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The Thue-Morse sequence is an example of an aperiodic structure with a singular continuous contribution to the diffraction pattern. Many satellites observed near the main diffraction peaks have been indexed and their intensities have been numerically calculated. Details of such a calculation are presented for satellite peaks indexed by 1/3. An average-unit-cell approach was successfully used to describe probabilities of atomic displacements from the points of the reference lattice. For a certain parameterisation of such probabilities, the results of fairly simple integer calculations could be easily generalised. For some defined sets of points, the analytical expressions for diffraction intensities were found and tested numerically on a wide range of scattering vectors and for up to 2 32 atoms. c 2000

INTRODUCTION

The one-sided Thue-Morse sequence can be defined on a two-letter alphabet {0, 1}, using the following substitution rule σ : σ (0) = 0 1, σ (1) = 1 0 [1][2][START_REF] Allouche | Automata and automatic sequences[END_REF][START_REF] Queffelec | Dynamical Systems-Spectral Analysis[END_REF][START_REF] Queffelec | Spectral study of automatic and substitutive sequences[END_REF][START_REF] Luck | [END_REF][7][8][9][10][11]. Starting with 0, one obtains the sequence 0110100110010110 . . . , which is neither periodic nor quasiperiodic. For such a sequence the two figures are replaced by the corresponding two bonds (a and b). In this paper it is assumed that b = 0.1 and a = 10b = 1 and the "atoms" are placed at the bond's edges (see also [START_REF] Allouche | Automata and automatic sequences[END_REF][START_REF] Queffelec | Dynamical Systems-Spectral Analysis[END_REF][11][12][START_REF] Gähler | The diffraction pattern of self-similar tilings[END_REF]). In the diffraction pattern of such a structure one can find two components that scale differently with the number of atoms (N ). The first component is known as the atomic contribution (Bragg peaks); it has intensities that scale as N 2 . The second one is a singular continuous component, which scales fractally with the number of atoms. For the Thue-Morse sequence the numbers of the two bonds are equal, and a periodic subset made of every second position, with a periodicity constant equal to λ 0 = (a + b) = 1.1, can be selected. The corresponding wave vector is then equal to k 0 = 2π/(a + b) ≈ 5.71. Therefore, for the Thue-Morse sequence, there is an average periodic structure with some appropriate decoration of the unit cell. Occupation probabilities of atomic positions in such a unit cell are given by [14-16] P(0) = 0.5 and P(±0.1) = 0.25, which leads to the following expression for the intensities of Bragg peaks at k = n • k 0 :

I (k) N 2 = 1 4 [1 + cos(kb)] 2 . ( 1 
)
Equation (1) gives correct intensities at periodic positions of Bragg peaks and, in general, describes the so-called envelope function shown as a dashed line in Fig. 1a. In the diffraction pattern of the Thue-Morse sequence there is a lot of diffuse scattering, namely the previously mentioned singular continuous part of the diffraction pattern (see Fig. 1b) [START_REF] Keane | Generalized Morse sequence[END_REF]18]. It is already known that there is a cumulation of diffuse scattering around q 0 = k 0 /3, which leads to well-defined satellite reflections around such particular positions of scattering vectors. However, one should remember that peak positions fluctuate around q 0 . This feature is also discussed in our paper. As already shown in [START_REF] Wolny | The reference lattice concept and its application to the analysis of diffraction patterns[END_REF], intensities at satellite positions scale fractally, disappearing gradually from the diffraction pattern with an increasing number of atoms. In the following we describe intensity at satellite positions given by q 0 , using the average-unit-cell approach recently developed by Wolny [START_REF] Wolny | The reference lattice concept and its application to the analysis of diffraction patterns[END_REF][START_REF] Wolny | Average unit cell of the Fibonacci chain[END_REF][START_REF] Wolny | Kwazikrysztaly i inne dwuwymiarowe uklady o zabronionej symetrii[END_REF][START_REF] Wolny | Average unit-cell approach to diffraction on Thue-Morse sequence and decorated quasicrystals[END_REF]. This allows us not only to calculate the fractal exponents for the scaling behavior of diffraction intensities with respect to the number of atoms, but also to write an analytical expression for diffraction intensities obtained for particular numbers of atoms.

