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1. Introduction
The first human missions to Mars will likely be astrobiology-driven, with explorers involved in contextual 
surveys, search of candidate mineralogical samples, and supervised drilling operations. Assessing the radi-
ation environment and doses at sites with high biosignature preservation potential is thus of fundamental 
importance for both estimating the health risks of future human explorers and providing reference doses 
for the degradation/survival rates of biological molecules in search-for-life studies.

Abstract The first human missions on Mars will likely involve several astrobiology-driven science 
operations, at sites with high biosignature preservation potential. Here, we present a study of the radiation 
environment induced by Galactic Cosmic Rays and Solar Energetic Particles at Oxia Planum, landing site 
of the European Space Agency ExoMars 2022 mission, and at two different locations in Mawrth Vallis, 
using the Monte Carlo GEometry ANd Tracking 4-based code dMEREM (detailed Martian Energetic 
Radiation Environment Model). The radiation environment for solar minimum in 2009 and a period 
close to solar maximum during the declining phase of solar cycle 23 appears similar at the different sites, 
with the deepest Mawrth Vallis location having a slightly enhanced γ-ray contribution, due to a higher 
modulation of fast neutrons by the more water-rich regolith. The comparison with the Dose Equivalent 
from an updated extrapolation of 7+ years data from the Radiation Assessment Detector (RAD) onboard 
the Curiosity rover highlights the importance of input modulation conditions, some drawbacks of the 
galactic cosmic ray model used here, and the need to include heavy ions, the three aspects affecting 
differently the estimations for solar maximum and minimum. The dependence of doses on surface 
pressure highlights a possible influence of the different dust loading at the different sites. Estimated 
exposure levels for a 1-year stay and for a short stay in Arabia Terra, the latter including a October 28, 2003 
event with a fluence an order of magnitude higher than the relevant September 2017 event detected by 
RAD, leave reasonable to large safety margins.

Plain Language Summary Space radiation is caused by high-energy particles coming from 
the Sun or further away. Such radiation is dangerous for humans since they can cause cancers. At Earth, 
we are protected by a relatively thick atmosphere and by the global magnetic field, but the first explorers 
of Mars will be subject to higher radiation exposure. In this paper, we compute the risks caused by these 
radiations at Oxia Planum, the landing site of the ExoMars 2022 mission, and Mawrth Vallis, previously 
under scrutiny by NASA and European Space Agency, both in the northern hemisphere. We modeled 
different conditions of space radiation (which is determined by the activity of the Sun) and we considered 
the effect of the ground composition on the results. The model results are compared with the estimations 
of the radiation at the ground based on the observations by the Curiosity rover located at the Gale crater in 
the Southern hemisphere. We show that locations rich in water may have more gamma rays. We show that 
the risks are moderate when considering the radiation exposure limits recommended for Low Earth Orbit.
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Oxia Planum and Mawrth Vallis, two regions near the northern boundary of Arabia Terra, offer excellent 
conditions for the search of biosignatures. Oxia Planum is the final selected landing site for the next Euro-
pean Space Agency (ESA) mission ExoMars 2020 (now ExoMars 2022), partially because of more suitable 
conditions for the technical constraints such as landing and traversability, and different specific locations 
in Mawrth Vallis have been previously considered as candidate landing sites for ExoMars 2022 (Bridges 
et al., 2017), the current Mars Science Laboratory (MSL; Rogers & Bandfield, 2009) and Mars 2020 mission 
(Gross et  al.,  2017). Based on near-infrared OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glac-
es et l'Activité) data as well as CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data, 
the regional compositional mapping has revealed wide deposits of clays at both sites, in particular Mg/
Fe phyllosilicates (Carter et  al.,  2013). In particular, Oxia Planum exhibits a layered, meters-thick near-
ly homogeneous Fe-Mg phyllosilicates deposit and some hematite, while Mawrth Vallis mostly displays 
Fe-smectites with multiple oxidation states and a relevant presence of several other hydrated minerals (Pou-
let et al., 2020), in principle making the site rewarding in terms of both scientific outcomes and In-Situ 
Resource Utilization (ISRU). Clays are known to play a major role in the association of organic matter with 
mineral matrices and in the stabilization and preservation of biological molecules (Keil & Mayer, 2014). 
About hematite, some studies have reported it has a beneficial role for the preservation of microscopic sig-
natures of life (Allen et al., 2004), while others have reported that it offers low preservation of amino acids 
(dos Santos et al., 2016) and induces oxidation of organics (Ertem et al., 2017).

The radiation environment at the surface of Mars is constituted by primary Galactic Cosmic Rays (GCRs), 
the low intensity background radiation flux modulated by the 11-year solar cycle, and by sporadic, high 
fluxes of Solar Energetic Particles (SEPs), as well as by secondary particles produced in the atmosphere 
and the regolith via ionization, spallation and fragmentation processes. The high-energy GCRs can pene-
trate the standard spacecraft hulls, as well as potential planetary habitats and astronauts suits, producing 
dangerous secondary radiation particles, effective at either directly breaking DNA strands, or producing 
chemically active radicals in tissues that can also induce bond breaking. Late stochastic effects from non-le-
thal doses, such as cataracts, cancer, damages to the central nervous and/or cardiovascular system (Cuci-
notta et al., 2012a, 2012b) are observed over time as an increased likelihood of occurrence relative to the 
general population. SEPs are produced by transient events on the Sun, such as flares and/or Coronal Mass 
Ejections (CMEs), which trigger the acceleration of intense fluxes of (mostly) protons and electrons with 
energies below a few hundreds MeV. The relatively rapid rise in particles fluxes during such events and the 
possible occurrence of such events at any time in the solar cycle (Feynman et al., 1993, 2002) have implica-
tions for planning expeditions in which the explorers would drive considerable distances from their habitat. 
Events can last for hours up to many days, and give rise to deterministic effects, as the Acute Radiation Syn-
drome (Anno et al., 1989), skin injury, the depletion of blood-forming organs (BFOs), and death (Cucinotta 
et al., 2015; Wu et al., 2009).

There is now a relevant number of detailed studies on the radiation environment and doses induced by 
GCRs (De Angelis et al., 2006; Ehresmann et al., 2011; Gronoff et al., 2015; Guo et al., 2015; D. Hassler 
et al., 2012, 2014; Matthiä et al., 2016; McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012; Saganti 
et al., 2004; Schwadron, et al., 2010; L. Simonsen et al., 1990; L. C. Simonsen & Nealy, 1993) and SEPs on 
Mars (De Angelis et al., 2006; Guo, Zeitlin, et al., 2018; Guo, Wimmer-Schweingruber, et al., 2019; Jiggens 
et al., 2014; Kozarev et al., 2010; Norman et al., 2014; Townsend et al., 2011; L. C. Simonsen & Nealy, 1993; 
Zeitlin et al., 2018). Inter-comparisons between different radiation transport tools and detailed compari-
son to RAD measurements have been provided in several recent studies (Guo, Saša, et al., 2019a; Matthiä 
et al., 2016; Matthiä et al., 2017), the latter also summarizing the work performed by several teams (de Wet & 
Townsend, 2017; Flores-McLaughlin, 2017; Matthiä & Berger, 2017; Ratliff et al., 2017; Slaba & Stoffle, 2017). 
The majority of these studies is either focused on Gale crater, in the southern hemisphere, where Curiosity 
is operating with the MSL-RAD detector (D. Hassler et al., 2012, 2014; Grotzinger et al., 2012), or on average 
global or altitude-dependent radiation maps. A thorough analysis of the radiation environment at sites in 
the northern hemisphere, such as those at the northern boundary of Arabia Terra, is still to be done.

