aGrUM/pyAgrum : a toolbox to build models and algorithms for Probabilistic Graphical Models in Python - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

aGrUM/pyAgrum : a toolbox to build models and algorithms for Probabilistic Graphical Models in Python

Résumé

This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
Fichier principal
Vignette du fichier
ducamp20a.pdf (919.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03135721 , version 1 (09-02-2021)

Identifiants

  • HAL Id : hal-03135721 , version 1

Citer

Gaspard Ducamp, Christophe Gonzales, Pierre-Henri Wuillemin. aGrUM/pyAgrum : a toolbox to build models and algorithms for Probabilistic Graphical Models in Python. 10th International Conference on Probabilistic Graphical Models, Sep 2020, Skørping, Denmark. pp.609-612. ⟨hal-03135721⟩
322 Consultations
280 Téléchargements

Partager

More