AVERAGE-UNIT-CELL APPROACH

Using the concept of reference lattice [START_REF] Wolny | The reference lattice concept and its application to the analysis of diffraction patterns[END_REF][START_REF] Wolny | Kwazikrysztaly i inne dwuwymiarowe uklady o zabronionej symetrii[END_REF], we can write the structure factor for monoatomic structure as

F(k) = N f λ/2 -λ/2 P k (u) exp(iku) du, (2) 
where P k (u) is the probability distribution of atomic displacements from the points of the reference lattice. This distribution depends on the scattering vector k = 2π/λ; and for all higher harmonics (i.e., m • k, where m ∈ Z) we have

P mk (u) = n∈Z P k u + n λ m (3) 
and

F(mk) = N f +λ /2 -λ /2 P mk (u ) • e imku • du = N f +λ/2 -λ/2 P k (u) • e imku • du. ( 4 
)
This means that the probability distribution P k (u), |u| ≤ λ/2, describes an average unit cell for the scattering vector k and all its higher harmonics. 1) connects all maxima of the main diffraction peaks. (b) Intensities of satellite reflections are well described by envelope functions given by (10). Envelope curves have been calculated as a function of k for two different satellite positions: q = +k 0 /3 (dotted line) and q = -k 0 /3 (dashed line).

It has already been shown in [START_REF] Wolny | Average unit cell of the Fibonacci chain[END_REF] that for a modulated structure the expression for the structure factor of the mth satellite of any nth main reflection is

F(nk, mq) = N f u 1 -u 1 v 1 -v 1 P k,q (u, v) exp[i(nku + mqv)] du dv, (5) 
for m, n ∈ Z, u 1 = π/k, v 1 = π/q, while the probability distribution P k,q (u, v) describes an average unit cell for a series of main reflections and their satellites.

THUE-MORSE SEQUENCE

For the considered Thue-Morse sequence there is a periodic superstructure consisting of every second atom at the lattice positions x n = n(a + b), n ∈ Z. The unit cell of this superstructure is decorated by two atoms, one located at position 0 and the other occupying aperiodically the two possible positions at distances a or b from the previous one. For an infinite cluster, occupation probabilities are equal (P a = P b = 1/4), which leads to the expression for the Bragg reflections given by (1). For any finite structure the difference of these two probabilities is bounded,

|P a -P b | ≤ 1 N , ( 6 
)
where N is the number of atoms in the structure; the proof can be found in [START_REF] Verger-Gaugry | Generalized Meyer sets and Thue-Morse quasicrystals with toric internal space[END_REF].

Satellite Reflections at q = k 0 /3
Using two reference lattices, one with periodicity λ 0 = (a + b) = 1.1 (corresponding to the scattering vector k 0 of the main reflections) and the other with periodicity equal to 3λ 0 (which corresponds to the scattering vector q = k 0 /3 describing positions of an appropriate satellite), one gets the probability distribution shown in Fig. 2. The probability distribution in such an average unit cell is non-zero for nine positions only; and, for the number of atoms given by N = 6n, n ∈ Z + , the distribution values are related as follows:

P 1 = P 4 = P 7 = 1/6
and P 2 + P 3 = P 5 + P 6 = P 8 + P 9 = 1/6.

This relation is a consequence of the fact that for each period λ 0 there is an extra atom placed at distance a or b from the super-lattice position (see Table I). Using (7) and Fig. 2b, a set of three parameters i (i = 1, 2, 3) can be defined, such that

1 = (P 2 -P 3 )N , 2 =(P 6 -P 5 )N, 3 =(P 9 -P 8 )N (8) 

TABLE I Occupation Probabilities of Nine Different Atomic

Positions in 3(a + b) Supercell and

Position in a 3(a + b) n supercell P n 1 0 1 / 6 2 b P 2 + P 3 = 1 / 6 3 a 4 a + b 1 / 6 5 ( a + b ) + b P 5 + P 6 = 1 / 6 6 ( a + b ) + a 7 2 ( a + b ) 1 / 6 8 2 ( a + b ) + b P 8 + P 9 = 1 / 6 9 2 ( a + b ) + a
P 2 = 1 12 + 1 2N , P 3 = 1 12 - 1 2N P 5 = 1 12 - 2 2N , P 6 = 1 12 + 2 2N ( 9 
)
P 8 = 1 12 - 3 2N , P 9 = 1 12 + 3 2N .
The structure factor (i.e., the Fourier transform of ( 9)) is then given by

