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Abstract: The purpose of this paper is to show that the Shack-Hartmann wavefront sensor
(SHWFS) gives access to more derivatives than the two orthogonal derivatives classically
extracted either by estimating the centroid or by taking into account the first two harmonics of
the Fourier transform. The demonstration is based on a simple model of the SHWFS, taking
into account the microlens array as a whole and linking the SHWFS to the multi-lateral shearing
interferometry family. This allows for estimating the quality of these additional derivatives,
paving the way to new reconstruction techniques involving more than two cross derivatives that
should improve the signal-to-noise ratio.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Shack-Hartmann wavefront sensor (SHWFS) is one of the most widely used wavefront sensor
in fields as varied as adaptive optics for astronomy, lasers, the measurement of eye aberrations or
X-rays since decades [1–7]. Its main interest, which is moreover at the origin of its creation, is its
very good energy rendering. Indeed, assuming that the microlens array has a transmission of 1,
100% of the photons received on the analyzer contribute to the measurement.

Usually, the SHWFS is mostly described from a simple geometrical model constantly improved.
A single lens is used as the basis of the model, generating in the focal plane a single spot which is
analyzed by centroid finding algorithms [8,9]. Replicated onto the pupil of the wavefront sensor,
it generates an irradiance pattern made of multiple spots, and the centroids extraction allows
wavefront derivatives (or gradients) estimations along the two directions (x, y) of the detector.
Overall, these estimations have been studied with many different points of view [10–12].

However, the SHWFS, or more precisely its irradiance pattern, has also been studied using a
whole, firstly by Dirac delta function and cosine approximations [12–15], then by a theoretical
analysis [16,17]. This last brings the SHWFS in a similar description than the multi-lateral
shearing interferometers [18]. Those less intuitive descriptions made it possible to apply the
Fourier transform demodulation technique to the SHWFS images, ultimately extracting the (x, y)
wavefront gradients. Moreover, it also allowed a better modelling of the couplings between the
microlenses [19–21].

If the energy rendering of SHWFS is good enough, we propose here to revisit the treatments
classically used to extract the wavefront gradients as well as the classical Fourier demodulation
technique. To do so, we will use the particular modeling of the SHWFS as in [16] which will
allow us to manipulate Shack-Hartmann irradiance pattern (I) for both centroids extraction and
Fourier transformation. Moreover, we will illustrate the extraction of multiple gradients and
discuss the potential gain obtained by taking into account more gradients than the two orthogonal
ones classically extracted.
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2. Model of SHWFS

In the following description, let’s suppose that the SHWFS is of infinite extension and is used in
perfect operating conditions. The perfect microlenses of pitch pµL and focal length fµL are of
infinite extension along x and y axis. The array is illuminated by a perfect monochromatic plane
wave. The Shack-Hartmann irradiance pattern I will thus present a pµL periodicity as each of
the microlenses (of pµL · pµL square supports,

∏︁
(x/pµL, y/pµL) ) performs Fourier transform

of the complex amplitude of the entrance wave at their focal plane. Those Fourier transforms
periodically superimpose themselves, and we can write the Shack Hartmann complex amplitude
A as follow:

A(x, y) = [sinc(ax) · sinc(ay)] ∗ CombpµL,pµL (x, y), (1)

with a = pµL/(λfµL) (and λ the wavelength) given by Fraunhofer propagation through a lens to
its focal plane and the 2D Dirac comb CombpµL,pµL convolution illustrates the periodic aspect of
the system. The irradiance pattern I is thus described by the square modulus of the amplitude:

I(x, y) = |A(x, y)|2, (2)

The Shack-Hartmann irradiance pattern is composed of the all microlenses irradiances and
coupling between them. A generic pattern of finite extension is displayed in Fig. 1(a) and
highlights the periodic behavior of the wavefront sensor. Note that the irradiance pattern is split
in cells in order to perform centroids extraction. In case of Fourier analysis, it is needed to take
the Fourier transform of the irradiance (shown in Fig. 1(b)) which is obtained by autocorrelation
of the Fourier transform of the Shack-Hartmann complex amplitude (Eq. (1)). We calculate it
(Fourier transform is noticed by the tilde hat):

Ã(u, v) ∝
∏︂ (︂u

a
,

v
a

)︂
· Comb 1

pµL
, 1
pµL

(u, v), (3)

with
∏︁
(u/a, v/a) being a 2D door function. This one creates a frequency limit for the information,

so the Fourier transform of the amplitude is made of K by K regularly spaced Dirac delta function,
with K equals to:

K = 2 floor

(︄
pµL2

2λ fµL

)︄
+ 1. (4)

Notice that the number K is always odd. The intensity recorded in the common focal plane is
therefore similar to that obtained by the interference of K by K replicas of the impinging plane.

