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Abstract. In this paper, we report about the effect of the application of a state of prestress
on the band structure of a periodic phononic crystal characterized by an inertial amplification
mechanism. Through a numerical example, we show the possibility of inducing negative group
velocity in an isolated branch of the dispersion diagram.
A 2-step Updated Lagrangian scheme is adopted to calculate the dispersion diagram of the
structure. The proposed method include (i) the static geometrically nonlinear analysis of a
representative unit cell undergoing the action of an applied external load and (ii) the Bloch-
Floquet decomposition applied to the linearized equations of the acousto-elasticity for the unit
cell in the deformed configuration. The dispersion analysis is performed in terms of small
amplitude motions superimposed on a deformed state, once the desired load has been applied.
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1 Introduction

Controlling the propagation of elastic waves in solids has always attracted the interest of

physicists and engineers. Considerable progress has been made in this area thanks to the in-

troduction in the last decades of the so called phononic crystals and elastic metamaterials, i.e.,

artificial periodic structures with variations in density / stiffness / geometry, exhibiting uncon-

ventional dynamic properties, such as for instance frequency regions where the propagation

of waves is inhibited, referred to as phononic bandgaps, or negative group velocity of their

branches [1], allowing for negative refraction [2].

Since their introduction, a plethora of innovative applications relying on frequency filtering [3],

topological protection [4, 5] and wave splitting [6] have been proposed in the most disparate

fields ranging from the infrasonic to the ultrasonic frequency regime [7–11].

However, one of the main limitations of these structures is represented by the fact that once

designed, their unusual dynamic properties are fixed in terms of operational frequency. For ex-

ample, a metamaterial designed and manufactured to attain specific unconventional properties

in a certain frequency range (for instance attenuating the propagation of elastic waves or ex-

hibiting negative group velocity) cannot be modified to operate in a different frequency range.

This implies poor versatility and adaptability to external variations, often essential for various

practical applications.

In this context, periodic systems with adaptive elastic properties have been proposed tuning

the dispersion diagrams through the piezoelectric effect [12, 13], inducing temperature vari-

ation [14], or exployting magneto- and light-based approaches [15, 17], as well as applying

external mechanical loads [18–22].

The majority of the aforementioned investigations focused their attention on the bandgap shift /

widening / reduction, whereas here, we report about the possibility of inducing negative group

velocity in an isolated branch of the dispersion diagram of an inertially amplified phononic

crystals. This is achieved through the application of an external state of prestress. A phononic

crystal exhibiting inertial amplification mechanism has been chosen because it has been shown

that the large inertial forces generated by amplifying the motion of a mass increases the iner-

tia of the overall system and lowers its resonance frequency, allowing thus for sub-wavelength

phenomena, while keeping the structure lightweight [25, 26]. As a consequence of this, the in-

ertial amplification allows for a more remarkable curve shifts, if compared to the cases of Bragg

scattering [21, 22] and / or ordinary local resonant metamaterials.

We consider the static deformation induced by the prestress to be in the linear elastic regime

so to have a complete reversibility of the phenomena (tunability). The analysis is performed in

terms of small amplitude motions superimposed on a deformed state once the desired load has

been applied.

The paper is organized as follows: in section 2, the calculation method (referred to as a 2-step
Updated Lagrangian scheme) is briefly recalled. Both the static geometrically nonlinear analy-

sis of a representative unit cell undergoing the action of an applied external load and the Bloch-

Floquet decomposition applied to the linearized equations of the acousto-elasticity for the unit

cell in the deformed configuration, are recalled. Section 3 provides a numerical example show-

ing the concrete possibility of altering the dispersion band diagram through the application of

an external state of prestress in a periodic structure exhibiting inertial amplification mechanism.

Finally, section 4 synthesizes the principal results and provides future perspectives.
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Figure 1: On the top panel, the undeformed configuration C0, i.e. the initial unit cell (delimited by dashed lines)

used to calculate the displacement and stress fields introduced by the external mechanical load (left panel), the

static deformed configuration C, resulting from the application of the external mechanical load (middle panel) and

the dynamic configuration C ′ undergoing a harmonic motion (right panel) are reported, respectively. In the bottom

panel, the reference systems in the direct and reciprocal spaces are reported as well, for the sake of completeness.