F(k + q) = F 1 (k + q) + F 2 (k + q), ( 10 
)
where

F 1 (k + q) = N 6 [1 + 2 cos(q(a + b)) + cos((k + q)b) + cos(kb -qa) + cos(kb + q(a + 2b))] F 2 (k + q) = 1 2 [exp(i(k + q)b) -exp(i(qa -kb))] ( 11 
)
i 2 sin(kb + q(a + 2b))

- 3 2 [exp(i(kb -qa)) -exp(-i(k + q)b)].
These equations describe correctly the structure factor for each scattering vector given by

k n,m = nk 0 + mq 0 n, m ∈ Z; k 0 = 2π a + b ; q 0 = k 0 3 , ( 12 
)
where nk 0 is the position of the main Bragg peak and mq 0 corresponds to the position of the appropriate mth satellite. The first part of the structure factor (F 1 ) does not depend on the number of atoms; for q = 0, it leads to expression (1) for the diffraction intensity of Bragg reflections. Parameters i (shown in Fig. 3) depend on the number of atoms. Figure 3 atoms or more precisely when N is equal to 6 • 4 n (n = 1, 2, . . .), the following relation is fulfilled:

3 = 2 = 1 2 . ( 13 
)
In a double logarithmic scale the plots versus the number of atoms are linear (Fig. 4), with the linear coefficient equal to α = log 4 (3) ≈ 0.7925. The exact value of the coefficient has been obtained for numerical integer calculations performed for a number of atoms equal to 6 • 4 1 = 24 and 6 • 4 2 = 96. For those numbers, 1 is equal to 4 or 12, which corresponds to probabilities P 2 = 4/24 or 14/96 and P 3 = 0 or 2/96, respectively. The plots of multiplied by a factor of N -α versus the number of atoms (Fig. 5 These relations have been checked in our "computer experiment." and i • N -α (i.e., the product with the number of atoms to the power of -α) is a periodic function of log N , with a periodicity constant equal to log 4. This allows us to plot i • N -α versus ξ , where

ξ ≡ log 4 N mod 1, (17) 
which is shown in Fig. 6a. For each delta, a common curve is obtained, which is independent of the number of atoms. Actually, the curves look rather complicated, and a more general expression cannot be given yet. However, we have found the exact values for some special points. The two sets of points are as follows:

Set I:

N = 24 m∈Z + β m • 4 m , where β m ∈ {0, 1}, (18) 1 
= 4 m∈Z + β m • 3 m , 3 = 2 = 1 2 .
Some examples of such numbers are (N , 1 ) ∈ {(24, 4), (96, 12), (120, 16), (384, 36) . . .}. Set II:

N = 12 m∈Z + β m • 4 m ,
where

β m ∈ {0, 1}, (19) 1 
= 2 m∈Z + β m • 3 m , 2 = 1 , 3 =0.
Some examples of such numbers are (N , 1 ) ∈ {(12, 2), (48, 6), (60, 8), (192, 18) . . .}.

such differences decrease rapidly to zero as N -1 . The first 10 points in this figure are marked with open circles. For N above 100 one can hardly see any difference from the previous behaviour, with the points almost lined up along the common curve. One can conclude that for a large enough number of atoms (i.e., for more than a few hundred atoms), there are almost no differences between the diffraction pattern obtained for the number of atoms equal to the neighbouring numbers given by even and those given by odd multiples of 6.

DIFFRACTION ANALYSIS

Using formulas ( 10) and ( 11), one can calculate intensities of diffraction peaks for the scattering vectors given by ( 12)

I = F 2 real + F 2 imag , ( 20 
)
where F real and F imag are the real and imaginary parts of the structure factor, respectively. The formulas can be essentially reduced for certain points described by ( 18) and ( 19). The results are as follows:

Set I:

F real (q) = N 6 [1 + 2 cos(q(a + b)) + cos(qb) + cos(qa) + cos(q(a + 2b))] + 3 4 1 [cos(qb) -cos(qa)] ( 21 
)
F imag (q) = 1 4
[sin(qb)sin(qa) -2 sin(q(a + 2b))],

where 1 is given by (18). This is the envelope function plotted in Fig. 8a; it correctly describes intensities at any position of the main peaks and their satellites given by (12).

