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Abstract We are exploring the idea of data pruning via hyperreduction mod-
eling. The proposed algorithm preserves data driven modeling capabilities
while reducing storage resources. High resolution crystal plasticity finite el-
ement simulations demand huge computational and storage resources, espe-
cially in cases where hundreds of grains are interacting under cyclic loading.
The development of image-based modeling via computed tomography high-
lights the problem of long-term storage of simulation data. The present paper
focuses on modeling cyclic strain-ratcheting as an example of numerical mod-
eling that the proposed algorithm preserves. The size of the remaining sampled
data can be user-defined, depending on the needs concerning storage space.
The pruning algorithm can be supplemented by data compression, but con-
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trary to usual compression algorithms large data reduction is obtained for
the price of reasonable approximation errors. The proposed data pruning pro-
cedure is deeply linked to hyperreduction techniques. As a result, a pruned
microstructure equipped with latent variables is generated. The data outside
the pruned microstructure are either deleted or encoded with reduced bases.
The approximate recovery of the original data follows the physical equations
involved in a hyperreduced model. It fosters extrapolation of pruned data.
In this paper the extrapolation is conducted over 190 cycles for input data
covering 10 cycles only over a pruned microstructure. Because of the cyclic
strain-ratcheting nature of the problem, approximation errors may be accu-
mulated over cycles. The relevance of the pruned data is tested afterwards
for statistics on the predicted strain field, as if full finite element data were
available.

Keywords Model order reduction · CPFEM · Ratcheting · Data
compression · Pruning algorithm · Material database

1 Introduction1

With the development and the generalization of Computed Tomography (CT),2

the volume of data acquired has drastically increased. This raises new chal-3

lenges, such as data storage, data mining or the development of relevant4

experiments-simulations dialog methods such as model validation and model5

calibration. When material microstructures are under consideration, contin-6

uum models can be an attractive approach to assess mechanical properties.7

Coupling micro-mechanical laws with complex geometries has in present times8

gained massive popularity [16,17]. This is followed by a numerical procedure9

to solve the boundary value problem. One of the most popular methods to dis-10

cretize the weak form of constitutive equations is the Finite Element method,11

which is also employed in this article. Using this method, the constitutive equa-12

tions can be integrated at each material point and huge insight can be gained13

as to what is happening locally at certain geometric locations for various pa-14

rameter variations. In this context, of particular interest are strain-ratcheting15

simulations where plasticity accumulates at certain locations during cycling16

loading. Analyzing such a problem is crucial for lifetime assessment of engi-17

neering components. This requires considerable computational and storage re-18

sources for direct numerical simulations. The current state of computer science19

is considerably advanced, with numerous parallel as well as high performance20

computing strategies available [39,43]. But, full resolution simulations are now21

related to massive microstructural data. As a result, finite element simulations22

using X-ray CT data or synthetic microstructures [37] lead to an explosion of23

the volume of data to store.24

Recently, databases of simulation data have demonstrated their viability25

and computational advantages for facilitating crystal plasticity predictions [1].26

Obviously, much more can be expected from a database for crystal plasticity.27

It should foster: reproducibility as in other scientific domains [2], the training28
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of artificial neural networks [14] or Bayesian network [32], the exploration of29

new physical parameters or new assumptions, the detailed comparison between30

various materials, and additional model updating [19,38] when new observa-31

tional data are available. Therefore, the long-term storage of a database in32

crystal plasticity is nowadays an issue.33

Data compression/decompression schemes are already available in the frame-34

work of high performance computing [25]. Lossy compression allows the pre-35

cision of the data to be reduced in a way that has an insignificant impact on36

the data. In [25], when applying their proposed compression scheme to data37

produced by the CHIME experiment, the data are compressed to 28% of their38

original size. The present paper aims to explore the idea of data pruning via39

numerical modeling in order to release more storage space when needed, as a40

complementary approach to data compression. It is based on feature extraction41

from data, which is an other way for lossy compression. It can be performed via42

clustering [23], linear dimensionality reduction or via autoencoders [14]. In [19],43

data pruning via linear dimensionality reduction and hyperreduction is shown44

to preserve simulation capabilities while reducing the storage resources. In the45

present paper, this data pruning strategy is evaluated for polycrystalline mate-46

rials. Data outside a reduced domain are deleted. Full strain field are recovered47

via hyperreduced predictions supplemented by a Gappy POD procedure [9].48

Hyperreduction methods belong to projection-based model order reduction49

methods (PBMORs) via linear dimensionality reduction. PBMOR methods50

pertain to problems where the simulation data that we wish to produce be-51

longs to a small vector space (i.e. having a small dimension) and when the52

quantity of interest is not well establish prior doing any numerical prediction,53