In this work, we provide a first assessment of the radiation environment and doses at Oxia Planum and 
Mawrth Vallis as induced by GCRs in solar minimum (January 2009, northern fall) and close to solar 
maximum during the declining phase of solar cycle 23 (October 2003, dusty northern winter), and by SEPs 
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and background GCRs during the October 28, 2003 event. For Mawrth Vallis, the location previously un-
der scrutiny by ESA, west to the main channel, denoted here Mawrth Vallis 1, and the location previously 
considered by NASA, in the north of Oyama crater, denoted Mawrth Vallis 2, are considered. The three sites 
have respectively elevation ∼−2600, ∼−2011 and ∼−3780 m and are depicted in the Mars Orbiter Laser 
Altimeter (MOLA) map in Figure 1. The radiation environment and different types of doses are obtained 
via the Monte Carlo GEometry ANd Tracking (Geant4)/PLANETOCOSMICS (Desorgher, 2005) ESA's tool 
dMEREM (Gonçalves et al.,  2010; McKenna-Lawlor, Gonçalves, Keating, Morgado, et al.,  2012; McKen-
na-Lawlor, Gonçalves, Keating, Reitz, et al., 2012). The results are compared with an updated extrapolation 
based on 7+ years of RAD data. The contribution of downward and backscattered radiation, the contribu-
tion of different particle type, and the variation of daily dose rates with surface pressure during the two 
solar modulation periods are investigated. We focus in particular on the absorbed dose, the main dosimetric 
quantity related directly to energy deposition in a target (locally), the Ambient Dose Equivalent (ADE), an 
operational quantity for measurements and radiation protection, and on the Effective Dose (ED), which is 
the relevant quantity for stochastic effects. Results for long and short stays, the latter including the occur-
rence of the October 28, 2003 SEP event, are compared to the radiation exposure limits usually recommend-
ed and to the relevant September 2017 event detected by RAD.

2. Model Description
2.1. dMEREM, Regolith Composition and Atmospheric 
Parameters

dMEREM, also implemented in the ESA's Space Environment Informa-
tion System (SPENVIS) (Heynderickx et al., 2004; Kruglanski et al., 2009), 
was used in standalone mode to perform the Monte Carlo calculations of 
the transport of GCRs (protons+α-particles) and SEPs (protons) through 
the atmosphere and regolith. dMEREM incorporates PLANETOCOS-
MICS (Desorgher, 2005), based on GEANT4 (Agostinelli et al., 2003).

The regolith composition of the three sites considered in this work is 
based on data from the Gamma Ray Spectrometer (GRS) aboard Mars 
Odyssey and it is reported in Table 1. Some small differences in the reg-
olith composition can be noticed, with Oxia Planum having more Fe2O3 
(hematite), and Mawrth Vallis site 2 having less hematite but more wa-
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Figure 1. Topography MAP from Mars Global Surveyor, Mars Orbiter Laser Altimeter (MOLA). Copyright: NASA.

Mineral

Oxia 
Planum

Mawrth 
Vallis site 1

Mawrth 
Vallis 
site 2

−2600.00 
m

−2011.00 
m

−3875.00 
m

SiO2 47.23 47.44 47.37

Fe2O3 16.72 16.49 16.05

Bulk Al2O3, MgO, CaO, Na2O, K2O 32.10 32.10 32.10

H2O 3.95 3.97 4.48

Density (g/cm2) 1.80 1.82 1.80

Table 1 
Average Percentage by Weight of the Constituents Present as Derived From 
GRS Data at the Three Specific Sites Considered in This Work
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ter. The variation are ∼10% in water-content and ∼4% in Fe-content. Topographic data are taken from the 
MOLA instrument onboard the Mars Global Surveyor (MGS) (Smith et al., 2001). The regolith is modeled 
as a 100 m deep layer and its composition is rather different from the one used in other studies for Gale 
Crater (Matthiä et al., 2016), that purely considers a default basaltic composition (SiO2 51.2%, Fe2O3 9.3%, 
H2O 7.4%), resembling a general terrestrial basalt (Nockolds, 1954).

Atmospheric temperature, density and composition were extracted at the three sites from the Mars Climate 
Database (MCD) (Forget et al., 1999, 2006), up to an atmospheric height being h = 150 km, using the default 
solar minimum scenario for January 2009, and the dusty solar maximum scenario and the baseline MY26 
scenario for October 2003. A postprocessing software was used to combine the surface pressure data with 
MGS MOLA topography (Smith et al., 2001). The period of October 2003 (close to solar maximum) and Jan-
uary 2009 (solar minimum) correspond to northern winter and fall, respectively. Simulations are performed 
for local 2 a.m. and 2 p.m.

The QGSP−BIC−HP physics list is used, which uses a quark gluon string model for hadrons at high energies 
(>10 GeV), the binary intranuclear cascade model for nucleons at energies <10 GeV, and, for neutrons with 
energy <20 MeV, the G4NeutronHP model (based on the Evaluated Nuclear Data File- database). The low 
electromagnetic list (Livermore models) is used. The number of simulated primary particles was 106 per bin.

2.2. Radiological Quantities

In this work, we focus on the absorbed dose, the ADE and ED. The absorbed dose corresponds to the average 
energy deposited by energetic particles in a target (locally, e.g., at the point of interest) (Mertens, 2016). In 
biological targets, this is considered to be predominantly due to ionization energy loss:

 0
Δ 1

E
E dD f E dE
m dx

  


 (1)

where m is the mass of the volume of interest in the target, dϵ/dx is the (unrestricted) collisional stopping 
power (corresponding to the electronic stopping power, e.g., the energy lost by the particle per unit path 
length), f(E) is the particle fluence (E being the energy of impacting particles), and ρ is the density in the 
volume of interest, for instance, a detector or a human organ. The unit of D is the Gray (where 1 Gy = 1 
J kg−1). In order to estimate the absorbed dose, not automatically printed by dMEREM, a water layer of a 
thickness of 10 cm was added at the ground and the energy deposition in that layer is scored, similarly to 
previous works (Gronoff et al., 2015).

The ED is the dose received by the full body and is expressed as the sum of the equivalent doses in all tissues 
and organs of the body, weighted by an organ/tissue weighting factor such that:

T T
T

ED w H  (2)

where wT is the weighting factor of tissue T and HT is the equivalent dose for that tissue , ,T R T R
R

H w D   

where ,T RD  is the average absorbed dose from radiation R in tissue or organ T, and Rw  is the radiation 
weighting factor of radiation R, which varies according to particle type and energy (ICRP, 2010). The ED is 
measured in Sieverts (Sv).

In dMEREM, the alternate operational quantity ADE used in instrumental measurements is also imple-
mented, as it avoids the complexities associated with phantoms or patient anatomy (Fontenot et al., 2009). 
The reference phantom is the International Commission on Radiation Units and Measurements (ICRU) 
sphere, a 30 cm-diameter sphere made of tissue equivalent material (density: 1 g/cm3; mass composition of 
76.2% O; 11.1% C; 10.1% H and 2.6% N). The ADE at a location of interest in a radiation field is defined as the 
Dose Equivalent (DE) which would be generated in an oriented and expanded radiation field at a depth of 1 
cm on the radius of an ICRU Sphere, oriented so as to be opposite to the direction of the incident radiation 
(Casimiro et al., 2018; Osamu et al., 1999). Differently from the equivalent dose (not studied in this work), 
the DE is defined as a product of Q and D at a point in tissue, where D is the absorbed dose and Q the quality 
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factor at the point of interest, a function of unrestricted linear energy transfer (unrestricted LET, denoted 
as L below) in water.

