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Abstract. Autonomous surface vehicles are used to explore, measure
and observe many kinds of environments which are often complex and
arise many challenges. The ASAROME project ! (Autonomous SAiling
Robot for Oceanographic MEasurements) is focused on an autonomous
sailboat to make measurements and observations in marine environments
for extended periods. This paper describes a fuzzy inference engine which
integrates a routing strategy for obstacle avoidance using an omnidirec-
tional camera for obstacle detection system.

1 INTRODUCTION

Operating unmanned autonomous vehicle is a challenging task which is far more
difficult than classic mobile autonomous robots because of the outdoor context
of application. Most of the autonomous outdoor navigation works have been
done for ground and air vehicles but unmanned surface vehicles (USV) have also
gathered attention of robotics researchers like [1],[2],[3],[4],[5],[6] for autonomous
sailboats. It is usual to equip ground or aerials vehicle with inertial and vision
sensors but in the case of surface ones it is more marginal to our knowledge [7].
Active sensors like sonar, radar or even laser are more likely used in surface
vehicle for obstacle detection [8].

The ASAROME project fits into this context of autonomous USV, aimed
to the design and construction of an autonomous vessel able to carry out long
term oceanographic measurement campaign. An accurate and efficient strategy
for obstacle detection and navigation is fundamental to preserve the integrity of
the ship. Multisensory approaches are usually the solution to the problem as it is
shown in several past works [9],[10] [11]. In this project, several on-board sensors
will be used for obstacle detection. We will focus on the omnidirectional camera
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system to build a vision based obstacle detector. Future work will encompass
other embedded sensors. Our route determination fuzzy inference system is con-
ceived to optimize the trajectory looking for a favorable wind propulsion through
the entire route avoiding unnecessary tack maneuvers and obstacles detected by
the panoramic camera.

The paper is organized in several sections. In section 2, we present the cal-
ibration method for a catadioptric camera and its use for obstacle detection.
In section 3, we introduce a fuzzy logic method for local routing and obstacle
avoidance. Experimental and simulation results are presented in the last section
of this paper.

2 Omnidirectional vision sensor

We are focusing on the vision sensor of the ASAROME embedded system to
address the problems of obstacle detection and avoidance. Sensors data are used
to feed the navigation command loops but they need firstly to be calibrated
correctly, i.e., the mappings between measurements and the real world metric
must be estimated.

2.1 Catadioptric sensor calibration

The omnidirectional sensor we use is a non-central catadioptric system, com-
bining a perspective camera with a reflective surface. We have to estimate the
relative poses of each component of the sensor.The perspective camera must be
calibrated intrinsically using standard techniques described in literature; typi-
cally, we used [12] to achieve this task. With the knowledge of the intrinsic the
matrix K, we estimate the relative pose of the camera and the mirror with a
variation of the method described in [13], based on an homography between two
judiciously chosen planes according to [14].

2.2 Boat pose estimation

A global coordinate frame has to be set at first to localize all sensors in rela-
tionship with the sailboat, which is defined by the axes of the ship, taken as an
ellipse from the images. The boat is first segmented from the background and
the covariance matrix of the pixels distribution is computed. Principals axes di-
rections of the ellipse are then given by the matrix eigenvectors (see Fig. 1). Any
structure or scene object will now be referenced within this frame for the rest of
the paper.

With the sensor calibrated as described and placed on the the top of the
mast, it is possible to compute each pixel’s projection on the plane defined by
the water under the assumption of a calm sea state, if the relative pose of this
plane and the vision sensor (thus the boat) can be estimated. This operation
is required if we want to extract metric information from the images without
the need of stereovision. In the similar way, as we did for the camera pose with
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Fig. 1: The ship’s axes are
used to define a global co-
ordinate frame assuming
the camera is placed per-
pendicular to it.

Fig. 2: The mapping of any
image pixels for the cata-
dioptric sensor and its in-
tersection with the surface
defined by the water.

respect to the mirror estimation, we can estimate the omnidirectional sensor
pose by detecting projections of the sea plane on the catadioptric image. To
achieve this task we place into the water several easy-to-detect buoys that are
acting as seamarks to underline the sea plane.

If the structure defined by the buoys is known, i.e., their relative distances of
the buoys are known, then enough geometric constraints can be provided in addi-
tion to the coplanarity one for the plane estimation. A standard parametrization
of a plane we can use is:

ar+by+cz+d=0 (1)

Given n buoys used to built the seamark, the distance between the i** and the
n n!