and may require more data extrapolation or exploration. Several authors [26]54

have proposed model reduction techniques for the approximation of plasticity55

problems. For instance [30] proposed to use the LATIN method to iteratively56

approximate the solution, without using simulation data forecast by any finite57

element model. [15] use a space-time technique where a low number of non-58

linear equations is solved in the reduced setting but full spatial information59

can be recovered at any given time. Access to recovered data enables to define60

quantities of interest as if finite element simulation had been performed. [28]61

have proposed to use the nonuniform transformation field analysis (NTFA)62

approach where they consider nonuniform plastic strain fields with the aim63

of reducing the number of macroscopic internal variables. Another model or-64

der reduction technique used frequently is proper orthogonal decomposition65

(POD), first proposed by [21] and [24] developed initially for statistical anal-66

yses. This POD basis comprises of the state subspace which are related to67

different time steps of a simulation or even different mechanical problems al-68

together. Using POD bases to predict mechanical models was first done by [29]69

for weather forecasts. In the above PBMOR methods, the reduced equations70

are setup on the full finite element mesh.71

In PBMOR, a reduced basis is substituted for the usual finite element72

shape functions. Therefore dedicated numerical cubature schemes have been73

developed and named hyperreduction methods [33,10]. In hyperreduction PB-74
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MOR methods, the original mesh is sampled either at the level of integration75

points or at the level of elements. In [18], integration points are sampled for76

hyperreduced multiscale homogenization problems. In [33,34], the cubature is77

restricted to a reduced integration domain (RID). The RID is a subdomain of78

the original domain where the finite element equation are setup. This original79

domain can also be the one observed via CT. In [19], the reduced integra-80

tion domain method have been used to prune tomographic data and related81

simulation data in the framework of model calibration for homogeneous mate-82

rials undergoing strain localizations. The pruning procedure simply consists in83

deleting the data outside the RID, where the RID contains the finite elements84

connected to interpolation points computed by the discrete element interpola-85

tion (DEIM) [7] algorithm by considering the primal (displacement) reduced86

basis as well as the reduced basis generated using the strain field.87

In this paper, it is shown that this pruning procedure preserves the capabil-88

ity of the ratcheting modeling in crystal plasticity. We restrict our attention to89

representative volume elements (RVE) where a virtual microstructural realiza-90

tion is generated and appropriate boundary conditions are prescribed [31,45,91

22,41]. These boundary conditions usually represent an average stress or strain92

state of the material, which conforms to the macroscopic averaged response of93

the material.94

The paper is organized in the following manner. In Section 2 the hyperreduc-95

tion framework is explained. Section 3 presents the crystal plasticity material96

model, the finite element mesh description as well as the material model pa-97

rameters used. Section 4 shows the setup of a cyclic simulation and Section98

5 states the results and discussions. This is followed by the conclusions in99

Section 6.100

2 Hyperreduction method for data pruning in computational101

mechanics of materials102

In Finite Element (FE) models, the displacement field is decomposed over a103

set of vector functions ϕϕϕi(x) which correspond to the shape functions of the104

FE model defined on domain Ω.105

u(x, t) =

Nd∑
i=1

ai(t)ϕϕϕi(x) ∀ x ∈ Ω (1)

where Nd corresponds to the number of degrees of freedom of the mesh, t the106

time instant introduced for the solution of constitutive equations and ai the107

ith nodal degree of freedom of the FE model.108

By following the Gappy POD method [9], any vector a belongings to col-
umn space of V : colspan(V ), can be recovered by using few entries of a de-
noted by a[F ], if V [F , :] is a full column rank matrix. colspan(V ) is a linear
latent space. It is usually obtained via the Snapshot POD [40] or a truncated
singular value decomposition of a snapshot matrix containing training data.
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Let’s denote by Q ∈ RNd×m the snapshot matrix of finite element predic-
tions: Qij = ai(tj) where snapshots are selected at computational time instant
{tj}mj=1. It’s truncated singular value decomposition reads:

Q = V S W T +R, V T V = W T W = IN , V TR = 0 (2)

where S is a diagonal matrix than contains the NR largest singular values in109

decreasing order, V ∈ RNd×NR and W ∈ Rm×NR are orthogonal matrices,110

and INR
is the identity matrix of size NR. R ∈ RNd×m is the residual of the111

decomposition.112

The recovery procedure related to the Gappy POD reads:

aG = V (V [F , :]T V [F , :])−1 V [F , :]T a[F ] (3)

where a[F ] are pruned data, i.e. data restricted to a given subset of indices
F . When F = P, where P is the set of interpolation points for the columns
of V by following the discrete empirical interpolation method (DEIM) [7,3],
then V [P, :] is a square invertible matrix and the recovery procedure can be
simplified as:

aDEIM = V V [P, :]−1 a[P] (4)

When F contains interpolation points, P ⊂ F , the sub matrix V [F , :] is full113

column rank [12].114

Property The Gappy POD recovery is the following oblique projection:

a ∈ RNd , aG = V (ZT V )−1 ZT a, ZT = V [F , :]T INd
[F , :] (5)

