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Abstract— In this paper, we present a layered control scheme
for an autonomous sailboat. The high level control uses an
adjusted PRM-Dijkstra algorithm for the routing (global path
planning) of autonomous sailboat. This algorithm exploits the
sailboat kinematics and wind distribution on the map.
For the low level control, we design a new nonlinear course
(direction of the velocity vector) controller that exhibits su-
perior performance compared to conventionally used heading
controller. A smoothing function is also introduced in the design
of the controller to switch easily from course control to heading
control, especially when course measurements are noisy at low
speed.

I. INTRODUCTION

Autonomous sailboat robots have received in recent years
the attention of many researchers as evidenced by the various
projects launched worldwide during the last decade [1]–[8].
For these kind of vehicles, the propulsion force is directly
extracted from the wind, with only a small amount of energy
needed to trim the sails. In addition, they can be equipped
with energy harvesting systems such as solar panels or
wind turbines. Due to this very low energy consumption
(see [9], [10] for examples of power budget), these robots
are an attractive solution for long-term autonomy and can
be deployed for semi-persistent presence (more than 10
days) and observation or monitoring missions in the oceans.
However, the control of an autonomous sailboat (i.e. motion
planning and low level control of the heading while ensuring
a “good” trimming of the sails) is challenging since the
thrust force depends precisely on uncontrollable and partly
unpredictable wind. Moreover, such vehicles exhibit complex
behaviour due to aero- and hydrodynamic properties of their
sails and hull.

Compared with other mobile robots, sailboats exhibit two
characteristics that will be discussed in this article:
• First, these vehicles have to travel long distances in

environments with few obstacles, except the coasts, but
in which the wind characteristics are not accurately
known in advance. To plan the motion of the robot, we
propose to use a layered architecture (see § II) based
on two levels of planning: a first level (global path
planning, see § II-A), based on weather forecasts, allows
the calculation of a list of waypoints. A second level
(local path planning, see § II-B) is dedicated to the real-
time computation of the desired direction of motion
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and sail trim according to wind conditions measured
by onboard sensors.

• Secondly, there exists a sliding motion of the sailboat,
mainly due to the sideways force of the wind on the
sail. In practice, this implies that the direction of the
velocity vector (i.e the course) is not aligned with the
heading of the boat. Unlike controllers used in previous
works (see [1], [3], [8], [11]–[13] among others), which
are based on heading control, we propose in § III a
new backstepping controller based on the course angle.
Eventually, we show in § IV that such a controller
allows a more accurate direction following: when using
a course controller, the path drawn by the sailboat is
closer to the line between two consecutive waypoints
than when using a heading controller.

II. GLOBAL CONTROL ARCHITECTURE

The proposed overall control scheme of an autonomous
sailing robot is depicted on figure 1.

Fig. 1: Overall control scheme for an autonomous sailboat

• Global path planning: this mission planning task can
be performed once, giving the initial position, final po-
sition, known obstacles positions (such as island, fixed
mooring,. . . ) and environmental conditions (weather
forecast) or periodically (typically every few hours)
when new weather data is received. A list of waypoints
{Wp} and a map with known obstacle positions is then
sent to the local path planner.

• Local path planning: the aim of this local planning is
to actively react to temporally and locally modifications
in environment conditions (wind and sea currents) and
moving obstacles. Using the list of waypoints, the local
path planner computes in real time a feasible direction



to follow as well as a sail angle to reach the current
desired waypoint while avoiding obstacles.

• Low level control: giving the desired direction to
follow, this low level control loop (described in § III)
computes the boom and rudder angle of the sailboat.

A. Global path planning using PRM-Dijkstra

We use first the classical “Probabilistic Road Map” (PRM)
method [14] to create a graph by generating points randomly
distributed in the cruising area. Such methods reduce sig-
nificantly computing time of path finding compared with
a discrete map with constant points distribution (used for
example by [15]) mainly because of the lower number of
points in a PRM map. Moreover, point generation process
can be biased to have more points near zones of interest
(like coasts, fixed obstacles, ...). When this map has been
generated, algorithms like RRT, A∗ or Dijkstra can be used
to find the best path. In the framework of this work, we adapt
the Dijkstra Algorithm [16] to exploit the sailboat kinematics
and find an optimal path for the global path planning level.

