this reason, only the first 256 coefficients are used, as shown in figure 1. In each simulation, the three vectors after reduction obtained by DWT are merged into one vector which contains all features from different sensors in the order of the sensors. The same procedure is performed for all simulation cases. All the vectors are organized in one matrix in which each row consists of one transposed vector representing one simulation. This matrix contains all features of the structures and this procedure is considered as data fusion.

The matrix after data fusion is in the form of:

X=    x 1 11 . . . x 1 1K . . . . . . . . . x 1 I1 • • • x 1 IK x 2 11 . . . x 2 1K . . . . . . . . . x 2 I1 • • • x 2 IK • • • x J 11 . . . x J 1K . . . . . . . . . x J I1 • • • x J IK    ( 12 
)
where the element is denoted by x j ik in which i indicates the simulation number (i th simulation), j indicates the sensor number (j th sensor) and k indicates the coefficient number (k th coefficient). Group scaling is performed on this matrix in order to remove the mean trajectories of each sensor and to make sure that data from any sensor have the same variance [START_REF] Tibaduiza | Damage classification in structural health monitoring using principal component analysis and self-organizing maps[END_REF]. The element in the matrix is scaled by:

xj ik = x j ik -µ j k σ j (13) 
where

µ j k = 1 I I i=1
x j ik is the mean of the I measurements of sensor j for the

k th coefficient, σ j = 1 IK I i=1 K k=1
x j ik -µ j 2 is the standard deviation of all measurements of sensor j, and µ j is the mean of all measurements of sensor j.

This scaled matrix X is used as input of Gaussian Process for subsequence analysis.

In 

Numerical approach

In data driven-based SHM systems, information containing the structure's health status is quite important for the performance of the system. Thus, pertinent structural status should be collected to construct a reliable database because different sets of data correspond to different healthy conditions of a structure.

However, it is neither economic nor realistic to build real structures of different health status, especially for huge and expensive structures to construct a database.

To understand the behaviour of a structure, numerical simulation of structures in different conditions is a promising idea. Therefore, SHM achieved by simulation becomes a compromise way. This study is conducted by simulation approach.

The structure is constructed with software ANSYS and numerical model under external excitation is simulated within the software. 

(x = L 4 , y = W 4 ), (x = L 4 , y = W 2 ), (x = L 2 , y = W 4 ), (x = L 2 , y = W 2 ), (x = 3L 4 , y = 3W 4 ), respectively. Crack in y direction is located at (x = L 2 , y = W 2 )
. The length of cracks is 30mm which is L 10 in x direction, and crack length in y direction is 43mm, as illustrated in figure 5. Cracks are designed through the core and the top face sheet so that the interaction of the propagated signal with the damage is detectable.

For each model, points located in four corners on the top face sheet are selected. One is used as actuator through which the pulse excitation signal is inserted, while the other three are used to collect propagated signals through the structure, as shown in figure 5(a). In actual cases, the actuator converts the input voltage signal into a displacement signal, whereas the sensor converts the received displacement signal into a voltage signal. Thus in the current study, for the sake of convenience, we directly input the displacement signal on the structure and extract the displacement signal at the corresponding position to represent the work of actuator and sensors. The vertical displacement of nodes are collected for further signal processing.

Simulation

In the simulation of each model, a pulse excitation signal with 7 cycles is applied on the actuator to stimulate vertical displacement. Transient analysis is performed on the sandwich plate structure. Damping coefficients are set as follows: matrix multiplier is set as α = 0 and stiffness matrix multiplier as β = 6.37 × 10 -7 . The calculation time is set as 0.01s, which is long enough for the wave to propagate through the whole plate. The sampling frequency f s should be no less than 2 times the signal frequency f according to the Nyquist's rule. In the present research the sampling frequency is set as f s = 8f in order to make the recorded signal be representative. In each simulation case, vibration The influence of these factors will be evaluated successively. It is worth mentioning that although discarding the coefficients that have low amplitude in DWT may not lead to major loss of information, it will slightly reduce the accuracy of the results, but the effect is negligible.

Results and discussions

In this section, the influence of previously mentioned factors on the classification results is discussed. In binary classification case, 1 represents healthy status while -1 represents damaged status. It is expected that the predictive mean value is as close to 1 as possible for the case whose ground truth is healthy, while the predictive mean value is as close to -1 as possible for the case whose ground truth is damaged. However, in GP classification model, the predictive mean value is not necessarily 1 or -1. Therefore, it is necessary to define a threshold to determine if the prediction from the GP model is correct or not. In the testing step, an overall predictive mean value for each class can be calculated, µ d for damaged class and µ h for healthy class. The threshold to separate two classes is defined as the mean value of µ d and µ h . The distance from overall mean value to the threshold is called class distance, which is considered as a measure of the quality of the classifier. If the predictive mean value for a case whose ground truth is damaged is less than the threshold, the prediction is considered as correct, indicating a damaged status.