Therefore, if a ∈ colspan(V ) the recovered vector aG is exact: aG = a. There-115

fore the Gappy POD enables data pruning. The related pruned data are the116

reduced basis V , the subset of indices F and the data restricted to this subset117

a[F ]. But this pruning algorithm does not enable data extrapolation.118

The hyperreduction method proposed in the framework of crystal plastic-119

ity in [36], is a convenient preprocessing step prior using the Gappy POD. It120

aims at predicting a[F ] by using physical governing equations and a projec-121

tion on a vector subspace related to displacement field. This approach allows122

data extrapolation when predicting a[F ]. Therefore, the pruned data via hy-123

perreduction are V , the subset of indices F , and the data required to forecast124

a[F ]. In the propose pruning algorithm, the recovery procedure start with the125

hyperreduced prediction of a[F ] and it is followed by the Gappy POD.126

In essence, to set up the hyperreduced equations for a given FE model, this127

approach accounts for a low rank of the reduced approximation. For the sake128

of simplicity this can be elaborated using a linear elastic finite element model,129

or the linear step of a Newton Raphson algorithm, where the FE balance130

equation reads:131

KaFE(t) = c(t) (6)

where aFE ∈ RNd , and K ∈ RNd×Nd is the tangent stiffness matrix of the132

FE model, whereas c ∈ RNd the right hand side term of the FE equation. For133
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a given reduced basis of rank NR, V ∈ RNd×NR , the approximate reduced134

solution of the balance equations is denoted by aR as follows:135

aR = V bR (7)

where bR ∈ RNR are reduced order model variables. In order to find a unique136

solution bR the rank of KV needs to only be NR. Since Nd is usually larger137

than NR, a few rows of KV can be selected to preserve the rank of the sub-138

matrix. As proposed in [35], the hyperreduced balance equations are restricted139

to the RID using convenient test functions such that:140

(V [F , :])TK[F , :]V bR = (V [F , :])T c[F ] (8)

The hyperreduced solution is denoted by aHR, aHR = V bR. The RID is
denoted by ΩR ⊂ Ω. It is the support of the finite element shape functions ϕϕϕi,
for i ∈ F :

ΩR = ∪i∈F sup(ϕϕϕi) (9)

Also, the RID must be large enough to have rank(K[F , :]V ) = NR; hence141

cardinality of the number of degrees of freedom in the RID should be greater142

than or equal to NR.143

The RID construction follows the heuristic rule: the extent of the RID
must enable the recovery of the finite element displacement fields and the
finite element strains when they both belongs to colspan(V ) and colspan(V ε)
respectively, where V ε is a reduced order basis for strain approximation. The
set of interpolation points related to V ε is denoted by Pε. The number of
interpolation points is equal to the number of empirical modes in the reduced
basis. By following the k-SWIM algorithm proposed in [19], the set P and
Pε, are not restrained to interpolation points of reduced bases. The number
of points in this set is extended by a factor k. The k-SWIM points are more
spread on Ω than the DEIM points. This algorithm is in the appendix 1. When
k = 1 the k-SWIM points are the DEIM points. In addition, for each set of
points P and Pε build by k-SWIM, we extract from the finite element mesh the
degrees of freedom of the elements that contains the points in P and the points
in Pε. These sets of degrees of freedom are denoted P+ and Pε+ respectively.
In many practical situations, F also includes the degrees of freedom of a zone
of interest. These degrees of freedom are denoted by Fo. Therefore, we obtain
the following set of degrees of freedom:

F = Fo ∪ P+ ∪ Pε+ (10)

Ω\ΩR is is counterpart of ΩR. We denote by Γ I the interface between ΩR and
Ω\ΩR. Let’s introduce, I, the set of degrees of freedom indices related to the
interface Γ I :

I =

{
i ∈ {1, ..., Nd} |

∫
Γ I

ϕϕϕTi . ϕϕϕi dΓ 6= 0

}
(11)
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The matrix K is sparse. In the sequel, we assume that non zero entries in144

K[F , :] are only in the submatrix K[F ,F ∪ I] and these entries can be com-145

puted by using solely the reduced mesh that covers ΩR. This assumption is146

too strong in case of contact problems as shown in [12]. So we restrict our147

attention to contact less problems for the sake of simplicity. More details on148

the hyperreduction of contact problems are available in [12].149

Property If the hyperreduced matrix (V [F , :])TK[F , :]V is full rank, the
hyperreduced prediction aHR is the following oblique projection of aFE :

aHR = V (ATV )−1 AT aFE (12)

where AT = (V [F , :])TK[F , :].150

Obviously, this projection is performed via hyperreduced balance equa-151

tions, without knowing aFE . It is a model that allows data extrapolation.152

The proof is straightforward because ATV is the hyperreduced matrix and153

AT aFE = (V [F , :])T c[F ]. This projection is consistent because, if aFE ∈154

colspan(V ), it exists bFE such that aFE = V bFE therefore bR = bFE and155

aHR = aFE .156

Once the hyperreduced prediction is known, we have access to local strain
tensors for points in ΩR:

ε(x, t) =
1

2
(∇TuHR+∇uHR), uHR(x, t) =

∑
i=F∪I

aHRi (t)ϕϕϕi(x), ∀x ∈ ΩR

(13)
These strain tensor are usually evaluated at Gauss point of the reduced mesh
that covers ΩR. Let’s denote by α the vector of all Gauss point values of
strain tensor for the original finite element mesh. The hyperreduction predicts
only few rows of this vector: α[Fε] where Fε contains the indices of strain
components at Gauss points of the reduced mesh. The reduced bases V ε is
obtained by the truncated singular value decomposition of a snapshot matrix
that contains a collection of full vectors α for the same selected computational
time instants {tj}mj=1 introduced for displacements. This snapshot matrix is
denoted by Qε. It reads: Qεij = αi(tj). The Gappy POD recovery of the full
strain field, at Gauss points of the original finite element mesh, reads:

αG = V ε (V ε[Fε, :]T V ε[Fε, :])−1 V ε[Fε, :]T α[Fε] (14)

Such kind of rule can be obtained for all variable equipped with a reduced157

basis.158

The reduced variables bR can be seen as latent variables in which unnec-159

essary complexity has been removed. Therefore, the data pruning via hyper-160

reduction is the deletion of simulation data and all input data outside the161

RID, i.e. related to Ω\ΩR. The solution of the hyperreduced balance equation162

requires to save V [F ∪ I] which is the restriction of the reduced basis to the163

RID. The recovery of the full strain field over Ω by using the Gappy POD164

requires to save the full strain modes V ε and Fε. Once the full strain field is165

recovered, the solution of the constitutive equations gives access to all mechan-166

ical variables. In practice, the memory size required to save the strain modes167
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V ε is one order of magnitude larger than the mechanical data required for168

the setting of the hyperreduced equations. The smaller the number of strain169

modes the higher the data pruning, but the larger the approximation error of170

the recovering procedure.171

3 Crystal plasticity model and finite element mesh description172

Data pruning is very relevant for complex physics-based computational mod-173

els. In the present work a small strain crystal plasticity formulation is used for174

the computation as most local strains remain below 5%. Each grain is consid-175

ered as a single crystal and the displacement fields are supposed to be con-176

tinuous at the grain boundaries whereas stress can be discontinuous. To ease177

the interpretation of the numerical results, a rate independent single crystal178

plasticity model recently proposed by [13] is used. Also, the model exclusively179

uses kinematic hardening because it governs ratcheting effect. In Nickel-baed180

superalloys for instance, kinematic hardening dominates isotropic hardening181

under cyclic loading conditions [8]. Face centered cubic (FCC) single crystal182

metallic materials comprising of N plastic slip systems, each having a slip183

system direction ls and the normal to the slip plane ns are considered. The184

partition of the strain tensor introduces an elastic and a plastic part, denoted185

by εe and εp respectively:186

ε = εe + εp (15)

The Hooke law relates the stress tensor to the elastic strain tensor. For cubic187

elasticity, a fourth rank tensor of elastic moduliC, involving three independent188

parameters, governs the elastic behavior.189

σ = Cεe (16)

The plastic strain rate results from the slip processes with respect to all active190

slip systems,191

ε̇p =

N∑
s=1

γ̇sms (17)

with ms being the orientation term

ms =
l⊗ ns + n⊗ ls

2
(18)

The amount of slip rate on each slip system is denoted by the variable γ̇s.192

The driving force for plastic slip on slip system s is the resolved shear stress,193

computed using Cauchy stress (σ) according to:194

τs = σ : ms = σijm
s
ij (19)
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The yield criterion is a generalization of Schmid’s law involving scalar hard-195

ening variables rs and xs according to [27].196

fs(σ, xs, rs) = |τs − xs| − rs (20)

Here, rs denotes the radius of the elastic domain in terms of the resolved197

shear stress and xs is a scalar back-stress characterizing the center of the198

elastic range in the one-dimensional space of resolved shear stresses. In slip199

based crystal plasticity, there are N such elastic ranges. Plastic slip can occur200

only if the function fs becomes positive. In [13], the rate of slip on each slip201

system follows a rate-independent formulation of the form:202

γ̇s = ε̇

〈
fs

P

〉
sign(τs − xs) (21)

where P is a positive constant having the units of stress and ε̇ is a non-negative203

homogeneous function of order one in the total strain rate. The Macauley204

brackets 〈•〉 = Max(0, •) are used to distinguish the elastic range from the205

plastic one, depending on the sign of the yield function fs. In this model, ε̇ is206