Practically, in dMEREM the ADE is calculated by multiplying the fluences for each particle by previously 
calculated fluence-to-ambient dose equivalent conversion factors (tabulated in [Pelliccioni, 2000] and ob-
tained with the FLUktuierende KAskade or Fluctuating Cascade) and adding all the contributions from the 
different particles i:

 
   *

*10 Φi
i iH Ei i E

H H f E    (3)

The ED is also calculated in a similar manner, by applying previously calculated fluence-to-Effective Dose 
conversion factors applied to the distribution of particle fluence as a function of energy (Pelliccioni, 2000).

It is important to underline that the ADE and the DE reported in studies on RAD data are two distinct 
quantities. The latter is defined as      T T TH L Q L D L , where  TD L  is the absorbed dose integrated in 
the volume of the organ or tissue T, and  Q L  is the quality factor, while the ADE is calculated at a specific 
point in the tissue-equivalent phantom (the ICRU sphere).

2.3. Space Radiation Environment

The GCRs fluxes for protons and α-particles for solar minimum (January 2009) and close to solar maximum 
during the declining phase of solar cycle 23 (October 2003), obtained with the ISO-15390 model (Nymmik 
et al., 1996), are reported in Figure 2 (top panel). The spectra were retrieved from SPENVIS (Heynderickx 
et al., 2004; Kruglanski et al., 2009) and are considered as isotropic. Strong solar modulation as in October 
2003 reduces the contribution of the low energy portion of GCRs protons and α-particles. Heavier primary 
ions have been ignored, since they contribute to only about 1% of the GCRs flux (Simpson, 1983) (and even 
less of the SEPs flux). However, it should be underlined that high-Z particles may interact with the atmos-
phere and generate secondaries, which would still contribute to the surface radiation exposure (Dartnell 
et al., 2007; Matthiä et al., 2016; Röstel et al., 2020).

The 28 October event and the series of events that took place at the end of October 2003-beginning of No-
vember 2003 were previously studied by several authors (Chenglong et al., 2008; Crider et al., 2005; Jiggens 
et al., 2014; Kozarev et al., 2010; Mewaldt et al., 2005). The differential proton fluxes for the October-Novem-
ber 2003 SEP events from the Geostationary Operational Environmental Satellite GOES-11 and retrieved 
from the Solar Energetic Particle Environment Modelling (SEPEM) reference event list (Jiggens et al., 2012) 
are reported in Figure 2 (middle panel). The largest solar proton enhancement occurred on the 28 October 
following an X17.2 class flare (Jiggens et al., 2014). This was the largest SEP event of the past 20 years in the 
tenths of MeV energy range (Jiggens et al., 2014). In principle, low energy SEP events are relatively shielded 
by the Martian atmosphere. Nevertheless, the October 28, 2003 event, which occurred during the northern 
dusty winter and which caused the unrecoverable failure of the Martian Radiation Environment Experi-
ment (MARIE) instrument on board Mars Odyssey, is an interesting case to consider and to compare with 
the recent results reported for the September 2017 event, the most relevant event observed by MSL-RAD on 
Mars up to now (Guo, Dumbovi, et al., 2018a; D. M. Hassler et al., 2018; Zeitlin et al., 2018).

The magnetic connection between Earth and Mars was good for the series of SPEs during the end of Octo-
ber 2003-beginning November 2003. Here, near-Earth particle measurements from the GOES-11 spacecraft 
have been used as proxies to estimate the overall particle doses for the October 28, 2003 event, assuming 
the fluxes fell off as 1/r2 (where r is the helio-radial distance). In Figure 2 (bottom panel), points represent 
the fluences in each GOES channel, obtained by integrating the flux values for each channel over event du-
ration and the fit has been obtained by double power-law function. Only protons have been considered for 
SEPs, being the dominant species in such events and thus posing the greatest short-term radiation damage 
risk. The event is considered to be isotropic upon arrival at Mars.
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Figure 2. Top panel: Impacting GCRs protons and α-particles spectra during solar minimum in January 2009 and 
during early October 2003; middle panel: differential proton fluxes for the October–November 2003 SEP events, 
retrieved from the SEPEM reference event list (Jiggens et al., 2012); bottom panel: proton fluence spectra from GOES-11 
for the October 28, 2003 event fitted with a double power-law function (spectral indexes 1.06, 4.26), following (Mewaldt 
et al., 2005). GCR, Galactic Cosmic Rays; GOES, Geostationary Operational Environmental Satellite; SEPEM, Solar 
Energetic Particle Environment Modelling.
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3. Results
3.1. GCRs Induced Daily Dose Rates and Comparison With the Updated Extrapolation From 7+ 
Years of RAD Data

Table 2 presents a comparison between the ADE and absorbed dose daily rates (averaged over day/night) 
for GCRs and an updated extrapolation of the DE and absorbed dose rates based on 7+ years RAD data at 
Gale Crater, based on a similar previous analysis that was using fewer statistics (Guo et al., 2015). The com-
parison to the DE is only indicative, as here the ADE is calculated; nevertheless, we proceed as in previous 
works (McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012) where useful information was extract-
ed by comparing the ADE with results on the DE from different works.

Our results for both solar minimum and close to solar maximum show very similar ADE average daily rates 
for Oxia Planum and Mawrth Vallis site 1, essentially coinciding within statistical uncertainty. The ADE av-
erage daily rate at Mawrth Vallis site 2, the location with the lowest elevation, is slightly lower with respect 
to the ADE rates at the other sites, in particular for solar minimum, due to a stronger shielding effect by the 
atmosphere. We note that our ADE average daily rates for the three sites are considerably lower than the 
updated analysis of 7+ years of RAD data for both solar maximum and solar minimum, but in fairly good 
agreement with the previous extrapolation based on fewer statistics for solar maximum (around ∼350 μSv/
day, not reported in Table 2) (Guo et al., 2015). The absorbed dose average daily rate obtained for a water 
slab of 10 cm at Oxia Planum is 230 μGy/day for solar minimum and 110 μGy/day close to solar maximum 
(early October 2003), with minimal variations at Mawrth Vallis 1 and slightly lower values at Mawrth Vallis 
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This work Extrapol. RAD data MARIE/Liulin-MO

dMEREM sol.min./~max. (January 2009/October 2003)

Oxia Planum ADE

(μSv/day)

632/356 - -

Mawrth Vallis 1 ADE 634/360 - -

Mawrth Vallis 2 ADE 611/348 - -

Oxia Planum abs.dose

(μGy/day)

230/110 - -

Mawrth Vallis 1 abs.dose 250/122 - -

Mawrth Vallis 2 abs.dose 193/100 - -

extr.RAD data sol.min/~max.

Gale crater DE (μSv/day) - 745.9 ± 87.2/498.7 ± 76.3 -

Gale crater abs.dose (μGy/day) - 310.8 ± 24.4/207.8 ± 24.1 -

MARIE data ~sol.max

Orbit abs.dose (μGy/day) - - 230.0

Liulin-MO data 04/2016-03/2017

Cruise DE

(μSv/day)

- - 1970/2040 ± 400

Orbit (MC01) DE - - 2230/2260.00 ± 500

Orbit (MC02) DE - - 2300.00 ± 550

Note. Values from the RAD analysis are given in plastics, no correction factor has been used as plastic is close to water 
in terms of its response to the energetic charged particles that dominate the radiation environment on Mars (Zeitlin 
et  al.,  2018). The DE from Liulin-MO measurements during ExoMars TGO cruise (Semkova et  al.,  2018) in 2016–
2017 and the absorbed dose measured in September 2003 by the MARIE instrument on board Mars Odyssey are also 
reported (Zeitlin et al., 2010) (in italics, as data from Liulin-MO correspond to different solar modulation conditions 
with respect to those considered in the calculations, and data from MARIE are affected by the some materials of the 
spacecraft, see text). Uncertainty associated to dMEREM results is ∼1%.
Abbreviation: ADE, Ambient Dose Equivalent; DE, Dose Equivalent; RAD, Radiation Assessment Detector; TGO, 
Trace Gas Orbiter.