The same, if the predictive mean value for a case whose ground truth is healthy is greater than the threshold, then it means that the status of the structure is predicted as healthy by GP model, which is correct. Otherwise, it is considered that the GP model misclassifies the case.

Classification with three sensors

Firstly, the influence of the selection of mother wavelet is investigated. Control variate method is employed, that's to say in each analysis, only one factor is considered as a variable while others are invariant. Daubechies 8 (D8) wavelet and 12. Despite the added noise, the class distance has only slightly decreased, and all data can be correctly classified. This proves that the method proposed in this paper is still practical under simulated environmental noise.

Classification with one sensor

Now that an acceptable classification result has been obtained with a certain setup of the GP model using the data from 3 sensors, a discussion concerning the reduction of the number of sensors while ensuring the classification result is conducted.

Based on the results obtained in 5.1, the model configuration with mother wavelet C5, 256 DWT coefficients, Logistic likelihood function, VB inference method and 40 iterations is maintained. The pertinence of data from three sensors at different locations to the classification result is investigated. Data from three sensors are used for training and testing of the GP model independently. Results from the three GP models are compared between each other and also with the results with all data from sensor 1, 2 and 3, as shown in figure 13. It shows that with data from all three sensors the GP model achieves the best result in the current study. However, with data only from sensor 1, the classification accuracy can be 100%, but it should be noted that as there exist several testing points so close to the threshold in both classes, they could probably be misclassified. With data only from sensor 3 , at least 2 point among 81 are misclassified, but with data only from sensor 2 located at the diagonal of the actuator, the result is much worse where at least 6 testing points are misclassified.

In this section, Gaussian Process is evaluated by the data base collected through sensors attached on the sandwich plate. 70% of the database is used for training and the rest 30% is used for testing. Several factors are evaluated successively and it is found that: to optimize hyperparameters during the training step, the more iterations, the better the results; during the signal processing and feature extraction, the mother wavelet Coiflet 5 in DWT is outperforming other mother wavelets; in the whole GP, the combination of Logistic function and Variational Bayesian inference method is outstanding compared to other combinations;

Reducing the amount of data by DWT will result in a slight loss of accuracy of the predictive mean value, but it can greatly reduce the computation time while ensuring the accuracy of classification, which is worthwhile for processing big data.

Therefore, a GP model with mother wavelet C5, 256 DWT coefficients, Logistic likelihood function, VB inference method and 40 iterations is adopted in this study.

The corresponding predictive mean values for healthy and damaged structure are 0.800 and -0.870, respectively. As for the impact of the number of sensors, the result shows that data from sensor 1 and sensor 3 are more pertinent than that from sensor 2. It shows also that reducing of the number of sensors in the current study will lead to worse results.

Conclusions

This paper addresses the difficulty in constructing a database for structural health monitoring of real composite structures and the inconvenience in conventional expertise-based SHM approaches. A data-driven approach GP for damage detection in a composite sandwich plate by simulation approach is presented. Several factors that have impact on classification accuracy are investigated, including the selection of mother wavelet during the signal processing and feature extraction by DWT, the amount of data discarded by DWT, the likelihood function and inference method that are used to make predictions, as well as iteration numbers in the training step of GP model. Based on the present results, some conclusions can be drawn as below:

• The proposed method is proven effective for crack-type damage detection in the studied composite sandwich plate.

• The selection of mother wavelet in discrete wavelet transform has an important impact on the classification accuracy. Coiflet 5 performs better than others for the classification of both healthy and damaged structure.

• Discarding the coefficients that have low amplitude in DWT can speed up the computation time and may not lead to major loss of information. The resulted reduction of classification accuracy is negligible.

• The likelihood function Logistic function and inference method Variational Bayesian perform better than other combinations in the present study.

• With more iterations, the classification is slightly better than with less iterations, which is consistent with common sense.

• Data from sensor 1 and sensor 3 are more pertinent than that from sensor 2.

Reducing of the number of sensors in the current study will lead to worse results.

• The effectiveness of the proposed method is verified under simulated environmental noise.