2 Numerical formulation: a brief recall of the 2-step Updated Lagrangian scheme

We here recall the main steps for the band diagram calculation adopting a Bloch-Floquet

finite element method which takes into account the effect of the prestress in a formulation called

2-step Updated Lagrangian scheme. Refer to [21, 22] for the full description of the approach.

Synthesizing, the numerical procedure includes two principal computational steps:

1) a nonlinear static analysis involving large strains and displacements;

2) a small-on-large dynamic analysis, in which small vibrations are superimposed to the

statically deformed unit cell.

2.1 Static analysis

Let’s consider the unit cell Ω0 represented on the top left panel of Fig. 1 by the gray dashed

line. The unit cell is identified by the position vector x and represented by the lattice vector

r0 = {r01, 0}T (periodicity only in the x direction is considered) and its reciprocal vector g0 =
{g01, 0}T = {r01/2π, 0}T. If the unit cell is subjected to the application of a static volume load

fV 0, or surface load fS0, it undergoes a displacement u0, which causes a change of configuration

from the undeformed state C0 to the static deformed state C.

It is possible to write the relation between r0 and r as r = FLr0, where FL defines the affine

component of the deformation gradient. Making use of the variational statement, it is possible

to derive the equilibrium equations with respect to the undeformed configuration C0:∫
Ω

(S(x) : δE(x)− fV 0 · δu0) da =

∫
∂Ω

fs0 · δu0ds, (1)

subjected to the Dirichlet boundary conditions:

u0(x+ r0) = u0(x). (2)
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Assuming a hyperelastic material according to the Murnaghans model [27–29] and specifying

the density of the unit cell as ρ0, the elastic energy density can be defined as:

ψ =
1

2
(λ+ 2μ) I21 (E)− 2μI2(E) +

1

3
(l + 2m) I31 (E)− 2mI1(E)I2(E) + nI3(E), (3)

in which λ and μ denote the first and second Lamé parameters, respectively, (l, m, n) the third

order Murnaghan parameters, and I1(E), I2(E) and I3(E) the first, second and third invariants

of the Green-Lagrange strain tensor, respectively.

The application of a standard Galerkin approach to Eq. (1) leads to the generalized system of

equations: [
ΓT

0K(Q0)Γ0

]
Q0(X) = P0(X), (4)

where K(Q0) is the static stiffness matrix, P0 the global vector of nodal forces, Q0 the global

vector of independent nodal displacements and Γ0 the mapping operator resulting from Eq. (2)

and realizing the condition U0 = Γ0Q0. This will allow us to update the reference configura-

tion from C0 to C, which will be used, once properly re-meshed, as the basis unit cell for the

dispersion curve calculation.

2.2 Floquet-Bloch Analysis

Under the assumption of small-on-large analysis approach [28, 30–32], the small harmonic

perturbation u(x) can be expressed as [33]:

u(x) = ũ(x)exp(ikx)exp(−iωt), (5)

in which the Ω-periodic displacement amplitude is taken into account (t denotes the time, ω the

angular frequency, and k ∈ Λ the Bloch wavenumber, being Λ the reciprocal unit cell defined

in C by the reciprocal lattice vector.

The solution of the elastodynamic problem for free vibrations of the unit cell in C subjected to

an initial stress σ0 and subjected to the Dirichlet boundary condition proceeds by first generat-

ing a new mesh for the deformed geometry of the unit cell in C and then applying a Galerkin

approach [34]. The band diagrams of the phononic structure can be computed from the eigen-

value problem (the mathematical expressions of the mapping operator implementing the Dirich-

let boundary condition, K3, K2, K1 and M are not reported in the present paper for the sake of

brevity and can be found in Refs. [21, 22]):{
ΓT

[
k2K3 + ik

(
K2 −KT

2

)
+K1 − ω2M

]
Γ
}
Q̃(ω) = 0. (6)

3 Numerical results

In this section, the potential of an applied external mechanical load to alter the dispersion

diagram of a periodic structure characterized by an inertial amplification mechanism is shown.

Specifically, the switching from positive to negative group velocity of an isolated dispersion

curve is reported.

To this aim, the band diagram is calculated for the unit cell reported in Fig. 2A (proposed for

the first time by Acar and Yilmaz [26]) through the numerical procedure recalled in section 2.