taken to be the total equivalent distortional strain rate:207

ε̇ =

√
2

3
ε̇′ : ε̇′, ε̇′ = ε̇− 1

3
(tr(ε̇))I (22)

where ε̇′ is the deviatoric part of the total strain rate tensor ε̇ and : is the208

inner product for second order tensors. Since the rate of inelasticity is linear in209

the total equivalent strain rate ε̇, all the evolution equations in the proposed210

theory are homogeneous of order one in time, characterizing a rate-independent211

response. Also the rate of inelasticity is used for all states entailing no need212

for special treatment of loading and unloading conditions. Also the functional213

form of f and the evolution equations for isotropic (rs) as well as kinematic214

(xs) hardening remain unchanged. The cumulative slip variable vs is defined215

for each slip system by the following evolution equation:216

v̇s = |γ̇s| (23)

Evolution equations for the kinematic hardening variables are taken from [27]217

and [6]. The nonlinear kinematic hardening evolution law218

ẋs = Cγ̇s −Dv̇sxs (24)

depends on two material parameters, C and D. In the present paper, there is219

no isotropic hardening so that the variable rs has a constant value r0, which220

is the value of the initial resolved shear stress.221

The finite element balance equation reads:∫
Ω

εεε(ϕϕϕi) : σσσ dV −
∫
∂FΩ

ϕϕϕi F dΓ = 0 ∀ i ∈ {1, . . . , Nd} (25)
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where F are the Neumann boundary conditions imposed at the boundary ∂FΩ
and where σσσ is estimated via the finite element approximation of the strain
tensor:

εεε ≈
Nd∑
i=1

εεε(ϕϕϕi) ai (26)

Literature findings show that the macroscopic representation of a micro-222

heterogeneous metallic material can be achieved with as few as one hundred223

grains [20], but matching macroscopic properties is not the goal here. Rather,224

the aim here is to have a large enough statistical pool of information so that225

local material response can be analyzed. Of course computational limitations226

have to be acknowledged and extremely large polycrystals cannot be used.227

The crystal plasticity parameter set employed in this paper is given in table228

1. This is the same parameter set as the one used in the statistical analysis229

performed in [11] for Nicke-based superalloy IN718.230

Cubic elasticity
C1111 = 259600 MPa
C1122 = 179000 MPa
C1212 = 109600 MPa

Critical resolved shear stress R0 = 320 MPa

Kinematic hardening
C = 100000 MPa

D = 1000

Overstress P = 9 MPa

Table 1: The crystal plasticity parameter set being used

An implicit finite element code [44] is used to solve the problem where the231

global equilibrium is solved using a Newton-Raphson algorithm. Integration232

of constitutive equations at the Gauss points is performed using the second233

order Runge-Kutta method with automatic time stepping [5].234

Σ is the spatial average of tensor σ:235

Σ =
1

V

∫
Ω

σdΩ (27)

Ω is a cubic representative volume elements. The six faces of the RVE are
denoted Face+i , Face−i , for i=1, 2, 3. Face+i and Face−i are opposite faces.
Load controlled mixed boundary conditions were imposed on the geometry
such that the traction vector:

˜
σ.

−
n is prescribed such that:

Σ11 = constant on Face+1

u1 = 0 ∀x ∈ Face−1

Trivial boundary conditions (free boundary conditions) are imposed on all236

opposing faces i.e.237
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σ21n1 = σ31n1 = 0 ∀x ∈ Face+1 ∪ Face
−
1

σ12n2 = σ22n2 = σ32n2 = 0 ∀x ∈ Face+2 ∪ Face
−
2

σ13n3 = σ23n3 = σ33n3 = 0 ∀x ∈ Face+3 ∪ Face
−
3

These boudary conditions are complemented by suitable additional Dirich-238

let condition to fix the overall rigid body motion.239

4 Example of data extrapolation from pruned data in cyclic crystal240

plasticity241

4.1 Feature selection for data pruning242

A thousand grain polycrystal was chosen as an example where figure 1 shows243

a meshed finite element geometry with mixed traction boundary conditions.244

This finite element mesh was generated using the Voronoi tessellation tech-245

nique with the help of the software VORO++ [37]. The mesh consists of246

1174719 nodes and 859848 reduced C8D10 quadratic tetrahedral elements.247

Each element consists of four Gauss points. The crystallographic orienta-248

tions chosen were randomly distributed throughout the polycrystal. The stress249

loading Σ11 follows a triangular signal where maxtΣ11 = 1000 MPa and250

RΣ = mint Σ11(t)
maxt Σ11(t)

= −0.85. These boundary values have been chosen care-251

fully in order to simulate strain-ratcheting, which is a strain accumulation252

during loading cycles.253

Fig. 1: A 1000 grains meshed microstructure with the inverse pole figure.
Colors are related to grain orientations.