2) = m of such
distances and m is higher than the number of parameters for n > 4 (in our case
n = 6). The buoys projected on the camera are also reduced to their centroids
pi in the image plane and, with the sensor calibration, n 3D lines (m;, u;) are
computed for the n centroids. There is likely only one plane under the distances
constraints that intersects a given bundle of rays which in our case is the set of
all rays associated to the buoys. We use a Hough-based method for the plane
decision. Where a, b, ¢ are precomputed from -1 to 1 with a constant step of
0.002 and d is calculated from 1 to 500 with a constant step of 1. We define 7,
the k" plane that intersects the ray bundle. Each ray intersects the plane and
the distances between every two intersections are computed:

§'" buoys, D;; is manually measured. There are m = (

Dl = [Pk~ P} 2

Where P¥ and P;? are the positions of intersections for the point 4 and j. If 7y, is
the plane that we are looking for, it will satisfy the condition D;; ~ Df] Given
the possibility to determine the camera pose with respect to the sea surface, we



can map any pixel p; to a 3D point P; on the plane (Fig. 2). The distance of
each pixel to the boat in the image can be computed as: d = |p;| in the global
coordinate frame introduced earlier. This latter result allows to built a resolution
map of the sensor on the sea surface since we can project all the pixels on
it.The plane pose estimation method is tested with synthetic data by randomly
generating 3 planes defined by their four parameters. For each plane, 6 points
are placed randomly on it, assuming that their relative distances with respect
to each other point are known. For each of this setting, we execute the plane
detection algorithm. This operation is repeated 100 times to provide enough
results to produce meaningful statistics. The table 1 summarizes the results
obtained. According to the result, the plane estimation algorithm accuracy is
reasonable with estimates errors below 7% and a mean value of 3.33%.

Table 1: Result of estimated parameters

Parameters estimation error rates(%)
Parameters |a b [¢ d
Case 1 4 1 1 3.3
Case 2 1 0 0 0
Case 3 1 2 0 6.7

The resolution map is built with the mast normal to the water plane (calm sea
state), however an oscillating sea is more likely expected, implying to recomputed
the resolution map for different orientations of the ship with respect to the sea
surface. To avoid to run constantly the costly construction, a set of maps is
precomputed for several values of orientations one time. Each time the ship
detects a significant change of orientation, the correct map is loaded into the
computer. The maps are precomputed for angle o spanning from —90 to 90°
with a constant step of 1.80°.

2.3 Obstacle detection

A colorimetric criterion is used to segment objects in the image. To be able to
detect an obstacle, a color signature of the sea is first computed by selecting sam-
ples of regions representing the water. Each pixel of these regions are reprojected
to the three planes of the RGB coordinate frame according to their color com-
ponents. This operation produces a cluster in each plane and is representative
of the color distribution of the background (i.e sea).

To segment an object pixel from the background, we project it into the RGB
components planes and it is considered being an obstacle if at least one of its
RGB component does not belong to the clusters defined earlier. The Fig. 3 show
an example of segmentation of a seamark formed by six yellow buoys using the
combination of image difference and colorimetric signature of the water.



Fig. 3: Seamark detections using colorimetric signature.

Detected obstacles are usually sets of pixels Pibs(xi, y;) from which the cen-
troids P.(z¢,y.) are computed. We can also estimate roughly the size of a de-

tected osbstacle as being the maximal distance between two pixels of the set:
lobs = ma$(|Pf)bS — Pibs') for i 75 7. (3)

With the obstacles properly detected and segmented, their positions and their
respective size are parsed to the heading calculation.

3 Fuzzy Inference System for Local Routing Strategy and
Obstacle Avoidance

In sailing, there are no precisely defined criterions to navigate. This situation
gives to the skeeper the hard task to take decisions based in his own experience.
Then, as Zadeh describe in [15], the problem of sailing is able to be resolved
using fuzzy logic.

There are multiple approaches in literature to solve the routing problem for
a sailboat using fuzzy logic as [16], [17], [18]. Also there are several papers that
describes obstacle avoidance using fuzzy inference engines as [19], [20]. In this
section we describe a mixed approach that uses a fuzzy inference engines to solve
our sailboat navigation and obstacle avoidance problem.

For a sailboat, the propulsive force comes from the aerodynamics effects of
the wind on the sails. This leads to the conventional points of sail diagram which
describes a sailing boat’s course with respect to the wind direction (Fig. 4). The
white sectors correspond to normal sailing zones and the two shaded zones are
not sailable zones or no-go zones (in fact, the downwind zone could be sailed in
theory but is not very efficient and rather unstable).

So, unlike conventional motorized robotic vehicles, where a straight line to
the goal leads to a shortest path (in time and distance), in this case there is
no such easy solution for a sailboat if the target is located directly upwind or
downwind. In these cases, the sailboat has to beat (i.e., take a zig-zag course)
to reach the goal.