The optimal path is the one that minimize the cost. Each
path being made of several segments, the cost of a path C
is the sum of the cost Csegi

of each segment segi:

C =

k∑
i=1

Csegi

The cost of each segment is not defined by its length but by
the time required to come over it. Thus, the cost Csegi

of
each segment segi is function of its length |lsegi

| and of the
sailboat velocity along this segment:

Csegi
=
|lsegi|

|−→v segi
|

with the hypothesis of constant real wing along a segment.
Thus, segment length should be not higher than wind grid
resolution (i.e. within segment generation process, all seg-
ments with length higher than grid resolution are rejected
and can not be used as a part of the path).

Sailboat velocity |−→v segi
| is obtained from the polar di-

agram P (|−→v w,segi
|,Θsegi

) where −→v w,segi
| and Θsegi

are
respectively the real wind velocity and angle along the
segment segi in the sailboat frame.

This diagram gives the maximum speed of the sailboat
according to the true wind speed |−→v w| and true wind angle
Θ (figure 2). It assumes an optimal sail configuration. The
polar diagram of the sailboat used in this study and depicted
on figure 2 has been obtained by numerical simulations, in
steady state conditions [12]. The direction to follow γr is
equal to the angle θsegi

of the segment segi w.r.t. inertial
frame.

Because segments are not necessarily aligned, this may
lead to a large number of tacking or jibbing. To reduce these
maneuvers, we introduce a time-dependent cost that depends
on the relative angle between two consecutive segments. This
additional cost represents the time t(segi−1, segi) to switch
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Fig. 3: Waypoints generated by the PRM-Dijkstra algorithm

between two consecutive segments:

Csegi
=
|lsegi|

|vsegi
|

+ t(segi−1, segi)

with t(segi−1, segi) = f(θsegi−1
, θsegi

). Time needed for
a tacking manoeuvre can be estimated by simulations or
extracted from experimental results.

With this method, the resulting path is not necessarily the
shortest but will be the least time consuming.

To take into account obstacles, segments that are too close
to horizons hj of the obstacle obsj are penalized: let cj be
a circle with radius hj , centered on the obstacle obsj . The
cost of the segment tends to infinity if it intersects the circle
cj :

Csegi
→∞ if ∃j : cj ∩ segi 6= ∅

This formula can be extended to line obstacles obslinek:

Csegi
→∞ if

{
(∃j : cj ∩ segi 6= ∅)∪
(∃k : obslinek ∩ segi 6= ∅)

The resulting path is made up of several segments. Thus,
the points delimiting segments can be used as intermediate
waypoints for the local path planning level. Mobile obstacles
can be processed in the local path planning step instead of the
global one to react dynamically to change in their positions.

Figure 3 shows waypoints generated by the algorithm
for a sailboat that must reach B = [1255, 1620] then
C = [2281, 834] from initial position A = [1275, 1060].



Absolute wind direction and velocity change spatially (wind
grid resolution is 0.5◦). Wind data are prediction for the
04/20/2015 at 15:00 UTC from the “National Oceanic and
Atmospheric Administration”.

We observe from the simulation that the generated way-
points make the sailboat avoid obstacles while keeping a
good point of sail.

B. Local path planning

For the local path planning, we use an adaptation of
the potential fields method, already published in [17]. En-
vironment and specific sailboat navigation constraints are
represented by a local potential built around the vehicle
location. Changes of wind direction and detected obstacles
affect this periodically updated potential, which guarantees
the real-time computation of a feasible direction to follow for
the boat. More precisely, an attractive potential is attached
to the current waypoint while a repulsive potential is used to
represent the no-go zones (shown in red on figure 2) of the
sailboat.

III. CONTROLLER DESIGN

A. 3-DOF Dynamic model

A simplified 3-DOF model of the sailboat presented in
[12] is used for control design purposes. This assumes that:
• the sailboat has only one mainsail with well identified

parameters,
• roll, pitch and vertical dynamics are neglected.