In order to show the extrapolation capabilities of the pruning algorithm254

via hyperreduction, the reduced bases are trained with simulation data related255

to the first ten loading cycles only. In the sequel, we show the ability of these256

reduced bases to predict up to 200 cycles. Figure 2 shows the local Euclidian257

norm for each displacement mode
∑Nd

i=1ϕi(x) Vik for k = 1, . . . 6. Figure 3258

shows for each strain mode, the local von Mises strain εvM =

√
3

2
ε′ijε

′
ij , where259
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ε′ is the deviatoric part of the local strain tensor. As anticipated, the magni-260

tude of singular values exponentially decreases with the number of modes. For261

displacement 9 and for strain 20 modes are considered do get projection error262

of simulation data on reduced bases around 2%. This cutoff is arbitrary and263

dependent on the user. By looking at the contour plot of the modes in both264

cases it can be seen that the first few modes are homogeneously distributed265

while the later ones are high gradient modes. Also the modes of displacement266

decrease in magnitude more rapidly as compared to the modes of strain.267

0.0010

0.0015

0.0020

0.0000

0.0005

0.00050

0.00075

0.00100

0.00000

0.00025

Fig. 2: Six first POD modes for displacement among 9 selected (N = 9) for
the reduced basis V . Here, the norm of local displacement vectors have been
plot for each mode.
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Fig. 3: Six first POD modes for strain field among 20 selected for the reduced
basis V ε. Here we have plot the local von Mises strain of each modes.

Figure 4 shows the reduced meshes constructed using the selected POD modes.268

A small RID have been obtained by the k-SWIM algorithm with k = 1 in269

Algorithm 1. With this setting P and Pε are the interpolation point of the270

DEIM algorithm. A large RID, with k = 3 in Algorithm 1, have been also271

generated. It contains more spread elements inΩ. The part of the finite element272

mesh provided in the zone of interest depends on which part of the mesh is273

the most critical according to the user. In the case being presented, a small274

central part of the boundary where pressure is being applied is included in275

the zone of interest, because this region experiences the most strain under a276

tensile load. Then it is a zone of interest.277
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RID$restricted$to$9300$finite$elements$$$$$$$$$$$$$$$$$large$RID$restricted$to$17400$finite$elements$$$$$$$$$$$$$$$$$$$$$$$$$$

Fig. 4: On the left a small reduced integration domain restricted to 9300 finite
elements, on the right a larger one involving 17400 finite elements. The orig-
inal FE mesh is shown in transparency behind the RIDs. It contains 859848
elements. Colors are related to grain orientations.

The data to save in a storage system are summarized in Table 2, for three278

approach: the original data set, the Gappy POD, the hyperreduction. The279

data pruning using hyperreduction consists in saving a physical model. No280

FE simulation data is stored, only reduced bases. These reduced bases can281

obviously be supplemented by saving the reduced coordinates bR related to282

displacement and also the one related to the strain field. These coordinates283

occupy a negligible memory size.284

- Data to save for m time steps

FE {αFE(tj)}mj=1

Gappy POD {αFE(tj)[Fε]}mj=1, V ε

Hyperreduction Table 1, grain orientations in ΩR, V ε, V [F ∪ I, :]

Table 2: Data Pruning summary

4.2 Data extrapolation over 200 cycles285

After constructing the reduced basis and the RIDs using an offline learning286

phase of just 10 cycles, recovery computations were performed via hyperre-287

duction for two hundred stress controlled cycles. Let m denote the number of288

time steps involved in the recovery of the strain field for two hundred loading289

cycles. Here, m = 20m, which represents an extrapolation of the original FE290

data over 190 loading cycles.291

To compare the results, the original full field simulation was also run for292

two hundred cycles. Figure 5 shows recovered macroscopic data. It shows the293
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usual plot of macroscopic stress (Σ11) vs the average strain (E11) response294

of the three cases, hyperreduction using a small RID, hyperreduction using a295

large RID and the original data for comparison. To avoid clutter, responses296

are plotted only at cycles 1 and 200. It can be seen that the large RID is much297

better than the small RID at cycle 200. The pruning is more or less exact for298

the first 10 cycles for both RIDs, with error below 1% for all simulation data.299

Fig. 5: Recovered macroscopic data. Macroscopic stress vs macroscopic strain
response for cycle 1 and cycle 200 for the original FE prediction as well as the
HROM for both the small RID and the large RID.