The speed vector of a sailboat depends on many factors like the wind angle,
wind speed, sail trimming, currents and waves. This behavior is usually repre-
sented for a given boat by a specific polar diagram (Fig. 5). This polar diagram
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shows the maximum boat speed along a given heading with respect to the wind.
Each curve on the polar diagram corresponds to a given wind speed. As we can
see on Fig. 5, the wind speed mainly modifies the amplitude without modifying
the global shape of the polar diagram.

In the following, we suppose that this boat-specific polar diagram is known
for a set of wind speeds.

The proposed method for local routing and obstacle avoidance is based on
the calculation of an optimal heading that maximize the crisp output of the
Mamdani type fuzzy inference system (FIS) . This FIS have as entries the speed
to the objective and the obstacle influence value to tend to minimize the time to
reach the goal and maximize the distance between the sailboat and the obstacles.
This method will react to the changing of the environmental conditions (wind
speed, wind angles,...) by periodically re-computing the optimal heading.

As a measure of the boat efficiency to reach the goal, we take the value of the
boat speed vector V(h) for a given heading angle h, projected in the direction
of the waypoint WP, that is:

Vo =V(h)T - Tg (4)

where Ty is an unit vector pointing to the way point. In order to conveniently
use this measure in our routing algorithm, the boat velocity is supposed to be
normalized, i.e, the maximum value of the boat speed on a given polar diagram
is supposed to be equal to 1, regardless of the wind speed value.

Steering through the eye of the wind, that is, into and across the flow of the
wind, is usually a maneuver that must be avoided due to the speed decreasing
and, in certain situations, the risks of rollover due to a wind shift. To take these
two facts into consideration, we use a penalty factor 7, for the computation of
the cost function to minimize the time to reach the goal:

Cw = Thw (VG) (5)



with n,, = 1 if the actual heading and the new computed heading are in the same
side of the wind and 7,, = 0.8 otherwise. Such a penalty factor leads to prioritize
a new heading that keeps the course in the same side of the wind, rather than
crossing the eye of the wind.

To take into account the obstacles detected by the perception system, we
use a cost function based on the measured distance between the boat and an
obstacle’s centroid:

1 1 ;
Co = Mo (E - %) if dopbs < do (6)
0 Zf dops > do

with 7, as positive scaling factor, d,ps as the Euclidean distance from the center
of the sailboat to the center of the obstacle and dy as the obstacle influence
distance (50 m in our case, which is a trade-off between the range of our sensors
and the maneuverability of the sailboat). The final cost function is:

C=Cw+)Y Co (7)

obs

Input data for the FIS are the weighted velocity to goal C, and the obstacle
influence value, C,, given by the equations 6 and 6. The fuzzy sets representing
the linguistic variables are as in Fig6, where negative values of C,, represents
the heading angles that stray from the goal .

In course control and obstacle avoidance the C, and the C, parameters are
net to fuzzy controller, then, the acceptance value of the h heading angle is
inferred through the fuzzy logic.

3 Bad Average  Good L |safe Warning Unsafe
0.5}
|
P ! ) 0 ! j
8 0 1 0 0.5 1
Cw Input Value Co Input Value

(a) (b)

Fig. 6: Fuzzy system for heading selection

The output variable is the value of pertinence for the tested h heading angle.
The fuzzy variable contains tree fuzzy sets that defines this pertinence as bad,
average and good, as in Fig7.

The rule base of the heading selection FIS contains 9 rules of the form:

If desired direction IS = AND obstacle is y THEN pertinence is 2z



In order to avoid undesirable trajectory angles(Fig. 4 ) and to keep the course
aiming the goal, we introduce three simple fuzzy rules:

1. If(Cy, is Good) then (Output is Ok);
2. If(C,, is Average) then (Output is Average);
3. If(Cy, is Bad) then (Output is Bad);

As we can observe in Fig.6a, the heading angle h that gives C,, values > 0.2,
which are classified with the linguistic variables ”Awverage” or ”Good”, are the
only heading angles that will be considered, since they are the only ones that
assure wind propulsion and a path towards the goal.

To keep the sailboat away from the obstacles we must to select a set of fuzzy
rules based on the C, value (Eq.7), then, as is shown in Fig.6b, lower is the value
of C,, safest is the proposed heading angle. From this statement we can infer
the next rules:

. If(Cy, is Good) and (C, is Safe) then (Output is Ok);

. If(C\, is Good) and (C, is Warning) then (Output is Average);

. If(Cy, is Good) and (C, is Unsafe) then (Output is Bad);

. If(C,, is Average) and (C, is Safe) then (Output is Average);

. If(Cy, is Average) and (C, is Warning) then (Output is Average);
. If(C,, is Average) and (C, is Unsafe) then (Output is Bad).