The structure is supposed to be in epoxy with the following material parameters: ρ = 1540
kg/m3, λ = 2.59 GPa, μ = 1.34 GPa, l = −18.94, GPa, m = −13.36 GPa and n = −9.81
GPa. The geometrical dimensions can be derived from Fig. 2A knowing that t2 = 0.4 mm has

been assumed.
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Once the deformation induced in the unit cell by an initial state of stress / strain applied to

the structure has been calculated according to the steps reported in section 2.1, the band struc-

tures are computed considering the unit cell to infinitely duplicate in a periodic linear array,

and assuming the epoxy in its linear elastic regime and under the hypothesis of small displace-

ments (see section 2.2). Both a compression and a traction condition of load are considered by

applying a displacement u0(x0) · n0(x0) normal to the external vertical faces of the unit cell

(highlighted in blue in Fig. 2A).

Figure 2B reports the plots of the the reduced wavenumber k∗ along the Γ−X irreducible path

as a function of the frequency ([0 − 900 Hz range]) for +130 μm (left panel), 0 μm (central

panel) and −360 μm (right panel) assigned prestrains. We focus our attention on the dispersion

branch highlighted in purple, which, in contrast to the other branches reported in gray, besides a

general shift, undergoes a group velocity inversion for some values of the reduced wavenumber

k∗. Specifically, if inducing a pre-solicitation state of traction, the inflexion point is achieved

around k∗ � 0.5π/a, whereas, when inducing a state of pre-compression, the transition occurs

for k∗ � 0.65π/a (black arrows in Fig. 2B). To gain further insight on this phenomenon, the

corresponding mode shape evaluated at the high symmetry points Γ and X are inspected and re-

ported in Fig. 2C. From the comparison it emerges that while the vibration pattern is practically

the same for low values of k∗ (the 3 mode shapes denoted by the star symbol deform compa-

rably), as the k∗ increases, the deformation induced by the states of prestress alter the overall

deformation mechanism with respect to the non-prestressed case (compare the 3 modes denoted

by the circular dot). This change in the deformation mode happens only for this branch. As a

consequence, for the other branches reported in gray in the diagram the effect of the prestress is

to solely shift their frequencies. This allows us to infer that the prestress is differently felt from

the deformation modes of the phononic crystal.

Finally, it is worth noticing that in the first pre-solicitation case (traction), a region in which

solely the negative group velocity part of the dispersion branch can be isolated in frequency

(see the orange dashed line and the orange arrow in Fig. 2B) from 525 to 550 Hz.

These results suggest that a deformation of the unit cell geometry induced by a compressive /

tensile prestress state, already in the elastic regime, can lead to significant changes in the dy-

namic behaviour of a periodic structure, especially if the structure is dominated by an inertial

amplification mechanism.

4 Concluding remarks

In this paper, we have reported about the effect of the application of a state of prestress on the

band structure of a periodic phononic crystal characterized by an inertial amplification mech-

anism. Specifically, through a numerical example, we have shown the possibility of inducing

negative group velocity in an isolated branch of the dispersion diagram.

The dispersion curves are calculated through a 2-step Updated Lagrangian scheme within the

which both the static geometrically nonlinear analysis of a representative unit cell undergoing

the action of an applied external load and the Bloch-Floquet decomposition applied to the lin-

earized equations of the acousto-elasticity for the unit cell in the deformed configuration, are

implemented. The dispersion analysis is performed in terms of small amplitude motions super-

imposed on a deformed state, once the desired load has been applied. It is worth mentioning

that we have considered the static deformation induced by the prestress to be in the linear elastic

regime, so to guarantee a complete reversibility of the phenomena, once the load removed.

This study may represent a practical solution for reducing one of the limitations of phononic

crystals / metamaterials, represented by the fact that once designed, their unusual dynamic prop-
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Figure 2: (A) Schematic representation of the considered unit cell along with its position x0 with respect to the

original reference systems x0i, with i = 1,2,3. (B) Plots of the the reduced wavenumber k∗ along the Γ − X
irreducible path as a function of the frequency for +130 μm (left), 0 μm (centre) and −360 μm (right) prestrain

conditions. (C) Mode shapes at the edges of the Γ−X irreducible path.
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erties are fixed in terms of operational frequency.

Future research may include the application of additional internal state of prestress (for instance

exploiting the tensegrity paradigm) to foster the application of phononic crystals and metamate-

rials in engineering problems such as waveguiding / filtering of elastic waves, impact protection,

and the design of tunable acoustic lenses.
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