Table 2 
Comparison Between the ADE Rate (μ Sv/day) and the Absorbed Dose (μ Gy/day) From This Work (Averaged Over Day/
Night and Induced by GCRs Protons +  α -Particles During Solar Minimum and Close to Solar Maximum) With the DE 
and Absorbed Dose Obtained From an Updated Extrapolation of 7+ Years of RAD Data
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2 at lower elevation. We note an overall underestimation of the absorbed doses when compared with the 
extrapolated absorbed doses from the RAD analysis, similarly to the case of the comparison between the 
ADE and the DE.

The comparison of our results with those from the updated analysis of 7+ years of RAD data is affected by 
different factors, among which some differences between the initial modulation conditions given in input 
to our calculations and those on which the RAD analysis is based, the choice of a specific GCRs model and 
the neglect of heavier ions in our calculations. First, the GCRs model used by dMEREM (ISO 15390) uses 
as input the 12-month averages of sunspot numbers (SSNs), retrieved from the Solar Influences Data Anal-
ysis Center (SIDC) - Sunspot Index and Long-term Solar Observations (SILSO) (http://www.sidc.be/silso/, 
99 for October 2003 and 4.8 for January 2009). The SSNs used for the RAD data analysis are the monthly 
mean SSNs, 97.8 and 1.3 for October 2003 and January 2009 respectively. Thus, the conditions under which 
the calculations here presented have been performed and those of the analysis of 7+ years of RAD data are 
almost equivalent for solar maximum, while for solar minimum the conditions are slightly different. An 
underestimation of doses for solar minimum could then be reasonably expected.

For what concerns the specific GCRs model, the ISO 15390 model used here has been reported to exhib-
it its own discrepancies with the measured flux for different near-Earth and space missions (Mrigakshi 
et al., 2012, 2013). In particular, for solar maximum periods, the ISO15390 model resulted in considerable 
overestimation of all investigated particle fluxes for different missions, for example, over 70% for hydrogen 
nuclei in comparison with the measurements of different missions and that it underestimates the flux at low 
energy. It may thus be expected that this would lead to an overestimation of dosimetric quantities induced 
by GCRs, which is actually not the case in our study. For the case of solar minimum, the ISO15390 model 
has been reported to derive lower GCR hydrogen fluxes, in comparison with the data measured by different 
near-Earth and space missions and in comparison to more accurate models such as the Badhwar-O'Neill 
2010 model (Mrigakshi et al., 2012, 2013). Thus, for solar minimum, an additional underestimation of dos-
es, due to intrinsic limitations of the input GCRs model, can be expected.

Last, it is important to underline that neglecting heavier ions implies that the associated downward cascade 
and eventual backscattered radiation are not considered. The influence of heavy ions on different dosime-
tric quantities has been analyzed in several recent works. Röstel et al. (2020) found that, on the surface of 
Mars, the heavy ion primary particles contribute 9% of absorbed dose rate in a thin silicon slab phantom, 
while this ratio is slightly lower in a water sphere phantom, ∼8%. The heavy ion contribution to equivalent 
dose (not investigated here) was reported to be slightly larger, 11.5%. Other works (Mertens et al., 2016; Nor-
man et al., 2016) investigated the influence of heavy-ion cosmic ray primaries at ∼30 km altitude at Earth, 
which has similarities with the Martian surface, and reported that the contribution of heavy ions to the 
absorbed dose and DE at that altitude is ∼20% and ∼50% respectively, though some overestimation of the 
quality factor possibly due to an over prediction of the flux was affecting the results (Norman et al., 2016). 
For solar maximum, considering only protons and α-particles should be of minor concern, likely because 
of the reduced mean free path of heavier ions in the atmosphere, the latter having a higher depth at the 
perihelion season than during early northern autumn in solar minimum 2009. However, with increasing 
atmospheric depth there would be an increase in fragmentation processes in the downward cascade, gen-
erating neutrons which give a relevant contribution in particular to the ADE, thus making the neglect of 
ions likely a critical aspect for the ADE, even in solar maximum. For solar minimum, it is clear that several 
different effects affect our results, and the neglect of high energy heavy ions is a considerable approxima-
tion (especially for the site at the lowest elevation, where the downward cascade would be more relevant), 
while RAD measurements are obviously sensitive to all particles. Nevertheless, here below we continue 
considering only protons and α-particles, similarly to previous studies (Guo, Zeitlin, et al., 2018; Gronoff 
et al., 2015), and within such approximation we compare the results obtained at the different sites. As a 
last remark, as noted above, the definitions of the ADE and DE are different, and as also evident by the the 
discussion further in the text, also other works found ADE rates lower than the DE values for similar solar 
modulation conditions.

The absorbed dose recorded by the MARIE detector on board Mars Odyssey in September 2003, just be-
fore the unrecoverable failure of the instrument due to the 28 October event, and the DE recorded by the 
Liulin-MO detector during the cruise of the ExoMars Trace Gas Orbiter (TGO) spacecraft and recorded 
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by Liulin-MO in high elliptical orbit are reported in Table 2 only as an 
indicative reference. In principle, for October 2003, our surface absorbed 
dose appears to be slightly less than half of the absorbed doses recorded 
by MARIE, but both the planetary shielding effect, affecting the MARIE 
data as well as our results, and the fact that MARIE was covered by a 
1.27 mm depth of aluminum and by a 100 μm depth of mylar thermal 
blanket (Zeitlin et al., 2010), thus not providing the fully unshielded dose 
in orbit, make it complicate to conclude on any impact of the sole atmos-
pheric shielding effect on our results. The data from the TGO's cruise 
phase and the TGO orbits at high altitudes correspond to the declining 
phase of solar cycle 24. For high altitude orbits, the radiation conditions 
are very close to those in free space as shielding from Mars is negligible 
in such conditions. The difference between the cruise and orbit DE val-
ues can be interpreted mainly from the influence of the solar modulation 
(the cruise data are reported for April–September 2016, and the orbit data 
for November 2016–January 2017 and then February 2017–March 2017). 
Our ADE, for the declining phase of solar cycle 23, is ∼1/6 of the DE by 
Liulin-MO in the declining phase of solar cycle 24, which is reasonable 
as the measurements by the latter correspond to periods with a weaker 
heliospheric activity with respect to October 2003.

3.2. Radiation Spectra and Contribution from Different Particle Type

The overall radiation spectra (in terms of primaries, secondaries, and secondaries albedo, and in terms of 
downward and upward particles) do not show clear appreciable different trends among the three sites, and 
thus only the spectra for Oxia Planum are reported, while the contribution from different particle type is 
reported for both Oxia Planum and the location at Mawrth Vallis which differs more from Oxia in terms of 
regolith composition, that is Mawrth Vallis 2.