This formula highlights a property of the microlens array. If one varies the focal length,
pitch or wavelength, the recorded irradiance pattern still remains the same over large ranges. It
corresponds to all widths of the door function which allow the selection of the same number
of Dirac delta functions (Eq. (3)). Therefore, the model proposed here under monochromatic
illumination is strictly valid for a significant spectral bandwidth ∆λ given by writing the
wavelength interval defined for one K value of Eq. (4):

∆λ =
p2
µL

f
2

K2 − 1
. (5)

In the same logic of Ronchi [18], we propose to extend the description of the Shack-Hartmann,
made here for a plan wave, to an aberrant one. Indeed, the analyzed waves are finally relatively
plane and the assumption of an invariant plane wave decomposition is valid, regardless of the
wave surface analyzed.

Now that the Fourier transform of the amplitude, Ã (Eq. (3)) has been introduced, one can
compute its autocorrelation to deduce the Fourier transform of the Shack-Hartmann irradiance
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Fig. 1. a) The Shack-Hartmann irradiance pattern I(x, y) is presented, using a large array of
microlenses that mimic the infinite extension of the SHWFS. The microlens pitch periodicity
is clearly discernable (the gold arrows and support on the inset). b) Zoom on the central part
of the Fourier transform of I modulus for K = 5, which leads to get 2K − 1 = 9 harmonics
in the Fourier plane, along both u and v directions. For convenience, the (0, 0) harmonic has
been masked. Inverse pitch periodicity is also here visible (pink arrow).

pattern, Ĩ. It is composed of 2K−1 by 2K−1 harmonics in both u and v directions of decreasing
amplitudes. This linear decay is characteristic of the autocorrelation of the function, which is
a 2D-triangle function. This description will be used as a basis for the rest of the paper; it is
summarized in Fig. 1(b).

Hence, we can define a generic writing for the Fourier transform of I(x, y), using H̃k,l writing
to define one of the (2K − 1)2 harmonics (in Fourier space):

Ĩ(u, v) ∝
K−1∑︂

k,l= −K+1
(K − |k|) · (K − |l|) · H̃k,l(u, v), (6)

with k and l indices allows to identify all of the harmonics. In the next section, we will inspect
those harmonics.

3. Existence of multi-directional derivatives

Let us now look at how the harmonics are generated in the Fourier plane, and what information
do they content. The following Fig. 2(a) shows the layout of the SHWFS, with a representation
of its complex amplitude in the focal plane. Each point of the focal plane irradiance can be seen
as the result of the interference between each of the sinc functions of the amplitude (see Eq. (1)).
The irradiance will be periodic by construction of the Shack-Hartmann microlens array.

This periodicity is also to be remarked in the irradiance patterns of the lateral shearing
interferometers, whose are generated by propagation of wavefront replicas created by a diffraction
grating. Thus, it is possible to consider that the SHWFS irradiance pattern is generated by the
propagation of the same wavefront replicas tilted by a multiple of a diffraction angle α = λ/pµL.
This is equivalent to consider the microlens array as diffraction grating (Fig. 2(b)) [22]. Similarly
to lateral shearing interferometry, the propagation results in a shear of the wavefront replicas in
the focal plane. They end up superimpose to form the complex amplitude described in Eq. (1).
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Fig. 2. a) – Layout of a propagation through a SHWFS, with the complex amplitude
displayed to highlight interference effects. The gray arrows represent the focalization of the
microlenses. b) – Lateral shearing-based description of the SHWFS, with the creation of
multiple replicas of the impinging wavefront. Each arrow represents one of the K diffraction
orders. c) – Explanation of the creation of the (1, 0) harmonic (top) and the (2, 0) harmonic
(bottom). The purple lines are there to associate the interfering replicas of the propagated
wavefront.

Moreover, as the Fourier transform of the amplitude (Eq. (3)) is made of K by K regularly
spaced Dirac delta functions, we can finally link these functions to the K by K replicas generated
by the SHWFS.