These assumptions are well satisfied for particular design of
sailboats for which the restoring torque dominates all the
other external torques along the roll and pitch axes. Let
M = diag([m11,m22,m33]) be the sailboat mass matrix
including real-body and added-mass components. Using the
previous assumptions and the approximations m22 ≈ m33,
the translational dynamics is given by:{

m11V̇long. = FBd,1 + FBs,1 + FBr,1 + FBk,1 +m22ωVlat.

m22V̇lat. = FBd,2 + FBs,2 + FBr,2 + FBk,2 −m11ωVlong.
(1)

TABLE I: Notations

Notation Description
e1, e2, e3 canonical basis of R3

xX vector of coordinates of the affine vector −→x in the
basis of the frame X

XX
i,n nth component of the vector XX

i ∈ R3

G sailboat center of mass (CoM)
I inertial frame chosen as the North-West-Up frame.

I = {0;−→ı 0,
−→ 0,
−→
k 0}

B body frame fixed to the hull. B = {G;−→ı ,−→ ,
−→
k }

−→v w absolute wind vector
−→v linear velocity of G w.r.t. the inertial frame.

Vlong., Vlat. longitudinal and lateral velocity of the sailboat
σr rudder constant that depends on the water density,

rudder aspect, dimension and position
δr rudder angle
ψ yaw angle of the sailboat

ω = ψ̇ yaw velocity of the sailboat

·
Gδr

ψ

−→v
η

−→v w

Θ

−→ 0

−→ı 0

ψ−→

θ

−→ı
φ

Fig. 4: Frames and angles definition

where
−→
F d,
−→
F s,
−→
F r,
−→
F k are respectively hydrodynamic, sail,

rudder and keel force vectors, Vlong. = −→v · −→ı and Vlat. =
−→v · −→ .

Let J = diag([J11, J22, J33]) be the sailboat inertia
matrix including real-body and added-mass components. The
rotational dynamics is approximately given by:{

ψ̇ = ω

J33ψ̈ = τBd,3 + τBs,3 + τBr,3 + τBk,3
(2)

where −→τ d, −→τ s, −→τ r, −→τ k: respectively hydrodynamic, sail,
rudder and keel torque vectors

From [12], the third component of the rudder torque can
be expressed as follows:

τBr,3 ≈ −σr|−→v |2 sin(2δr) (3)

where σr = 0.5ρwSrrrC1 with ρw the water density, Sr the
surface of the rudder, rr the horizontal distance between G
and the rotational axis of the rudder and Cr1 the parameter
related to the ideal lift and drag coefficients [12].

B. Course control

Due to the sideways force of the wind, the course angle η
and heading angle ψ are not necessarily equals. This effect is
mainly observed when sailing close hauled or reaching and
the leeway angle ζ = η − ψ can be as large as 10◦.

Because the sailboat motion is along the course direction,
a sailboat with a course controller is expected to diverge
less from the line between two waypoints than a heading
controller may does.

In the current study, we make the assumption that the
torque produced by the rudder can compensate all other
external torques around the

−→
k 0 axis. Thus, for control

design, let us simply consider the following second-order
system:

ψ̈ = u+ c(t) (4)
with u := τBr,3/J33 the control input assumed to be un-
bounded for control design purpose, and c(t) := (τBs,3 +
τBk,3 + τBd,3)/J33 the perturbation term assumed to be slowly
time-varying (i.e. ċ ≈ 0) so that it can be compensated by
an integral action.

Thus, one can deduce from the yaw dynamic (4) and the
rudder torque equation (3) the value of the rudder angle as
function of the control input u:

δr = −1

2
arsin

(
sat1

(
J33u

σr|−→v |2

))
(5)



The proposed controller will regulate the unit vector −→γ :
the objective is to make −→γ tracks −→γ r where −→γ r is the unit
vector collinear to the course. The control design is based
on the backstepping procedure.

To simplify expressions, let’s define the following angles:
• γr , ∠γIr is the direction angle to follow (reference)
• γ , ∠γI = ψ + ∠γB

The control objective is the stabilization of γ about γr or
equivalently, the stabilization of the error angle γ̃ , γ − γr
around zero. However, since there is no distinction between
γ̃ and γ̃ + k2π with k ∈ N, it’s more relevant to stabilize
sin γ̃ around zero.