The spectra of the primary and (total and backscattered) secondary particles, summed over all particles 
types, at Oxia Planum, induced by GCRs protons and α-particles, are reported in Figure 3, for solar mini-
mum and close to solar maximum during the declining phase of solar cycle 23 (early October 2003, before 
the rise of the October–November 2003 events). For both protons and α-particles, there is a relevant contri-
bution of the backscattered, albedo component, caused by the interaction of primary particles and down-
ward secondaries with the martian regolith, to the secondary flux. Also, the spectrum of the secondaries 
(both downward and albedo) generated close to solar maximum closely follows the one for solar minimum, 
with variable differences around 100 MeV/n and a reduced overall intensity for solar maximum at lower 
energies. The spectra of the secondaries are very similar for primary impacting protons and α-particles. This 
is reasonable as a substantial amount of 4He ions fragment into protons in the atmosphere and follow the 
same energy loss processes as for protons (Guo, Saša, et al., 2019a).

In Figure 4, we report the downward and backscattered radiation spectra at the surface, separated per par-
ticle type, at Oxia Planum. Higher fluxes of the downward protons and α-particles, slightly shifted to lower 
energies, occur for solar minimum, as for solar maximum the stronger solar modulation leads to a reduction 
of the lower energy portion of GCRs. The high energy part of the spectrum is dominated by downward pro-
tons and neutrons, while neutrons and γ-rays are the predominant particles at the surface for energies lower 
than 100 MeV/n. The γ-contribution strongly decreases below the electron contribution below few tenths 
of keV. By comparing Figures 3 and 4, it can be easily noticed that, in case of impacting protons, protons 
reaching the surface are mostly primary particles, with the exception of those with energies below ∼10 MeV, 
which are likely generated in the interaction of the GCRs with the atmosphere.

In Figure 5, we plot the contribution of primaries, secondaries and particle type for Oxia Planum and Maw-
rth Vallis 2 to the ADE and ED hourly rate, for solar minimum and close to solar maximum, for impacting 
protons and α-particles separately. It can be observed that: (a) for the ADE, which is more sensitive to neu-
trons, primaries always contribute less than secondaries for both sites, and neutrons give the largest contri-
bution for both sites and for both solar modulation periods; (b) for the ED, primaries contribute less than 
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Figure 3. Primary and secondary (downward and albedo) radiation 
spectra at Oxia Planum induced by GCR protons and α-particles during 
solar minimum (solid lines) and close to solar maximum of solar cycle 23 
(dash-dot lines).
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secondaries for both periods at Mawrth Vallis 2, suggesting the increased contribution of fragmentation 
secondary products to the ED; for Oxia Planum, primaries still contribute less than secondaries for solar 
maximum, but they contribute nearly to the same extent as secondaries for solar minimum; this suggests 
that at such higher elevation site more primary protons reach directly the surface, while for solar maximum 
the increased atmospheric depth likely still causes a considerable contribution from fragments. The ED is 
more sensitive to protons for proton impact and to neutrons for impact of α-particles, which is ascribed to 
the fact that α-particles have a smaller mean free path and are much more attenuated with depth; (c) there 
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Figure 4. Radiation spectra at the surface of Mars at Oxia Planum as induced by GCR impacting protons and 
α-particles during solar minimum (January 2009) (solid lines) and close to solar maximum during the declining phase 
of solar cycle 23 (early October 2003) (circles): downward and upward contributions, separated for particle type. GCR, 
Galactic Cosmic Rays.

Figure 5. Contribution to ADE and ED hourly rate in terms of primaries and secondaries and in terms of particle type 
at Oxia Planum and Mawrth Vallis site 2, for solar minimum in January 2009 and close to solar maximum in October 
2003. ADE, Ambient Dose Equivalent.
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is a change in the contribution of γ-radiation, linked to the efficiency with which different amount water 
in the regolith moderate neutrons. Neutrons always contribute more at Mawrth Vallis 2 compared to Oxia 
Planum, because of the increase in downward fragmentation processes due to the increasing atmospheric 
depth. However, as water is a good neutron moderator (Röstel et al., 2020), the more hydrated soil at Maw-
rth Vallis 2 reduces the number of albedo neutrons, especially below about 10 MeV. This influences the 
amount and type of further secondaries particles generated by the interaction of such moderated neutrons 
with the other mineralogical components of the regolith. Most γ-rays originate from such reactions, as neu-
tron inelastic scattering and thermal or epithermal neutron capture. In the upward flux, the strongest γ-rays 
lines are produced by non-elastic-scattering processes such as 56Fe (n,nγ)56Fe (0.85 MeV), 16O (n,nγ)16O (6.1 
MeV), 28Si(n,nγ)28Si (strongest line at 1.8 MeV) and other higher energy γ-rays are produced by neutron cap-
ture processes such as 56Fe (n,γ)57Fe (7.6 MeV) and 28Si(n,γ)29Si (4.9 MeV). Looking at the γ-rays yield from 
the neutron capture 56Fe (n,γ)57Fe at the two sites, being Fe present in slightly different amount at the two 
sites, we notice an enhancement of such yield at Mawrth Vallis 2. This is indeed interpreted as due to the 
fact that more moderated neutrons are available for such neutron capture reaction, and is in line with earlier 
studies (Masarik & Reedy, 1996). The overall contribution of backscattered γ-rays to the ADE hourly rate at 
Oxia Planum changes from 20% to 22.4% between solar minimum and maximum, while it stays constant at 
25% at Mawrth Vallis 2. The variation of γ-rays at sites of astrobiological interest is important as γ-rays re-
main the reference radiation for the estimation of degradation of biological molecules (Dartnell et al., 2007; 
Ertem et al., 2017; Pavlov et al., 2012, 2002). Also, this may be relevant in future considerations of valuable 
sites for exploration-related resources on Mars with a mineralogy dominated by hydrated minerals. Here, 
the difference in the backscattered γ-rays remains nevertheless small, as the smaller amount of downward 
neutrons at Oxia Planum, combined with a higher Fe-content, also helps in lowering the contribution of 
neutrons to ground doses (Keating & Gonçalves, 2012) and in giving rise to a similar γ-rays contribution. 
However, for the two sites considered here, the variation in Fe-content is only ∼4%, and in water-content 
is ∼10%, making water at Mawrth Vallis 2 a more efficient channel for neutrons modulation and following 
capture reactions by the Fe-oxide.

3.2.1. Dependence of GCR-Induced Doses on Diurnal Variations of Atmospheric Column Mass

Figure 6 (top panel) reports the day and night ADE and absorbed dose daily rates for Oxia Planum and 
Mawrth Vallis site 2, induced by GCRs protons and α-particles, for solar minimum and close to solar maxi-
mum, as a function of surface pressure. First, it can be noted that the pressure at each site is higher during 
the perihelion season (northern winter, October 2003) compared to the (early) autumn (January 2009), in 
agreement with the reports for different landing sites as a function of solar longitude (Martínez et al., 2017). 
The variation in the surface pressure however remains small at both sites, which is due to a non-optimal 
choice of the timing during day and night for which the calculations have been performed (2 a.m. and 2 
p.m., not the peak-to-peak variation in the surface pressure daily cycle). Nevertheless, we observe that the 
day-night pressure variation for solar maximum is slightly higher compared to solar minimum, at least 
for Oxia Planum, as the solar forcing of tides increases when the amount of dust in the air rises (Leovy 
& Zurek, 1979; Medvedev et al., 2011). At Oxia Planum, the atmospheric column depth, directly linked 
to surface pressure from hydrostatic physics (Rafkin et al., 2014), varies from 20.37 g/cm2 to 21.06 g/cm2 
for solar maximum, and from 18.08 to 18.56 g/cm2 for solar minimum. Previous works have reported that, 
during northern winter, the increased dustiness of the atmosphere and the amplitudes of wave modes other 
than the sun-synchronous diurnal tide could tend to disrupt the diurnal tides propagation by modifying 
the atmospheric structure, reducing the pressure variation especially at low elevation sites with respect to 
higher elevation sites (Lee et al., 2009), which suggests that a smaller variation for Mawrth Vallis 2 could 
be expected.