According to the SHWFS model, based on Ronchi comparison and Ref. [16], the (k, l)
harmonic in the Fourier transform of the irradiance corresponds to the interferences of all wave
pairs whose wave vectors are separated by kα along the x-axis and lα along the y-axis, where
α is the separation angle of the microlens array seen as a lateral shearing interferometer (see
Fig. 2(c)). It will thus be deformed according to the local derivative in the kx + ly direction,
with a shear directly proportional to the angle common to these wave pairs. At this stage of the
description of the SHWFS, we can see that it measures the gradient in many directions and not
only the two directions x and y considered classically.

By selecting the only harmonic (1, 0) (isolated into its 1/pµL Fourier square support), re-
centering it, and then performing an inverse Fourier Transform of H̃1,0, the following expression
can be derived, with the basis of [22–24] and calculus of [16,20]:

H1,0(x, y) ∝
K−1∑︂
n=0

K∑︂
m= 0

exp(i{φ[x + n∂p, y + m∂p] − φ[x + (n + 1)∂p, y + m∂p]}), (7)

with the following shear:

∂p =
fµL
pµL

∼
pµL
K

. (8)

The increment ∂p being small compared to the size of a microlens, and assuming that the
phase evolves slightly and therefore linearly at the sub-pupil level, we can estimate the wavefront
gradient from the expression (7) using Taylor approximation. Indeed, due to the fact that each
couple of replicas generating the harmonic H̃1,0 has the same shear ∂p (cf. Fig. 2(c)), the
phase difference between the n-th and the (n + 1)-th replicas remains constant, meaning that the
problem is invariant along n. Therefore, for all m, n the phase difference is unchanged and can
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be approximated by ∂p · ∂φ/∂x. Thus, by summation:

H1,0(x, y) = K(K − 1)exp
[︃
−i ∂p

∂φ

∂x
(x, y)

]︃
. (9)

Now considering the (2, 0) harmonic in Fourier space, the relevant wave pairs are shown in
Fig. 2(c). With the same assumption as for harmonic (1, 0), we obtain:

H2,0(x, y) = K(K − 2)exp
[︃
−i 2∂p

∂φ

∂x
(x, y)

]︃
. (10)

We can see that this second harmonic measures the same x gradient as harmonic (1, 0), but
with a double shear. We can also see that the amplitude of this harmonics is lower.

Finally, for the general case (k, l) harmonic inverse Fourier transform, we write:

Hk,l(x, y) = (K − |k|)(K − |l|)exp
[︃
−i

√︁
(k2 + l2) ∂p

∂φ

∂xk,l
(x, y)

]︃
, (11)

with xk,l, the unit vector in the direction kx + ly.
The SHWFS can therefore be described as a set of K by K mono-lateral shearing interferometers

with different amplitudes, shears and shear directions. In a more general way, all the wavefront
derivatives ∂φ/∂xk,l can be deduced by this development.

4. Extraction of the derivatives

In this section, we will apply the development of sections 2 and 3 to extract the derivative of each
harmonic from the Fourier plane (Fig. 3(a) and 3(b)). To illustrate this point, let’s consider a
spherical aberration as input wavefront. This aberration, very well known by opticians has as
a derivative along xk,l a coma oriented in the xk,l direction. This one is oriented and easy to
recognize. We introduce a gradient matrix as a visual tool of the argument of each Hk,l (Eq. (11)),
in which hides the derivative of the wavefront along the xk,l direction (Fig. 3(c)). The shear
variation

√︁
(k2 + l2) ∂p is discernable, increasing linearly the amplitude of the gradients.

Fig. 3. From left to right: a) Irradiance for a spherical aberration. b) Fourier Transform of
the I function. The white square delimits the extractable Fourier plane, while the yellow
square represents the extraction window of the H̃1,0 harmonic. c) Matrix representation of
the comas extracted from the irradiance pattern for each harmonic of the Fourier plane. Note
the orientations of the comas, all pointing towards the center of the picture. One can also
note their linearly increasing amplitude.

Applying now the same process on a wave surface with more roughness than the spherical
aberration, we can verify that the sensitivity of each phase derivative remains the same regardless
of the harmonic chosen.
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The new simulated wavefront is displayed in Fig. 4(a) and typically represents a residual
optical default.

Fig. 4. a) Map of the optical default wavefront. b) Associated normalized gradients matrix,
now with shear compensation. Note that the gradients corresponding to the same orientation
are almost identical.

For this Figure, compared to Fig. 3, each plotted gradient was compensated by its level arm so
only the term ∂φ/∂xk,l remains in the gradient matrix representation (Fig. 4(b)).