Although the proposed approach was achieved based on simulation results, it is applicable for real experimental data. The same procedure of data collection, signal processing and the use of GP model can be conducted as for simulation data for the purpose of damage detection. This proposed method is capable to detect crack-type damages for a composite sandwich panel. It is expected to be suitable for damage detection of other kind of damages and for more complex structures. 

  GP training step, input vectors in the matrix X are correctly labelled by the ground truth t with t = 1 indicating healthy status and t = -1 indicating damaged status. Likelihood function together with inference method are employed. These two functions are specified in the training step. Hyperparameters are predefined randomly for the purpose of initialization. The input is then fed into the GP model and in turn an output predicted by the model is given. During the learning process, negative logarithmic likelihood function is used as loss function to optimize all hyperparameters in kernel function and likelihood function so that the error between the predictive output derived from GP and the corresponding ground truth is minimized. The optimization process is achieved by minimizing the negative logarithmic likelihood function with respect to the hyperparameters Θ, which corresponds to choosing the value of Θ for which the probability of the observed data set is maximized. This procedure is illustrated in figure2.3.2. Testing stepOnce the hyperparameters are optimized for the training data, the validated GP model can be used to make predictions for new inputs. In this study, the GP model is used to predict if damages occur in the structure. The testing procedure is the same as that of training before inserting the transformed input into the GP model. In testing step, only the trained GP model is used. Besides, different from the training phase where optimized hyperparameters are as output, the trained GP model will provide a predictive mean value corresponding to the new input and a variance of the predictive distribution based on the training data. The predictive mean value indicates in which label class the input is most likely distributed, that's to say healthy or damaged class, while the variance provides an information of confidence, which indicates the reliability of the classification result. It should be noted that the GP model is used to predict the appearance of damages, but unable to localized the probable region where damages occur. The procedure of the testing step is presented in figure3.

4. 1 .

 1 Composite sandwich plate modelIn the present work, a hexagonal shaped Nomex honeycomb core (3D core) and CFRP-skin made composite sandwich plate is selected for simulation and classification tasks. The plate of spatial dimensions 300 mm × 294 mm × 19 mm consists of a honeycomb core and two face sheets. The thickness of the honeycomb core is H = 15mm in which the radius and wall thickness of each cell are r = 5mm and t = 0.2mm, respectively. The Nomex core's material properties are: density ρ 1 = 1240kg/m 3 , Poisson's ratio ν 1 = 0.33, Young's modulus E 1 = 5.5 × 10 9 P a. The thickness of each face sheet is h = 2mm. The face sheets are laminate panels made of carbon/epoxy materials whose properties are: densityρ 2 = 1850kg/m 3 , Poisson's ratio ν 2 = 0.3, Young's modulus E 2 = 70 × 10 9 P a.A simplifies illustration of the sandwich structure is referred to figure4(a).The honeycomb sandwich plate model consisting of a honeycomb core and two skin plates is shown in figure4(b). Within our study the dimensions of the face sheets and the core will not change.The face sheets are modeled by the SOLSH190 solid-shell element which has 8 nodes with 3 degrees of freedom at each node: translation in x, y and z directions. In this manner, face sheet shear phenomena can be taken into account when a signal with high frequency propagates in the structure. 2D shell element SHELL181 is used to model the honeycomb cells. The transition area where the face sheet connect to the honeycomb cell is often the weakest region. In our study, the elements of shell and solid-shell are connected with an automatic constrain equation developed by ANSYS . The total number of meshing elements is about 177000, which guarantees a minimum mesh density of 10 elements per wavelength for the model. Composite materials exposed to long term loads and critical working environment may have damages due to fatigue, impact or material degradation. Cracks and delamination are two most common damages for composites. In the first attempt of this study, crack damage is designed in the sandwich structure by disconnecting local nodes and investigation of the capability of detecting this kind of damage is conducted. Models with cracks in different positions are constructed. Five crack damages in the x direction and one crack damage in y direction are created. Cracks in x direction are located at