A slightly higher surface pressure variation at Oxia Planum can also be expected looking at the vertical 
density profiles. These, as extracted from MCD (Figure 6, bottom panel), suggest that at Oxia Planum, for 
solar maximum, the density between 120 and 160 km (upper inset) and at the surface (bottom inset) differs 
more between day and night compared to what occurs at Mawrth Vallis 2. The visible optical depth, which 
reflects the variation in opacity due to dust loading in this case, also suggests that at Oxia Planum a higher 
dust opacity is present compared to Mawrth Vallis 2, with a higher variation between the chosen day and 
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night time (τ = 1.54 for vs. 1.60 for day and night respectively at Oxia Planum, and τ = 1.32 and 1.34 for day 
and night respectively at Mawrth Vallis 2). Overall, looking at the sole extent of the variation of doses and 
of atmospheric depths, we observe that the (day/night averaged) atmospheric depth differs more between 
the two sites for solar maximum compared to solar minimum (by 3 g/cm2 for solar maximum and 1.8 g/cm2 
for solar minimum); however, the ADE and the absorbed dose differ more, among the two sites, for solar 
minimum. This suggests that even a small difference in the averaged atmospheric column depth among the 
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Figure 6. Top panel: ADE and absorbed dose day (circle or square) and night (star symbol) rates for the two sites as a 
function of day- and night-time surface pressure (statistical errors shown, known uncertainties associated with nuclear 
physics models used not considered); bottom panel: Vertical density profiles for different solar modulation periods 
above Oxia Planum and Mawrth Vallis site 2 (to be noted that in our calculations only a profile up to h = 150 km is 
considered). ADE, Ambient Dose Equivalent.
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two sites plays a relevant role in solar minimum, contributing in determining the efficiency of the shielding 
towards the low energy portion of the GCRs, unmodulated during solar minimum.

The results in Figure 6 (top panel) suggest an anti-correlation of the ADE and absorbed dose with surface 
pressure for both sites for solar minimum, in agreement with a previous analysis based on RAD data (Guo 
et al., 2017). Such anti-correlation can be well expected as, for lower surface pressure, despite the fewer 
neutrons generated in the downward cascade with such thinner atmosphere, more primary impacting ions 
can survive traversal, resulting in a measured higher dose rate. As the total column depth increases, the 
Martian atmosphere, despite being very thin, acts as a shielding layer against the incoming GCR flux, in 
particular the low energy portion of the flux which is more easily shielded by the atmosphere and which is 
more abundant in solar minimum. For the absorbed dose, we find a variation of 8 μGy/day out of a daily 
absorbed rate of ∼230 μGy/day for Oxia Planum, and of 6 μGy/day out of a daily absorbed rate of ∼193 μGy/
day for Mawrth Vallis 2, in anti-correlation with surface pressure, similarly to the ADE. For the period close 
to solar maximum, we still find anti-correlation between the ADE day and night daily rate with surface 
pressure, which is in agreement with previous modeled results (Guo et al., 2017). The higher difference in 
the ADE day/night daily rate at Oxia Planum for solar maximum is due to the slightly higher difference in 
the density vertical profile compared to Mawrth Vallis 2. For the absorbed dose, we find an extremely weak 
anti-correlation of the absorbed dose rates with surface pressure for solar maximum, with a variation of 
only 2 μGy/day out of a daily absorbed rate of ∼110 μGy/day at Oxia Planum and a similar variation and 
absorbed dose for Mawrth Vallis 2. This is not in agreement with the correlation between absorbed dose and 
surface pressure expected on the basis of previous extrapolations for high solar modulation potentials (Guo 
et al., 2017), but the nearly coinciding absorbed dose rates suggest nevertheless a change in the dependence 
upon surface pressure.

Our lower estimation of the variations of the ADE and absorbed dose rates upon surface pressure with re-
spect to RAD measurement is possibly also due to an amplification of the daily tide at Gale crater due to its 
peculiar topography. The variation of the absorbed dose rate measured by RAD over a diurnal cycle, which 
is ∼15 μGy/day peak to peak out of around 220 μGy/day for the period 2012–2014 (max Φ for this period 
750 MV, with April 2014 maximum of solar cycle 24 [Guo et al., 2015]), corresponds to a daily pressure 
variation of ∼50 Pa as detected by the Rover Environmental Monitoring Station (REMS). Such variation 
is significantly larger than what observed at other landing sites on Mars and then what simulated for the 
Curiosity site by Global Circulation Models (GCMs) based on MCD - an averaged climate database. This is 
likely due to hydrostatic adjustment flows that amplify the daily tides and that are induced by the peculiar 
topography of the crater (Haberle et al., 2014; Richardson & Newman, 2018). However, when using actual 
GCMs with variability (Neary & Daerden, 2018) or mesoscale numerical models with sufficiently high hori-
zontal resolution (grid spacing less than 5 km), then the large REMS daily pressure range are reproduced. 
Last, it should also be noted that the MCD atmospheric data used in this work inherently also have the 
seasonal CO2 cycle, making impossible to distinguish the contribution to dose variation from the changes in 
atmospheric mass due to the CO2 condensation cycle.

4. Scenarios for Short and Long Human Stays in Arabia Terra
The results in Table 3 consider two mission scenarios, one with a long stay on the surface of the planet (1-
year) during solar minimum and close to solar maximum, and the other one being a short stay (30-days), 
during which we consider the October 28, 2003 event. We only report the results for Oxia Planum, as the 
results for the other sites do not change the conclusions with respect to the limits established for stochastic 
and deterministic effects. The estimations for a long stay at Oxia Planum provide support for the future 
measurements by the Liulin-ML detector on the ExoMars 2022 surface platform.

4.1. GCRs Contribution During a 1-Year Stay–Solar Minimum and Close to Solar Maximum

For a 1-year stay, scaling up to an entire year the contribution from GCRs, our results suggest that the ED for 
solar minimum, 368.4 mSv (see Table 3), is nearly the double of the ED close to solar maximum, 190.8 mSv. 
The ED limits for stochastic effects established by NASA (National Council on Radiation Protection and 
Measurements, Recommendations of Dose Limits for LEO, 2000) (620–1470 mSv for male and 470–1120 
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mSv for a female, for increasing age at initial exposure) are not overpassed, for none of the two solar mod-
ulation periods. However, the ED is a considerable portion of the limit for young women. Considering that 
most of the exposure is during the trip to and back from Mars, additional shielding is obviously necessary to 
maintain dose levels at the Martian surface as low as possible (Röstel et al., 2020).

The obtained ADE in Table 3 (131.8 mSv/year and 230.4 mSv/year, respectively close to solar maximum and 
close to solar minimum) are close to the DE from the updated extrapolation from RAD data for the exact 
solar maximum and solar minimum, with a worsening of the agreement for solar minimum. The result 
for solar minimum is higher than a previous estimate by dMEREM for Mawrth Vallis (McKenna-Lawlor, 
Gonçalves, Keating, Morgado, et al., 2012), as it can be reasonably expected given the period considered in 
that work (2006, not exactly solar minimum) and the lower elevation of the specific location considered, but 
smaller than previous estimations in Simonsen, 1997 (L. Simonsen, 1997). However, a good agreement is 
obtained with the DE obtained for solar maximum from the same author (L. Simonsen, 1997). Several pre-
vious studies (Cucinotta et al., 2001; Ehresmann et al., 2011) reported higher values during solar minimum, 
in particular an annual GCRs-induced DE ranging from 200-300 mSv/year, depending on the altitude.