As a first observation, the phase derivatives of the same orientation are almost identical, even
if the new wavefront has a more roughness surface than the spherical aberration. In other words,
all the harmonics of the Fourier plane preserve the same sensitivity to high variations of the
wavefront and no loss of information is observed, as expected.

5. Involvement of the harmonics in the classical Fourier demodulation and the
centroids extraction

We have seen, in the previous sections, that the Shack-Hartmann irradiance pattern I admits for
Fourier transform a (2K − 1) · (2K − 1) harmonics array modulated by autocorrelation of the
microlens individual support function

∏︁
(x/pµL, y/pµL). Each of these harmonics presents a

derivative of the impinging wavefront in a specific direction.
Fourier-based extraction: Classical Fourier demodulation processes, as to our knowledge, have

been using only the (1, 0) and (0, 1) harmonics to compute the wavefront gradients. It is then
straightforward to conclude that only the two main gradients are used to do phase retrieval.

Centroids-based extraction: We would question what information (in Fourier sense) is the
Centroids extraction using, as this operation is not done in Fourier space. The complete
demonstration is available to the reader in Appendix A, and we present here the main conclusions.
The (p, q) centroid along x axis is typically obtained by the formula:

Cx
p,q =

∫∫
Cell (p,q) x · I(x, y)dxdy∫∫

Cell (p,q) I(x, y)dxdy
. (12)

It can also be written using Fourier derivation of the barycenter operations:

Cx
p,q ∝ −

1
2iπ

K−1∑︂
k=1

K − |k|
k

[Hk,0(p.pµL, q.pµL) − H−k,0(p.pµL, q.pµL)], (13)

where we recall that Hk,0 is the inverse Fourier transform of the harmonic H̃k,0. Unlike the
classical Fourier method, the Cx centroids extraction only takes into account the harmonics in
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the u direction (k-summation). The same reasoning applies to the Cy centroids extraction and
leads to a consideration of the harmonics in the v direction only.

As a result, the centroids-based extraction is a multi-derivative process that can be seen with
the Fourier formalism, however exploiting a subset of the whole information available in the
Fourier plane.

To give a first indication of the potential loss related to this fact, we define here a figure of
merit EX(k, l) called Excitability of harmonics which corresponds to the product of the amplitude
of the harmonic with its shear.

EX(k, l) = (K − |k|)(K − |l|)
√︁

k2 + l2 . (14)

High Excitability is suitable for performing better phase retrieval. Its representation is given
in the Fig. 5, with K = 5. Note that the first cross harmonics (−1, 1) and (1, 1) have values
similar to those taken by the classical harmonics (1, 0) and (0, 1). More, the second and third
ranks harmonics along any direction appear to have a more pronounced Excitability than the first
ones. Only the harmonics very far from the center (last ring) seem to have a lower impact on the
distribution of information.

Fig. 5. Excitability map of the harmonics (extractable Fourier plane) for K = 5. Note that
harmonics (2, 0) and (0, 2) seem carrying more constituent information than (1, 0) and (0, 1).

Investigating through the Excitability, we have seen that the derivatives not taken into account
carry similar information than the axial ones. We now see that the weighting with the axial
harmonics in the centroids extraction might be not optimal, and the same applies to the classical
Fourier first harmonics demodulation. This observation paves the way for complementary studies
for the development of reconstruction techniques taking into account all the harmonics and may
weight them by the Excitability function, in a same logic of the work presented in the following
Refs. [25,26]. By applying a similar formalism, based on a least-squares approach, and assuming
a limitation by homogeneous white noise, the use of the four harmonics of the same excitability
makes it possible to envisage a gain of 30% on the signal-to-noise of the reconstruction, compared
to the sole use of the two classical harmonics.

6. Conclusion

The modeling presented in this paper discusses a process for the extraction of the phase derivatives
along different directions of the two axes x and y. It shows that the SHWFS can be seen as a
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colony of mono-lateral shearing interferometers, each related to a harmonic of the Fourier plane
of the intensity recorded at the common foci of the microlenses.

Taking into account this new point of view for the SHWFS, two classical methods of phase
retrieval have been revisited: the centroids extraction and the Fourier demodulation which have
been correlated successfully even if their mechanism firstly seemed fundamentally different. Both
methods, centroids extraction and all-harmonics Fourier formalism, highlight the redundancy of
the information in the Fourier plane, which is often used for metrology purposes.