Set II:

F real (q) = N 6 [1 + 2 cos(q(a + b)) + cos(qb) + cos(qa) + cos(q(a + 2b))] + 1 2 1 [cos(qb) -cos(qa)] ( 22 
)
F imag (q) = 1 2 [sin(qb) -sin(qa) -2 sin(q(a + 2b))],
where 1 is given by [START_REF] Wolny | Average unit cell of the Fibonacci chain[END_REF]. The appropriate plot of the envelope function is shown in Fig. 8b. The two envelope functions in Figs. 8a and 8b have been calculated using two different formulas (( 21) and ( 22)). There is only a small difference between those envelopes, as they correctly describe the intensities of the main reflections and their satellites. The scaling exponent for the diffraction intensities of satellite reflections is 2α = 2 log 4 3, which is very close to the one obtained previously [START_REF] Wolny | The reference lattice concept and its application to the analysis of diffraction patterns[END_REF].

In Figs. 8a and 8b one can see small differences between the envelope function and the maximum intensities of the appropriate satellites because the maximum intensity does not correspond to the exact position of the satellite with index equal to 1/3. The small shift from such a particular position is shown in Fig. 9. It oscillates and goes to zero for the number of atoms increasing to infinity. However, it should be stressed that for any scattering vector given by ( 12), the envelope function gives exactly the same value as the Fourier transform. A special test has been also performed for N = 144, when the shift of peak position is almost zero (Fig. 9). For this particular number, the envelope function fits the intensities of the satellites almost perfectly (Fig. 8c). It should be noted that Figs. 1b and8c show the same diffraction pattern (i.e., for N = 144) but the diffraction peaks are connected by FIG. 8-Continued different envelope functions given by (11). In Fig. 1b, the two different curves are plotted as a function of k (11), for q = ±k 0 /3 respectively; and in Fig. 8c the envelope curve is plotted as a function of q (11), for k = 0.

For satellites indexed by 1/5 and 1/7, similar properties have been observed [START_REF] Wolny | Average unit-cell approach to diffraction on Thue-Morse sequence and decorated quasicrystals[END_REF]. Fractal exponents have been determined to be equal to α = log 16 5 for index equal to 1/5 and α = log 64 7 for index equal to 1/7. Properly defined parameters can be expressed similarly to (18) and ( 19), but the coefficients must be changed. For example, when the satellite index FIG. 9. Shift of peak position with respect to the perfect position of the satellite indexed by 4 + 1/3, versus the number of atoms in cluster.

is equal to 1/5, the value of the base of the power expansion for N in ( 18) and ( 19) should be changed from 4 to 4 2 , and for 1 , from 3 to 5.

CONCLUSIONS

In this paper, the average-unit-cell approach has been used for the diffraction analysis of singular continuous diffraction patterns of the Thue-Morse sequence. For satellite reflections with indices equal to 1/3 of the main Bragg peaks, an average unit cell was constructed in the space defined by two variables, u and v. The probability distribution obtained is nonzero at only nine positions (Fig. 2a), which has allowed us to calculate envelope functions for the main reflections as well as for the satellites. We noticed that probability distributions depend on three parameters i (i = 1, 2, 3) defined by (8). For such 's, a general expression for the structure factor has been obtained (11). The parameters depend on the number of atoms, scaling as N α [α = log 4 3]. For numbers of atoms equal to even multiples of 6, formula ( 16) holds, and only two 's are independent. As a result of our computer experiment, we also found that for some specially defined numbers of atoms (i.e., for Sets I and II), relations ( 18) and ( 19) hold respectively, and one parameter is enough to describe intensities of the main reflections and their satellites. It has been shown that for double logarithmic plots, 's change periodically with the number of atoms, with the periodicity constant equal to log(4), along a line with a slope equal to some fractal exponent. After appropriate scaling of the 's (i.e., multiplication by the factor N -α ) and after introduction of a new variable ξ (17), a common curve (Fig. 6a) is obtained for all numbers of atoms. A similar curve is also obtained for all odd multiples of 6 as a limit of the number of atoms going to infinity. This saw-like curve is rather complicated and analytical expressions have been suggested for special sets of numbers only (i.e., Set I given by (18) and Set II by [START_REF] Wolny | Average unit cell of the Fibonacci chain[END_REF]). For those particular numbers, exact formulas for diffraction intensities have been written as [START_REF] Wolny | Average unit-cell approach to diffraction on Thue-Morse sequence and decorated quasicrystals[END_REF] and ( 22).