The yearly absorbed dose for a water slab of 10 cm at Oxia Planum is 84.0 and 38.7 mGy/year respectively 
for solar minimum and close to solar maximum (scaled up from the corresponding daily rates). As said 
above for the average daily rates, both these values are considerably smaller than the values obtained from 
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Mission

Absorbed 
Dose 

(mGy) ADE, DE (mSv)
ED 

(mSv)

1-year GCR exposure

Sol. min (or close to sol. min)

dMEREM Oxia Planum (p+α) 84.0 230.4 (ADE) 368.4

Extrap. from RAD 7+ years 110 ± 4 265 ± 19 -

HZETRN L. Simonsen (1997) (p+α) - 320.0 -

dMEREM M. Vallis McKenna-Lawlor, Gonçalves, Keating, Morgado, et al. (2012) (p+α) - 186.9 (ADE) 518.8

Sol. max (or close to sol.max)

dMEREM Oxia Planum (p+α) 38.7 131.8 (ADE) 190.8

Extrap. from RAD 7+ years 60 ± 4 144 ± 16 -

dMEREM M. Vallis McKenna-Lawlor, Gonçalves, Keating, Morgado, et al. (2012) (p+α) - 103.0 (ADE) 278.0

Planetocosmics Gronoff et al 2015 (p+α) 40.15 - -

HZETRN L. Simonsen 1997 (p+α) - 150.00 -

30-days background GCR exposure sol max (or close to sol.max)

dMEREM Oxia Planum (p+α) 3.0 10.8 (ADE) 15.7

dMEREM M. Vallis McKenna-Lawlor, Gonçalves, Keating, Morgado, et al. (2012) (p+α) - 8.5 (ADE) 22.9

HZETRN Simonsen et al 1993 (p+α) - 6.0-7.0/6.0-6.6 (skin/BFO) -

GCR (p+α) + SEP (p)–short stay scenario

dMEREM Oxia Planum (28 October 2003, 30 days, ∼2.5-days SEP event) 8.4 22.2 (ADE) 30.6

dMEREM M. Vallis McKenna-Lawlor, Gonçalves, Keating, Morgado, et al. (2012) (April 2002, 30 days, 
14-day SEP event)

- 8.8 (ADE) 23.1

Note. Values for GCRs are obtained by scaling up the average daily values. Comparison is with the updated extrapolation from 7+ years of RAD data, other 
results as computed using HZETRN (L. C. Simonsen & Nealy, 1993; L. Simonsen, 1997), PLANETOCOSMICS (Gronoff et al., 2015) and dMEREM (McKenna-
Lawlor, Gonçalves, Keating, Morgado, et al., 2012). The results from (McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012) for a 30-day stay only in 
presence of GCRs have been extracted from Table 6 in (McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012) considering only protons and α-particles 
and for a period of 30 days assuming a constant distribution of GCRs flux. Uncertainty associated to dMEREM results is ∼1%.
Abbreviations: ADE, Ambient Dose Equivalent; GCR, Galactic Cosmic Rays; HZETRN, High charge (Z) and Energy TRaNsport; SEP, Solar Energetic Particles.

Table 3 
Absorbed Dose (mGy), ADE/DE (mSv), and ED as Induced by GCRs (Protons and α) for a 1-Year, a 30-Day Stay During Quiet Times, and Short Stay Scenarios 
With an Occuring SEP Event



Journal of Geophysical Research: Planets

the updated extrapolation from 7+ years of RAD data, which is likely due 
to a mix of factors mentioned above (modulation conditions, choice of 
the GCR model, and neglect of the heavy ions). On the basis of previous 
studies (Norman et al., 2016; Röstel et al., 2020), however, the sole ne-
glect of the heavier ions (and consequent generated downward cascade 
and backscattered radiation) would likely have a smaller impact on the 
absorbed dose results compared to the ADE.

4.2. GCRs and SEP Contribution During a 30-Day Stay Close to 
Solar Maximum

For a short 30-days stay during a period close to solar maximum, we find 
a GCRs-induced ADE which is higher than a previous estimate of the DE 
with the High charge (Z) and Energy TRaNsport (HZETRN) code (L. C. 
Simonsen & Nealy, 1993) for the solar maximum in 2014. This can be rea-
sonably expected as in (L. C. Simonsen & Nealy, 1993) only atmospheric 
attenuation was taken into account but not the interaction of particles 
with the martian regolith, which leads to backscattering of neutrons and 
other secondary particles. Our ADE results are also higher than the re-
sults by dMEREM for solar maximum 2002 at Mawrth Vallis (a slightly 
different location in this region was considered) derived for a 30-day pe-
riod from (McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012), 
likely because the period of October 2003, although close to maximum, is 
in the declining phase of the solar cycle 23.

The obtained peak absorbed dose rate for SEP protons from the Octo-
ber 28, 2003 event is 3.43 mGy/day. The influence of dust loading on the 
value of the peak absorbed rate can be estimated by comparing with the 
value obtained by using the baseline MY26 scenario, which has a visi-
ble optical depth for Oxia Planum τ = 0.78 (τ = 0.67 for Mawrth Vallis 
2). The change in the absorbed dose at the ground is rather small, 6% at 
Oxia Planum. This variation is similar, although smaller, to the results 

from previous studies on different SEP events in different applicable dust loading conditions for sites in 
the southern hemisphere (Norman et al., 2014). In order to assess the risk for deterministic effects, the SEP 
protons-induced accumulated absorbed dose in a 10 g/cm2 water target proxy for BFOs (obtained by multi-
plying the hourly averaged dose rate by 1 h and then summing all the doses for the full duration of the event 
[Chenglong et al., 2008], with a total of 5.06 mGy) has to be scaled by the Relative Biological Effectiveness 
(RBE) of protons (1.5 [Operational Radiation Safety Program for Astronauts in Low-Earth Orbit: A Basic 
Framework. Bethesda, Md., 2002]).

    .D Gy Eq D Gy RBE   (4)

This yields exposures far below even the smallest of the 30-days exposure limits, which is 250 mGy-Eq for 
the heart and BFOs (Guidance on Radiation Received in Space Activities. Bethesda, Md., 1989; National 
Council on Radiation Protection and Measurements, Recommendations of Dose Limits for LEO, 2000). We 
can therefore infer that for the (sole) October 28, 2003 event the health risks to BFOs and the heart were 
minimal if explorers experienced these events with no/minimal shielding, despite its higher fluence com-
pared to the relevant September 2017 event detected by RAD since landing (Zeitlin et al., 2018) (about one 
order of magnitude higher [Cohen & Mewaldt, 2018]).