It should be noted that reconstruction on more than two derivatives, while allowing the hope
of an increase in the quality of the wave surface estimate, will also result in a significant increase
in processing time. This approach is rather reserved for applications that do not require real time:
metrology, deconvolution from wavefront sensing [27,28]. It should also be noted that the gain
in quality is all the more important as the number of harmonics is high, which corresponds to
microlens matrices with the largest apertures.

The signal-to-noise gain for reconstruction will need to be further investigated for each area of
SHWFS use. Indeed, the very different conditions of use between ophthalmology, astronomy,
optical metrology or control of intense lasers always lead to particular limitations in terms of
noise, aliasing or wrapping. Future work will focus on investigation of those different conditions,
especially in regard with noise modeling.

Appendix A: demonstration of the involvement of the harmonics in the centroids
extraction method

First of all, we define a Shack-Hartmann irradiance Pattern (I(x, y)) of infinite extension with the
same notations as in the main corpus of the paper (see sections 2 and 3). To calculate the (p, q)
centroid in the SHWFS image, we need to apply three operations:

• Multiply by a periodic x-slope,

• Do the local average on each of the focal zone of the microlens array,

• Select the central value which is the (p, q) centroid value.

Definition of the centroid operation

To define the periodic x-slope, we start defining an x-slope limited to the support of one of the
microlens:

r(x) = x ·
1

p2
µL

∏︂ (︃
x

pµL
,

y
pµL

)︃
. (15)

This x-slope is then convoluted by a 2D Dirac comb to duplicate it onto the microlens array
(we note that the function is y-invariant):

R(x, y) = r(x) ∗ CombpµL,pµL (x, y). (16)

We can write the sloped irradiance function:

I(x, y) · R(x, y) = I(x, y) · [r(x) ∗ CombpµL,pµL (x, y)]. (17)

Now, we need to average the sloped I function, this is done by convoluting the product of
I and R by a unit mean, positive, constant, weighting function, defined over the focal zone of
the microlens array. It is again the support of the microlenses. To finally obtain the x-centroid
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function, we need to normalize the convolution by one made with only the I function, in order to
apply the same averaging process. We can write:

Cx(x′, y′) =
[I(x, y) · R(x, y)] ∗

[︃
1

p2
µL

∏︁ (︂
x

pµL , y
pµL

)︂]︃
[I(x, y)] ∗

[︃
1

p2
µL

∏︁ (︂
x

pµL , y
pµL

)︂]︃ , (18)

with x′, y′ the variables of the convolution. It is now necessary to select the (p, q) centroid
by integrating with a delayed 2D Dirac delta function δ(x, y). This operation is again done by
convolution by taking the value of the result at the (p, q) coordinates:

Cx
p,q = [Cx ∗ δ(x − p · pµL, y − q · pµL)]. (19)

This function is the classical definition of the barycenter centroid operation used in the most
Shack-Hartmann applications. We want to know what Fourier information is used through these
operations. So we will analyze each Fourier transform of the process.

Fourier transform analysis
The first Fourier transform (FT[.] replaces the tilde hat when the writing would be too long) is

the one of the multiplication of I and R (Eq. (17)):

FT[I(x, y) · R(x, y)] = Ĩ ∗ R̃ . (20)

To be able to compute it, we need to calculate R̃(u, v). We recall that the periodic x-slope
function is a 2D x-sawtooth of period pµL, which admits a Fourier expansion:

R(x, y) = −
1
π

+∞∑︂
n=1

1
n

sin
2πx
pµL

. (21)

It makes the calculation of the Fourier transform easier:

R̃(u, v) = −
1

2iπ

−1∑︂
n= −∞

1
n
δ

(︃
u −

n
pµL

, v
)︃
−

1
2iπ

+∞∑︂
n= 1

1
n
δ

(︃
u −

n
pµL

, v
)︃

. (22)

Now, we can fractionate the convolution in two terms (the ones of the Fourier transform of
R) to facilitate the development of Eq. (20) (final frequency variables are introduced after the
convolution operation to minimize the use of unnecessary letters):

Ĩ ∗ R̃ = −
1

2iπ

[︄
−1∑︂

n= −∞

1
n

Ĩ
(︃
u −

n
pµL

, v
)︃
+

+∞∑︂
n= 1

1
n

Ĩ
(︃
u −

n
pµL

, v
)︃]︄

. (23)

We have two separated terms that will make the rest of the demonstration easier. In term of
direct space, we need now to compute the second point of the list written at the beginning of the
appendix. In Fourier space, this convolution (by the microlens support anew), will be translated
into a multiplication by a sinc function:

FT

{︄
[I · R] ∗

[︄
1

p2
µL

∏︂ (︃
x

pµL
,

y
pµL

)︃]︄}︄
= {Ĩ ∗ R̃} ·

1
p2
µL

sinc(pµLu) · sinc(pµLv). (24)

So, those sinc functions have an inverse pitch periodicity, which means their product is zero in
each side of a square of a multiple of 1/pµL in the Fourier plane. As the SHWFS is of infinite
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extension and the I irradiance pattern is pitch periodic, so those sinc functions will extinct a large
number of harmonics (Eq. (24)), which we derive here for both terms:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
2iπ

−1∑︁
n= −∞

1
n Ĩ

(︂
u − n

pµL
, v

)︂
· 1

p2
µL

sinc
(︁
pµLu

)︁
· sinc

(︁
pµLv

)︁
− 1

2iπ

∞∑︁
n= 1

1
n Ĩ

(︂
u − n

pµL
, v

)︂
· 1

p2
µL

sinc
(︁
pµLu

)︁
· sinc

(︁
pµLv

)︁ . (25)

All the harmonics in the v direction will be nulled due to the sinc product (period of 1/pµL).
Let’s take the terms of the previous equation and we develop Ĩ according to the formula of our
paper (Eq. (5)):

−
1

2iπ

K−1∑︂
k= −K+1

(K − |k|)
k

· K · H̃k,0(u, v) ·
1

p2
µL

sinc(pµLu) · sinc(pµLv) . (26)

The two terms of Eq. (25) have merged altogether. The l sum has disappeared as only the 0th

term remains. Moreover, as the SHWFS is of infinite extension, the harmonics width is very thin.
They only take their non-null values when n is equal to the right k.

To summarize, only the harmonics in the u-direction are saved through the averaging process.
To obtain the centroid function of Eq. (18), we still need to calculate the Fourier equivalent

of the quotient, which can be tedious. However, as the divider is the average irradiance over
the Shack-Hartmann image, the averaged value over the support of a microlens is given by the
same Dirac delta function selection process of Eq. (19). Hence, we will use it at the end of our
development. It is more of a convenience, as we now know that the averaged irradiance Fourier
transform has no harmonics of interest (Eq. (25) first line).

As the harmonics have a limited support, each term of Eq. (26) is only defined in the center of
the Fourier plane. So the sinc product can be now omitted (i.e.= 1) to simplify the final writing
of the inverse Fourier transform of the sum of the two terms in Eq. (26), to retrieve the numerator
of Eq. (18):

Cx(x, y) ∝ −
1

2iπ

K−1∑︂
k=1

K − |k|
k

[Hk,0(x, y) − H−k,0(x, y)] , (27)

Where we have reorganized Eq. (26) in order to make the inverse Fourier transform of the
harmonics appear in Euler logic. Note that here, the general next step for the x-centroid extraction
is to convolute with a selection by Dirac delta function for the (p, q) lens. The demonstration can
be ended here, as one can see in Eq. (27), that no more v-direction nor linear combination of the
Fourier harmonics, except for those on the u-direction, are involved in the information retrieval
allowed by the barycenter operations (only inverse Fourier transforms Hk,0(x, y) remain in the
writing).

To complete the demonstration, we are now using the knowledge of the Hk,0(x, y) value (see
Eq. (11)) to simplify anew the expression:

Cx(x, y) ∝ +
1
π

K−1∑︂
k=1

K − |k|
k

sin
[︃
k∂p
∂φ

∂x
(x, y)

]︃
. (28)

Since the wavefront is slowly variable, we can approximate the sine, leading to:

Cx(x, y) ∝ +
1
π
∂p
∂φ

∂x
(x, y) ·

K−1∑︂
k=1

(K − |k|) . (29)

We now have a complete centroid function, from which we extract the value for the (p, q)
microlens by convoluting with the correct Dirac delta function selector to obtain the following
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equivalence:

Cx
p,q ∝

∂φ

∂x
(p · pµL, q · pµL) . (30)

We recall that it is needed to normalize the result by the average value of the irradiance pattern
of the Shack-Hartmann. The second one is to calibrate the SHWFS with a reference wavefront
measurement, an operation which is always processed when dealing with practical applications.
To conclude this appendix, we therefore conclude that the global centroids extraction only takes
into account all the information of the u, v orthogonal harmonics and forsakes all other harmonics.
The same reasoning applies to the y-centroid calculus.
Disclosures. The authors declare that there are no conflicts of interest related to this article.
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