  responses of one structure are collected at three sensors for further use. They are saved in one file to represent the structural health status in that condition. Same simulations are performed for the same structure with input signals of different frequencies. Then the same simulations are conducted for structures with different health status successively. As mentioned above, we have 7 composite sandwich plate models among which one healthy and six with crack damages at different positions. On each model 3 different input signals with frequency 8kHz, 6kHz and 4kHz are applied successively corresponding to 3 simulation cases. So far a total of 21 simulation cases are obtained. The objective is to perform the least cases with which machine learning approaches can detect the structure's health status. A comparison of the vibration responses of a healthy structure and the structure in figure 5(b) to a same input signal of 8kHz with 7 cycles at the same position is firstly conducted, as shown in figure 6. The compared signals are from three sensors on the structure together with the input signal. First of all, in both structures it can be seen that the original input excitation signal waveform has changed after propagating along different directions by comparing the signals in figure 6(b-d)with figure 6(a). This is due to the wave dispersion in the structure. Besides, as the core of the structure is honeycomb that has anisotropic properties, the dispersive behavior of the structure is direction-dependant, which results in the differences in the vibration responses from 3 sensors in figure6(b) to figure6(d). Moreover, comparing the vibration responses of healthy and damaged structures from sensor 3, we can find that in the first wave packet, the amplitude of the signal from damaged structure is slightly higher than that from healthy structure, as shown in 6(d). It is due to the fact that the existence of the crack damage in this position reduces the bending stiffness of the structure in y direction from the actuator to sensor 3. Furthermore, comparing the healthy and damaged structures in 6(b) and (d), the signal difference occurring between wave packets might be caused by the interaction of input signal with the crack, but as the difference is not evident, machine learning algorithm should be used to learn such kind of features.The DWT coefficients are then compared in figure7. As mentioned in 2.1, DWT can extract information in both time and frequency domain. The mismatch between the vibration responses of healthy and damaged structures can be extracted, as shown in figure7(b) and (d). It should be noted that only the first 256 coefficients, which correspond to lower frequencies of the analysis, carry relevant information and the rest of the signal can be discarded without any major loss of information.In addition, discarding half of the signal can speed up the computation in further step.For the six sandwich models with cracks, simulations are conducted with excitation signals of three different frequencies successively. 30 data sets for each model are collected. For the damage-free sandwich model, same simulations are conducted with excitation signals of three different frequencies successively as for the damage models. 90 data sets are obtained. Thus a data base is constructed with a total number of 270 data sets, in which 90 data for healthy model which is labeled by '1' and 180 data for damaged models labeled by '-1'. 70% of the data base is used for training the GP model and the rest 30% is used for testing. The testing step is a step for evaluating the GP model for damage predictions in composite sandwich plates. In both training and testing step, several factors will affect the results, such as the type of mother wavelet for the DWT, the amount of data discarded by DWT, the selection of likelihood function and inference method for GP, and the number of function evaluations to optimize hyperparameters during the training step, etc.

Coiflet 5 (

 5 C5) wavelet are compared with 512 saved coefficients in DWT, logistic function as likelihood function, Variational Bayesian (VB) as inference method. 40 iterations are adopted in the optimization step, see figure 8. The abbreviation of mother wavelet, saved amount of data in DWT, likelihood function, inference method and iteration numbers are successively listed in the legend on the up-left of the figure. It should be noted that in all the following figures, the first 54 testing points (denoted by )

Secondly, the influence

  figure[START_REF] Zhou | Damage identification method based on continuous wavelet transform and mode shapes for composite laminates with cutouts[END_REF], which is reasonable and easy to understand, because although discarding the coefficients that have low amplitude in DWT may not lead to major loss of information, it will slightly reduce the accuracy of the results, but the effect is negligible.Thirdly, the influence of likelihood function and inference method is investigated simultaneously because there is an issue of compatibility among different likelihood functions and inference methods. Four combinations of likelihood function and inference method are presented in figure10, including Logistic-VB, Logistic-Expectation Propagation (EP), Logistic-Laplace and Error function (Erf)-EP. It can be seen that the Logistic-Laplace combination performs the worst because the predictive mean value for almost all cases are around 0 and far from 1 or -1, which shows that the class distance is too short. The global predictive mean value for healthy and damaged cases are 0.281 and -0.22 respectively. The Logistic-EP combination and Erf-EP combination perform better than Logistic-Laplace, with a global mean value µ h = 0.714, µ d = -0.546 and µ h = 0.745, µ d = -0.622, respectively. However, 3 cases are misclassified with Logistic-EP combination and 3 cases are misclassified with Erf-EP combination. A better result is achieved by Logistic-VB combination with global mean value µ h = 0.667, µ d = -0.891 where the class distance is larger than others, indicating a better classification quality, and only 1 case is misclassified. Finally, the influence of iteration numbers on the accuracy of the classification results is discussed. The iteration number is in the training step of GP model. Normally, the more iterations there are, the more accurate the result is. The result is presented in figure 11, where the horizontal axis indicates intervals of the predictive mean value µ and the vertical axis indicates the number of testing data. A comparison of 20 and 40 iterations is carried out. Here the Coiflet 5 (C5) mother wavelet is chosen in the DWT and the first 512 coefficients are saved to be used as input for GP. Logistic function is chosen as the likelihood function and Variational Bayesian (VB) is selected as the inference method. The global mean value of predictive mean value for all testing damaged cases and that for healthy cases µ g = 1 n
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 123 Figure 1: Example of a DWT for a signal collected at sensor 2 (on the diagonal of the actuator) Figure 2: Gaussian Process training step