To achieve this objective, a first energy function V1 is
proposed:

V1 = 1− cos γ̃

V̇1 = (ω + ωγ − ωr) sin γ̃

where ωγ and ωr are the rotational dynamics of respectively
γB and γIr . Let ωd be the desired rotational speed, we modify
the energy function, introducing ωd in its derivative:

V̇1 = (ω + ωγ − ωr − ωd + ωd) sin γ̃

Thus, the desired rotational speed is expressed as:

ωd = −ωγ + ωr −Kωd

sin γ̃

1 + cos γ̃
(6)

With this value of ωd, the dynamic V1 becomes:

V̇1 = (ω − ωd) sin γ̃ − 2Kωd
sin2 γ̃

2

The tracking of ωd is ensured by the storage function
function V2:

V2 = V1 +
1

2Kp
(ω − ωd)2 ⇒

V̇2 = V̇1 +
1

Kp
(ω − ωd)(ω̇ − ω̇d)

= −2Kωd
sin2 γ̃

2
+

1

Kp
(ω − ωd)( ω̇︸︷︷︸

u+c

−ω̇d +Kp sin γ̃)

The input u is chosen as:

u = ω̇d −Kp sin γ̃ −Kd(ω − ωd)− ĉ (7)

where ĉ is the estimation of the unknown perturbations c.
The dynamic of the estimation is defined as:

˙̂c = Kiω (ω − ωd) , ĉ(0) = 0 (8)

with Kiω positive gain.
To check the stability of the system with the estimation

of the perturbations, let’s write the following Lyapunov
function:

V = V2 +
1

2KpKiω

(c− ĉ)2

Its derivative is:

V̇ = −Kd

Kp
(ω − ωd)2 − 2Kωd

sin2 γ̃

2
≤ 0

Vlong.

χ

0
0

Vlat.
|−→v |

Vcrit.

Fig. 5: Smooting function χ

From here, by application of LaSalle’s theorem, one deduces
that V̇ converges to zero, which in turn implies the conver-
gence of γ to γr and of ω to ωd.

To avoid singularity in the equation (6), we must add a
saturation:

ωd = −ωγ + ωr −Kωd

sin γ̃

max (1 + cos γ̃ , ε)
(9)

where ε→ 0+

Finally, the rudder angle δr is given by (5), using the
control low (7) and (9).

In the 3DOF model, the input of the system u is τBr,3/J33
and does not depend on heel angle φ. In practice, a real world
sailboat is affected by the heeling. To take this effect into
account, one can weight the input u by cosφ i.e. on a heeling
sailboat, more torque must be generated on the rudder to
obtain the same input u that will stabilize the direction error
γ̃ around zero.

u =
τBr,3 cosφ

J33

Thus, the value of the rudder angle as a function of the
control input u and heeling angle φ is given by:

δr = −1

2
arsin

(
sat1

(
J33u

σr|−→v |2 cosφ

))
(10)

The main drawback of this controller is that the course is
not well defined at low velocity because of the measurement
noise of the sensors (IMU and GPS). Also, when velocity
vanishes, the course becomes undefined leading to a singular-
ity in the controller. To overcome these problems, a smooth
switching function will be introduced.

C. Smooth heading and course switching

The previous controller allows the tracking of −→γ r by −→γ ,
with −→γ being implicitly the current course vector. However,
one can use a different definition of −→γ while still using the
same controller.

In order to make −→γ well defined, whatever the sailboat
velocity is, let’s redefine γB using γ̄B ∈ R2 as follow:

γB = [γ̄B
>
, 0]
>

with γ̄B =

[√
1− χ2

χ

]
χ ∈

[
0; Vlat.
|−→v |

]
is a function as in figure 5 and with the

following properties:

• if Vlong. > Vcrit., −→γ →
−→v
|−→v |

, i.e. γ ≡ course,

• if Vlong. < Vcrit., −→γ → −→ı B , i.e. γ ≡ heading.



χ can be defined, for example, using a sigmoid function
sig(x) = 1/(1 + e−λx) with λ some positive constant:

χ =
Vlat.

|−→v |
sig(Vlong. − Vcrit.)

Then, the derivative of γ̄B becomes:

˙̄γB =

 −χχ̇√
1− χ2

χ̇

 = −ωγ
[
0 −1
1 0

]
γ̄B and ωγ ,

−χ̇√
1− χ2

With this definition of γ̄B, one obtains a smooth switching
controller that acts as a heading one when sailboat velocity
is low (i.e. when noise effects are the highest) or as a course
one elsewhere.