All the formulas in this paper have been tested numerically using integer calculations for the number of atoms limited by 2 32 . Exact integer calculations and a wide range of N allow us to formulate more general conclusions. However, strict mathematical proofs (in progress) are still required. Some results are already available and will be published separately [START_REF] Verger-Gaugry | Generalized Meyer sets and Thue-Morse quasicrystals with toric internal space[END_REF][START_REF] Verger-Gaugry | Mathematical quasicrystals with toric internal spaces, diffraction and Thue-Morse sequence[END_REF].

Similar results have been obtained for all prime numbers less than or equal to 19, except for 17, where the fractal exponent has been approximated as equal to 0.633 ± 0.0002, which corresponds to the already known value α = {log 17 + 2 log(4 + √ 17)}/16 log 2. More details of calculations will be published elsewhere. The next singular number is expected for m = 41. However, the numerical calculations require calculations for integer numbers more than 2 32 and are in progress. This paper is an example of a simple "computer experiment." In such an experiment, calculations are performed for integer numbers only, and the strictly valid results can be easily generalised and checked for arbitrarilry large numbers. Any appropriate hypothesis can then be proven for arbitrarily large numbers, and its validity extrapolated for the number of points to infinity. Results of such computer experiments can serve as a substitute for an appropriate mathematical proof.

FIG. 1 .

 1 FIG. 1. Diffraction pattern of Thue-Morse sequence. (a) Envelope function given by (1) connects all maxima of the main diffraction peaks. (b) Intensities of satellite reflections are well described by envelope functions given by(10). Envelope curves have been calculated as a function of k for two different satellite positions: q = +k 0 /3 (dotted line) and q = -k 0 /3 (dashed line).

FIG. 2 .

 2 FIG. 2. (a)Positions of non-zero probability distributions of atomic displacements are marked in twoparameter space (u, v). (b) Probability distribution versus v for the number of atoms equal to 72. Peaks marked as P 1 , P 4 , and P 7 are equal to 1/6 and correspond to periodical positions of the superstructure. Other probabilities scale with the number of atoms and approach 1/12 for infinite cluster.
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 34 FIG. 3. Plots of i /N , i = 1, 2, 3 versus log N . Open circles mark points for which N = 6 • 4 n and 2 =

3 = 2

 32 ) are almost constant (within the range of some fluctuations) in the logarithmic scale of N ; therefore, i ∝ N α , where α = log 4 (3). (14) More precisely, for N = 6 • 4 n (n = 1, 2, 3, . . .), = 1 /2.

FIG. 5 .

 5 FIG. 5. Parameters i (i = 1, 2) multiplied by a factor of N -α versus logarithm of the number of atoms. Periodic plots with periodicity constant equal to log 4 can be found.

FIG. 6 .

 6 FIG. 6. Plots of i • N -α (i = 1, 2, 3) versus ξ = [log 4 N mod 1] for the number of atoms equal to even (a) and odd (b) multiples of 6. The first ten odd multiples are marked as open circles.

FIG. 8 .

 8 FIG. 8. Diffraction patterns of the Thue-Morse sequence and corresponding envelope functions obtained for different numbers of atoms: (a) N = 96 is the second point of Set I (18) and the envelope function was calculated according to (21); (b) N = 60 is the third point of Set II (19) and the envelope function was calculated according to (22); (c) N = 144 is the number of atoms for which satellites are placed almost at perfect positions (see Fig. 9); in this case, a general expression (11) has been used for the envelope function calculation.
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Those two sets give an infinite number of different points in Fig. 6a. More details for Set II can be found in Fig. 7. Those points can be easily ordered in a sequence as follows:

Series 1: ξ = log 4 [START_REF] Allouche | Automata and automatic sequences[END_REF] 

Number of Points Equal to N

For all numbers of atoms equal to odd multiples of 6, the positions of points for each i (Fig. 6b) depart from the common curves shown in Fig. 6a for even multiples. However,