© 0 N O O

This set of nine fuzzy rules assures that the selected heading angle h will
minimize Eq.7 taking the sailboat to the goal trough an obstacle free path (Figs.
7, 8).

This FIS(h) is computed periodically (0.5 sec) and the optimal heading angle
maximizing this inference system is sent to the low level layer control. Choosing
the angle of heading, h, which maximize the output of FIS(h) allows the sailboat
to be able to navigate while keeping its course outside of the polar’s forbidden
area (Fig.4), taking the shortest navigable path and avoiding obstacles. Using
this method, there is in fact no guarantee that the system will not be caught in
a local minimum. However, since our autonomous sailboat is intended to move
in open sea, the probability to have more than one obstacle at a time in the
sensors range is actually very low.

4 EXPERIMENTATION

We demonstrate the performance of our algorithm with two different tests: ob-
stacle detection and simulation for the trajectory planning. The first experimen-
tation have been done on a lake, with all the data being recorded during the
test. The second one is a simulation, which shows the resulting motion of the
sailboat’s with and without obstacles.
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4.1 Real data analysis for obstacle’s detection

We conducted this experimentation on a calm lake with its surface defining a
plane. A special seamark with 6 buoys (1m long x 2m wide) is used for this test.
Our camera tube is fixed on a 1.9m high tripod.

The seamark position is changed between each record and the distance be-
tween the camera and the center of the seamark was manually measured. The
distance tested ranges from 2 meter to 14 meter. From the images which are
taken by the camera panoramic, we can estimate the length and the width of
seamark, also the distance between seamark and our boat.

From table 2, our algorithm seemed to have excellent performance with er-
ror rates within 8%. The distances estimated are smaller than the measured
distances. The maximum value of estimated error is 0.63m for a distance of
14m, and the minimum is 0.19m for a distance of 8m. The estimated lengths
are arround of 1 meter, and the estimated widths are arround of 2 meters. Like
the estimated distance error, the maximum size estimated error is 7.40% for a
distance of 14m, and the minimum is 2.32% for a distance of 4 m.

4.2 SIMULATION RESULTS

Extensive simulations were conducted of sailboat traveling in different wind di-
rections, with different goal positions and with or without obstacles.

Some representative simulations results are presented in this paper. Fig. 8(a)
shows the sailboat’s motion for a lateral wind. Figs. 8(b) and 8(c) shows two
upwind navigation cases. Each test was conducted two times with the same
conditions, except for the obstacle. For all simulation scenarios the wind speed
was(15 K't) and remains constant during the simulation time, the wind angle is
(90°) for the first two cases and (45°) for the last one. The initial heading is 0°,
the start position is at (0,0) and the goal positions are (100,100) for the cases
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Table 2: Real data error estimation

Distance | Esti. Esti. Esti. Dis. Esti. Esti. Esti. 14w
mesured(m)|dis.(m)|angle(°)|err. rate(%)|length(m)|width(m)|err. rate(%)
Case 1 2 1.70 259 3.75 0.95 1.94 3.71
Case 2 4 3.72 201 3.5 0.83 2.10 2.32
Case 3 6 5.60 207 5 0.83 2.03 4.67
Case 4 8 7.81 199 2.38 0.91 1.95 5.12
Case 5 10 9.61 186 4.87 0.79 1.99 7.02
Case 6 12 11.44 | 208 7 0.8 2.09 3.47
Case 7 14 13.37 187 7.87 0.66 2.12 7.40

depicted on figs. 8(a) and 8(c), and (0,100) for the fig. 8(b) . Those conditions
were chosen to show the behavior in a normal navigation situation and also, in
cases (b) and (c), to force the sailboat to take an upwind trajectory.

We can see on Fig. 8 that, in all cases, the sailboat reaches the waypoint.
In the first case (without obstacle), the sailboat will go straight to goal, in the
second try (with obstacle) it turns with out crossing the eye of the wind, to
avoid the obstacle. In the second case it have to tack several times to avoid the
obstacle and reach the goal. Finally, in the third case, the sailboat tack one time,
and then it keeps the wind on its right side.

1
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Fig. 8: Simulation results with different TWA and different goal position

5 CONCLUSION

The experimental results demonstrate the ability of panoramic vision system to
obtain and process the data to give a precise position and size of the detected
obstacles. The conducted simulations validate the routing algorithm because,
with the data from omnidirectional camera system, it is possible to modify the
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motion of the sailboat to avoid the collisions, keep it on the correct wind’s angle
and reach the fixed waypoint. The current limitation of the presented routing
method is the risk to fall in a local minimum. But, as outlined before, in open
sea: the probability to have more than one obstacle at a time in the sensors range
is actually very low.

The future work in a short term is aimed to perform several tests implying
all the sensor for data fusion to validate the whole system in open sea.
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