Statistics have been performed on local results that pertain to the time step300

taken at the tensile peak of cycle 200, after the recovery step of the full strain301

field by using: the Gappy POD applied to FE strains, the small RID, the large302

RID and the original FE data. The Gappy POD applied to FE strains requires303

to save the strain field in ΩR over the 200 cycles as pruned data. It is more304

memory demanding. Figure 6 shows the kernel of the probability density func-305

tion for ε11, estimated from Gauss point values by using the method proposed306

in [4]. This method is available in Scipy [42]. The strain distribution plots show307

that locally the recovery of the full strain field via hyperreduction over a large308

RID is much better than using a small RID or the Gappy POD. The oblique309

projection involved in hyperreduction appears to be more accurate than the310

oblique projection performed by the Gappy POD. The former include phys-311

ical equations the latter does not. Average values of local strain ε11 and the312

standard deviation are reported in Table 3.313
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Fig. 6: Kernel of the probability density function for Gauss point values of ε11
and σ11 at the tensile peak of the 200th cycle.

The computational requirements to recover the strain field over 200 cycles314

can be viewed in table 3 where the numbers related to the original full field315

data have been also reported. The original FE simulation takes 1034 hours. It316

should be noted that the number of parallel processors utilized in this study317

have been arbitrarily chosen. For the full field simulation 24 processors were318

selected because that is the maximum number available on each cluster node.319

For the HROM and Hybrid simulations, four processors were used each. The320

computational time for the recovery of the full strain field via hyperreduction321

was 27 hours for the small RID while for the large RID it took 38 hours.322

Although the time to run the hyperreduction on the large RID was 40% longer,323

much better prediction in strain was achieved. The storage requirement for the324

pruned data is almost the same for both RIDs. It is less than 7% of the original325

storage space. This storage space is occupied by the reduced bases V and V ε.326

Therefore, by deleting the data outside the larger RID we save 93% of storage327

space, the recovery of the full strain field takes 38 hours and its accuracy328

is higher than 99%. The recovery based on FE strain over the RID and the329

Gappy POD is the fastest recovery procedure. But it does not enable data330

extrapolation.331
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- Original FE data Gappy POD Small RID Large RID

Nodes 1174719 19942 19942 35893

Elements 859848 9286 9286 17381

Computation time x processors 1034 h x 24 0.08 h x 1 27 h x 4 38 h x 4

Storage memory Gbs 101. 5. 3.5 3.5

E11 (error) 0.019 0.02 (5%) 0.017 (10%) 0.019 (< 1%)

Std deviation for ε11 (error) 0.84 0.88 (5%) 0.86 (2%) 0.84 (< 1%)

Table 3: Finite element mesh details and the resources needed to run the full
field, hyperreduced and Gappy POD, predictions.

5 Conclusion332

Crystalline plasticity modeling is fed by experimental data and large volumes333

of simulated data. Erasing simulation data to free up memory space becomes334

necessary as more and more mechanical tests are performed. But there is a335

risk in erasing data: the risk of not being able to investigate modeling issues336

further once the data has been erased. In the present paper, we show that the337

data pruning we have developed allows to reduce the volume of data saved in338

storage system while keeping the possibility to evaluate the strain-ratcheting339

phenomenon. It is a very complex phenomenon, depending on the loading340

conditions applied to a polycrystal and the mechanical behavior of each grain.341

The recovery procedure of strain fields involves physical governing equations.342

It is nevertheless 27 times faster than the original FE simulation and it uses 8343

times less computational resources. Simulation data in crystal plasticity have344

been compressed to 3% of their original size with approximation error lower345

than 1%. Results show the capability of choosing the size of the pruned data346

via the extent of the reduced integration domain involve in the hyperreduction347

method. This pruning method has extrapolation capabilities. In this paper,348

the input data of the pruning algorithm are related to 10 cycles of a cyclic349

simulation. After the data pruning, the recovery procedure has accurately350

extrapolated the pruned data up to 200 cycles.351

The hyper-reduction scheme involved in the data pruning procedure has352

shown its accuracy when considering various parameter variations such as353

loading parameter or constitutive coefficients. The method can be applied to354

even more complex loading conditions, including multiaxial mechanical testing,355

and to other microstructures of composite materials. In the related works356

in progress we investigate the insertion of defect in the reduced integration357

domain in order to evaluate stress variations due to defects.358
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6 Appendix359

Algorithm 1: k-SWIM Selection of Variables with EmpIrical Modes

Input : integer k, linearly independent empirical modes vl ∈ Rd,
l = 1, . . . ,M

Output: variables index set P(k)

1 set P0 := ∅, j = 0, U1 = [ ] ; // initialization

2 for l = 1, . . . ,M do
3 rl ← vl −Ul ( (Ul[Pj , :])T Ul[Pj , :])−1 (Ul[Pj , :])T vl[Pj ] ;

// residual vector

4 for n = 1, . . . , k do
5 j ← j + 1 ; // add the k largest value of the residual

6 ij ← arg maxi∈{1,...,d}\Pj−1
|rI [i]| ; // index selection

7 rl[ij ]← 0 ; // variable already selected

8 Pj ← Pj−1 ∪ {ij} ; // extend index set

9 Ul+1 ← [v1, . . . ,vl] ; // truncated reduced matrix

10 set P(k) := Pj .