Figure 5 :

 5 Figure 5: Composite sandwich models with crack damage in different positions: (a) in x direction x= L 4 , y = W 4 (b) in x direction x = L 4 , y = W 2 (c) in x direction x = L 2 , y = W 4 (d) in x direction x = L 2 , y = W 2 (e) in x direction x = 3L 4 , y = 3W 4 (f) in y direction x = L 2 , y = W 2 .1 actuator (red) and 3 sensors (yellow) attached on the face-sheet.

Figure 6 :

 6 Figure 6: Comparison of structural vibration responses of a healthy model and a model with crack damage to an excitation signal of frequency 8 kHz.
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 768910111213 Figure 7: Comparison of DWT coefficients of the vibration responses in Figure 6 Figure 8: Influence of the selection of mother wavelet on the classification accuracy Figure 9: Influence of the amount of data saved by DWT on the classification accuracy Figure 10: Influence of likelihood function and inference method on the classification accuracy Figure 11: Influence of iteration numbers to optimize hyperparameters during the training step on the classification accuracy Figure 12: Comparison of classification result based on (a) noise-free data and (b) data with noise Figure 13: Investigation of the pertinence of three different sensors to the classification result. Classification using data only from sensor 1 (a), data only from sensor 2 (b), data only from sensor 3 (c) and data from sensor 1-3 (d)

  

  

  

  Similar to the regression, the training input vectors are denoted by x 1 , x 2 , ..., x N , the corresponding observed targets are denoted by t N = [t 1 , t 2 , ..., t N ] T . The objective is to determine the predictive distribution of p(t N +1 |t

	1-t	(10)

N ). In classification problems, the Gaussian noise in covariance matrix no longer exists because it is assumed that every training input vector is correctly labelled. In a twoclass problem, predicting p(t N +1 = 1|t) is enough because the probability of

Table 1 :

 1 along the x-axis are with ground truth 'Damage' while the last 27 testing points (denoted by * ) are with ground truth 'Health'. The global mean value of predictive mean value for all testing damaged cases and that for healthy cases are -0.885 and 0.775 using Coiflet 5 wavelet, while the results using Daubechies 8 wavelet are -0.858 and 0.697 respectively. In addition, every single case is correctly classified using Coiflet 5 wavelet, which suggests that Coiflet 5 is more powerful in extracting features. It should be noted that some other mother wavelets are also evaluated but have poorer performance and the corresponding results are listed in Table1. the class distance is larger than others while the mean square error is lower, which indicates that the GP model performs better in the classification for both healthy and damaged structures using Coiflet 5 wavelet. Performance of different wavelets in GP classification.

		Haar	Beylkin Coiflet5 Coiflet3	Coiflet1
	Class distance	0.5261	0.8344	0.8803	0.8161	0.8697
	MSE	0.0799	0.0374	0.0087	0.0214	0.0135
		D20	D16	D12	D8	D4
	Class distance	0.8397	0.8380	0.8408	0.8363	0.8268
	MSE	0.0172	0.0140	0.0133	0.0354	0.0251
		Symlet10 Symlet8 Symlet6 Symlet4 Vaidyanathan
	Class distance	0.8738	0.8323	0.8575	0.8578	0.8320
	MSE	0.0145	0.0329	0.0121	0.0172	0.0162

  It should be noted that the current research is based on simulation, and in real experimental data the impact of environmental noise should be taken into consideration. Therefore, it is necessary to add noise to the simulation data to simulate the influence of environmental noise, so as to verify the stability of the proposed method. White Gaussian noise is added into the raw vibration data that are collected from sensors. Signal-noise ratio (SNR) is set as 20dB. Then the same procedure of signal processing with DWT and Gaussian Process classification is conducted. A comparison of classification result based on noise-free data and data with noise is illustrated in figure

	case is correctly classified with 40 iterations. Moreover, the class distance for 40
	iterations is larger than that for 20 iterations. It shows that with more iterations, the
	result is slightly better than with less iterations, which is consistent with common
	sense.
	µ i are -0.891 and 0.667 for 20 iterations, while the results for
	40 iterations are -0.885 and 0.775 respectively. Besides, 1 case with ground truth
	(GT) 'healthy' is misclassified in the 'damaged' class for 20 iterations, while every
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