The choice of Vcrit. has an influence on the controller
behaviour. Setting it to a value higher than the maximal
velocity of the sailboat will disable the switching ability
and turn the controller to a heading one. Setting it to a
negative value will also disable the switching ability but will
turn the controller to a pure course one (with the risk of
falling in the singularity case when |−→v | → 0). To enable the
smooth switching and the course following whatever |−→v | is,
Vcrit. must be positive. It’s value must be chosen depending
on the sailboat sensors characteristics to ensure that when
|−→v | > Vcrit., the signal-to-noise ratio of −→v is high enough,
allowing a precise computation of the course.

IV. SIMULATION RESULTS

First, simulations have been done to compare the course
controller and the heading controller. In these simulations,
the sailboat must reach a waypoint located 5000m away.
Absolute wind is coming from the west and its velocity
is 4m/s. In one simulation, a course controller is used
(Vcrit. = 0.5m/s) while in the other simulation, Vcrit. → ∞
to obtain a pure heading controller (−→γ is always collinear to
the heading). All other parameters and initial conditions are
the same. In both cases, reference direction is computed by
the potential field method as presented in [17] and sailboat
trimming method is a linear one as in [3].

We notice from figure 6 that crosstrack error from the line
between the two consecutive waypoints is more important for
the heading controller. In this case, the maximal distance is
256m while it’s only 20m with a course controller. Because
doing a real path following is hard to execute on a sailboat,
this maximal distance may be of first concern when the
goal of a sailing mission is to perform a spatially controlled
measurements.

Other simulations have been run to observe transient head-
ing and course behaviour of each controller (figure 7). The
simulation parameters (initial and final position, wind, ...)
are the same as in the previous one, except that a normally
distributed noise with variance σ = 0.02 is added to the
linear velocity measurements in order to simulate a noisy
velocity sensor. No noise is added to the heading since, on an
IMU, the heading estimation mainly based on magnetometers
is usually more accurate.

We define three different controllers:
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Fig. 6: Sailboat trajectories with a course controller (cour.)
and a heading controller (head.)

• a course controller with smooth switching towards a
heading controller at low speed (Vcrit. = 1.3m/s)

• a pure course controller by disabling the switching
function (Vcrit. � 0m/s)

• a heading controller (Vcrit. →∞)
As expected with heading controllers, final heading

reaches the reference (ψfinal → 0) while the final course
γfinal = 5.5◦ because of the leeway effect. When using a
course controller (with or without the switching function),
the final course γfinal → 0◦ because controller balance leeway
effect. One can observe that before critical velocity Vcrit.
is reached, the smooth switching course controller corrects
heading angle. When |−→v | ≈ Vcrit., it begins correcting route
angle.

Because of the relationship between the velocity |−→v | and
the rudder angle δr, measurement noise affects the controller.
A course controller is more affected because, which such
a controller, −→γ is a function of −→v . The effects of −→v on
the controller are mainly noticeable at low velocity: one can
observe from figure 7 that, when t < 5 sec, the rudder with
a pure course controller oscillates. These oscillations are less
observed on the smooth switching course controller because,
for that time interval, sailboat velocity is under Vcrit. and γ
is equal to the heading.

V. CONCLUSIONS

In this paper, an layered control scheme for an autonomous
sailboat is presented. This scheme includes 1) a global path
planning for waypoints generation giving mission objectives
and environmental conditions, 2) a local path planning to
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Fig. 7: Comparison between a heading controller (head.), a
pure course controller (cour.) and a smooth switching course
controller (sw. cour.)

actively react to moving obstacles and changes in environ-
mental conditions and 3) a low level control to compute
boom and rudder angles for the sailboat.

A main contribution of the article is the development
of an adjusted Dijkstra algorithm to perform global path
planning for a sailboat. This adjusted algorithm exploits the
sailboat kinematics and wind distribution on the map. With
these modifications, Dijkstra method is able to find the less
time consuming path between an initial and a final position,
generating waypoints used by the local path planning level.

Another main contribution is the design of a smooth

switching course controller that can switch from heading
tracking to course tracking depending on the sailboat velocity
and measurements noise. We show that a course control
allows a better following of the direction toward a way-
point than a heading control. The advantage of the smooth
switching controller is that it acts as a heading one when
course is hardly defined because of the slow velocity of
the sailboat and the noise in measurements. On the other
hand, when velocity increases and noise effects decrease,
smooth switching controller acts as a course one allowing
good following of the direction.

Future works will focus on designing a 4-DOF course
controller that act on both sail and rudder to maximize
sailboat velocity while controlling its course.
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