360
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9. Everson, R., Sirovich, L.: Karhunen-Loève procedure for gappy data. J. Opt. Soc. Am.390

A 12, 1657–1664 (1995)391

10. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear392

finite element dynamic models with finite rotations and energy-based mesh sampling393

and weighting for computational efficiency. International Journal for Numerical Methods394

in Engineering 98(9), 625–662 (2014)395

11. Farooq, H., Cailletaud, G., Forest, S., Ryckelynck, D.: Crystal plasticity modeling of396

the cyclic behavior of polycrystalline aggregates under non-symmetric uniaxial loading:397

Global and local analyses. International Journal of Plasticity 126, 102619 (2019). DOI398

10.1016/j.ijplas.2019.10.007399

12. Fauque, J., Ramière, I., Ryckelynck, D.: Hybrid hyper?reduced modeling for contact400

mechanics problems. International journal for numerical methods in engineering 115(1),401

309–317 (2018). DOI 10.1002/nme.5798. URL https://doi.org/10.1002/nme.5798402

13. Forest, S., Rubin, M.: A rate-independent crystal plasticity model with a smooth elastic-403

plastic transition and no slip indeterminacy. European Journal of Mechanics - A/Solids404

55, 278 – 288 (2016)405

14. Frankel, A., Jones, R., Alleman, C., Templeton, J.: Predicting the mechanical re-406

sponse of oligocrystals with deep learning. Computational Materials Science 169,407

109099 (2019). DOI https://doi.org/10.1016/j.commatsci.2019.109099. URL http:408

//www.sciencedirect.com/science/article/pii/S0927025619303908409

15. Fritzen, F., Hassani, M.: Space–time model order reduction for nonlinear viscoelastic410

systems subjected to long-term loading. Meccanica 53(6), 1333–1355 (2018)411

16. Gérard, C., Cailletaud, G., Bacroix, B.: Modeling of latent hardening produced by412

complex loading paths in FCC alloys. International Journal of Plasticity 42, 194 – 212413

(2013)414

17. Gu, T., Medy, J.R., Klosek, V., Castelnau, O., Forest, S., Herv-Luanco, E., Lecouturi-415

erDupouy, F., Proudhon, H., Renault, P.O., Thilly, L., Villechaise, P.: Multiscale model-416

ing of the elasto-plastic behavior of architectured and nanostructured Cu-Nb composite417

wires and comparison with neutron diffraction experiments. International Journal of418

Plasticity (2019)419

18. Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J.: High-performance model420

reduction techniques in computational multiscale homogenization. Computer Methods421

in Applied Mechanics and Engineering 276, 149 – 189 (2014)422

19. Hilth, W., Ryckelynck, D., Menet, C.: Data pruning of tomographic data for the cal-423

ibration of strain localization models. Mathematical and Computational Applications424

24(1) (2019)425

20. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size426

of the representative volume element for random composites: statistical and numerical427

approach. International Journal of Solids and Structures 40(13), 3647 – 3679 (2003)428

21. Karhunen, K.: Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci. Finnicae,429

Ser. A 1, 34 (1946)430

22. Kotha, S., Ozturk, D., Ghosh, S.: Parametrically homogenized constitutive models431

(phcms) from micromechanical crystal plasticity fe simulations, part i: Sensitivity anal-432

ysis and parameter identification for titanium alloys. International Journal of Plasticity433

120, 296 – 319 (2019)434

23. Liu, Z., Bessa, M., Liu, W.K.: Self-consistent clustering analysis: An efficient multi-scale435

scheme for inelastic heterogeneous materials. Computer Methods in Applied Mechanics436

and Engineering 306, 319 – 341 (2016). DOI https://doi.org/10.1016/j.cma.2016.04.004.437

URL http://www.sciencedirect.com/science/article/pii/S0045782516301499438
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Hanna, D., Hincks, A., Hinshaw, G., Parra, J., Newburgh, L., Shaw, J., Vanderlinde,442

K.: A compression scheme for radio data in high performance computing. Astronomy443

https://doi.org/10.1002/nme.5798
http://www.sciencedirect.com/science/article/pii/S0927025619303908
http://www.sciencedirect.com/science/article/pii/S0927025619303908
http://www.sciencedirect.com/science/article/pii/S0927025619303908
http://www.sciencedirect.com/science/article/pii/S0045782516301499


20 Harris Farooq et al.

and Computing 12, 181 – 190 (2015). DOI https://doi.org/10.1016/j.ascom.2015.07.002.444

URL http://www.sciencedirect.com/science/article/pii/S2213133715000694445

26. Matou, K., Geers, M.G., Kouznetsova, V.G., Gillman, A.: A review of predictive non-446

linear theories for multiscale modeling of heterogeneous materials. Journal of Compu-447

tational Physics 330, 192 – 220 (2017)448
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