Nevertheless, the series of events in October and November 2003 was very complex, with the onset of re-
petitive shocks lasting from October 19 through November 4, 2003 (Kozarev et al., 2010), with 10 shocks 
observed at the Advanced Composition Explorer (ACE) spacecraft and 5 CMEs (Lario et al., 2005). In a 
worst-case scenario of ∼338 h of duration for the October-November 2003 events (http://spaceenv.esa.int/
DataPlots/noaa/events/,June2007), there would have been also a considerable contribution to the ED to be 
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Figure 7. Contributions of the ADE and ED hourly rates for the peak flux 
of the October 28, 2003 SEP event. ADE, Ambient Dose Equivalent.
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considered for late stochastic effects, to be added to the contribution induced by background GCRs. It is 
interesting to consider how the contributions of SEP primaries, secondaries and of particles type to the ADE 
and ED hourly rate during the SEP event, reported in Figure 7, change with respect to the GCRs-induced 
contributions in Figure 5. First, we notice that the ADE hourly rates are ∼22–24 times the ADE hourly rate 
induced by GCRs protons. The ADE hourly rates induced by the SEP peak flux differs more among the two 
sites compared to what occurs for background GCRs-induced ADE hourly rates, as the atmosphere modu-
lates in a stronger way the lower energy SEPs flux, while the different amount of atmosphere to be traversed 
for the different sites is of lower importance for the transport of GCRs, especially for the (unmodulated) 
high energy portion. Close to solar maximum, primaries contribute less than secondaries to the ADE hour-
ly rate, as it happens for background GCRs in early October 2003 (Figure 5), while for the ED, primaries 
contribute more than secondaries, for both sites, contrarily to the case of GCRs background radiation. This 
change too is interpreted as due to the fact that the low energy SEP proton flux is more strongly modulated 
by the atmosphere with respect to the background high energy portion of GCRs (unmodulated during solar 
maximum), and the protons generated in the fragmentation of such low energy SEP flux portion contribute 
to the ED more than secondaries. Last, similarly to the case of GCRs, we observe that a slighly higher con-
tribution of overall neutrons is present at Mawrth Vallis 2, again induced by a more relevant generation of 
the downward cascade, and that also the relative contribution of γ-rays remains slightly higher at such site.

Some previous works have reported the peak dose rate and the accumulated dose for the (different, or mul-
tiple) events of the Halloween storm at different locations (Jiggens et al., 2014; Joyce et al., 2015; Kozarev 
et al., 2010; PourArsalan et al., 2010; Schwadron et al, 2010). Importantly, near Earth, for the spectra of a 
1-in-20-year event from SEPEM (Jiggens et al., 2012) closely agreeing with that of the October 28, 2003 
event, the accumulated dose was reported to be ∼0.2 Gy-Eq (133mGy) (Jiggens et al., 2014) behind 1 cm 
(linear thickness) Al-shielding, close to the BFO limit 0.25 Gy-Eq. As the weakest region of an Extra-Vehic-
ular Activity (EVA) suit is 15 times lower than this Al equivalent, effective warning for astronauts on EVA 
at Earth would have been fundamental (Jiggens et al., 2014). Since the interplanetary space dose rates could 
be considered to represent the possible upper limit of the radiation exposure in which an astronaut is doing 
EVAs when a SEP event occurs (Guo, Zeitlin, et al., 2018), we can therefore easily conclude that the BFOs 
limit would have been overpassed at Mars for the October 28, 2003 event, similarly to conclusions from pre-
vious studies on the October 26, 2003 event (PourArsalan et al., 2010). While the atmosphere stops most of 
the SEPs, especially the low-energy ones, the latter do contribute greatly to the unshielded deep space dose.

5. Conclusions
We have presented a Monte Carlo particle transport study of the radiation environment and doses at Oxia 
Planum, the landing site for ExoMars 2022, and at two locations at Mawrth Vallis, previously under scruti-
ny as candidate landing sites respectively for the ExoMars 2022 and the current MSL mission, during solar 
minimum and close to solar maximum during the declining phase of solar cycle 23, using the ESA's official 
model dMEREM. The dMEREM standalone version available to users, via ESA's permission, was used and 
some post-processing tools were implemented to allow to use of different vertical profiles from MCD and to 
calculate the absorbed dose (not automatically printed by dMEREM). The results may serve as reference for 
future measurements from the Liulin-ML detector on the ExoMars 2022 surface platform and point to some 
differences with respect to the results from previous analysis of RAD data for Gale crater.

The radiation environments among the three sites appear, overall, similar. The comparison of the daily ADE 
and absorbed dose rates with the updated extrapolation from RAD data highlights the importance of some 
differences in the input modulation conditions, especially for solar minimum, considered in the present 
calculations and in the analysis of RAD data, intrinsic limitations of the ISO15390 model in describing 
accurately the flux of primary light ions, and the neglect of heavier ions in our work which may affect both 
the results for solar minimum and those for solar maximum. Small differences are found in the γ-rays con-
tribution at Oxia Planum and Mawrth Vallis site 2. In particular, neutrons contribute more to the ADE rates 
at the deepest Mawrth Vallis site 2, due to increased fragmentation in the downward cascade. However, in 
the backscattered components, a ∼10% increase of water content at Mawrth Vallis 2 with respect to Oxia 
Planum moderates more efficiently fast neutrons. With more moderated neutrons, γ-rays in the backscat-
tered component generated in neutron capture reactions are slightly enhanced. The higher water content 
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at Mawrth Vallis and the consequent increased neutron modulation overweighs the eventual decreasing of 
neutrons solely given by Fe-oxides, given the small difference in hematite content at the two sites. The fact 
that γ-radiation may increase in presence of a more hydrated soil should be considered when considering 
the capability of minerals/materials to shield from radiation at specific sites, in the study of the shielding of 
biological molecules from radiation by mineral matrices, and in the consideration of possible scenarios for 
ISRU activities at sites with a mineralogy dominated by hydrated minerals.

In studying the dependence of doses on surface pressure, we only obtain a partial agreement with previ-
ous extrapolations from RAD data for different solar modulation conditions. An anti-correlation between 
ADE and absorbed dose day/night daily rates and surface pressure is found for both solar minimum and 
maximum. For solar minimum, this is in line with (Guo, Zeitlin, et al., 2018). For solar maximum, we only 
observe a weakening of such anti-correlation, or actually nearly coinciding dose rates, for both sites, con-
trary to the correlation reported by previous works. A slightly higher day/night pressure variation and ADE 
day/night daily rate variation at Oxia Planum could be related to a higher difference in the density vertical 
profiles above Oxia Planum in the dusty northern winter close to solar maximum. The present results sug-
gest that not all the trends in the variation of doses reported by RAD could be similarly reproduced for the 
nothern hemisphere in the different seasons, and for sites with different dust loading.

The comparison of the results for a long (1-year) and short (30-days) surface stay suggests reasonable agree-
ment with previous results from dMEREM (McKenna-Lawlor, Gonçalves, Keating, Morgado, et al., 2012), 
and for solar maximum with HZETRN (L. Simonsen, 1997) and PLANETOCOSMICS (Gronoff et al., 2015). 
The atmosphere of Mars provides a sufficient amount of shielding from the October 28, 2003 event, and 
incurred doses are below permissible limits, despite the considerably higher fluence with respect to the 
relevant September 2017 event detected by RAD. However, in reality the Halloween event featured multiple 
interplanetary shocks and ICMEs (Kozarev et al., 2010), which should be taken into account for late sto-
chastic effects, in addition to the contribution from background GCRs. The influence of dust loading induc-
es a variation with respect to the baseline MY26 scenario similar to previous studies (Norman et al., 2014).

Further work is needed to better discern the causes of the differences with the data from RAD at Gale crater, 
in particular by adding heavier ions and also possibly disentangling seasonal effects, that is effects of the 
CO2 condensation cycle. At the same time, additional work would be needed to investigate the impact of 
a higher simultaneous variation of water and Fe-content for sites at different elevation on the doses at the 
surface and, possibly, in the subsurface.

Data Availability Statement
The data relative to Figures 2–7 can be found at the Zenodo platform (Da Pieve et al., 2020, figure data for 
“Radiation environment and doses on Mars at Oxia Planum and Mawrth Vallis: support for exploration at 
sites with high biosignature preservation potential” Zenodo, 10.5281/zenodo.3779187). The GCR spectra in 
Figure 1 can be retrieved from the SPENVIS interface (https://www.spenvis.oma.be/) and the differential 
profile fluxes for the October–November 2003 period from the SEPEM tool (http://sepem.eu/).
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