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Key points 

1. 4 ABO SNPs, rs2519093, rs1053878 , rs8176743, rs41302905, must be studied in any work 

assessing the risk of ABO locus on venous thrombosisdetermined (A/B/O) groups for 

estimating risk of venous thrombosis associated to ABO blood types 

2. Molecularly defined ABO blood groups are more accurate than serologically determined 

(A/B/O) groups for estimating risk of VT. 

 

Abstract 

Genetic risk score (GRS) analysis is an increasingly popular approach to derive individual risk 

prediction models for complex diseases. In the context of venous thrombosis (VT), any GRS 

shall integrate information at the ABO blood group locus, the latter being one of the major 

susceptibility locus for this disease. However, there is yet no consensus about which single 

nucleotide polymorphisms (SNPs) must be investigated when one is interested in properly 

assessing the association  of ABO locus with VT risk. Using comprehensive haplotype 

analyses of ABO blood group tagging SNPs in up to 5,425 cases and 8,445 controls from 6 

studies, we demonstrated that using only rs8176719 (tagging O1) to correctly assess the 

impact of ABO locus on VT risk is suboptimal as 5% of rs8176719-delG carriers are not 

exposed at higher VT risk. Instead, we recommend to use 4 SNPs, rs2519093 (tagging A1), 

rs1053878 (A2), rs8176743 (B) and rs41302905 (O2) in any analysis aimed at assessing the 

impact of ABO locus on VT risk to avoid any risk misestimation. Compared to O1 haplotype 

that can be inferred from these 4 SNPs, the A2 haplotype is associated with a modest 

increase in VT risk (odds ratio ~1.2), A1 and B haplotypes are associated with a ~1.8 fold 

increased risk while O2 tend to be slightly protective (odds ratio ~0.80). In addition, our 

analyses clearly showed that while the A1 an B blood group are associated with increased 

vWF and FVIII plasma levels only the A1 blood group is associated wih ICAM plasma levels 

but in an opposite direction, leaving additional avenues to be explored in order to fully 

understand the whole spectrum of biological effect of ABO locus on cardiovascular traits. 

 

Introduction 

The ABO blood groups are determined by the ABO locus located on chromosome 9 (9q34.1-

q34.2) which codes for two glycosyltransferases (GT), A and B, whose roles are to transfer a 

saccharide unit to polypeptides and membrane glycolipids (ABO(H) carbohydrate structures). 

ABO blood group is one of the first identified risk factor for venous thrombosis (VT) 1 and its 

thrombotic effect is considered to be mediated by the ABO(H) structures, which are 
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expressed on the glycans of both Factor VIII (FVIII) and von Willebrand Factor (VWF) 2 but 

also by modulation of soluble Intercellular Adhesion Molecule 1 (sICAM-1), sP-selectin, and 

sE-selectin levels 3.  

Despite its robust association with VT risk, there is currently a lack of consensus about the 

proper way to accurately estimate its impact on disease risk at the population or individual 

level. While some consider that individuals with A1 or B ABO blood groups are at ~1.5 fold 

increased VT risk compared with individuals of O and A2 blood groups who have little or no 

A glycosyltransferase (AGT) activity 4–6, others 7–12 propose to contrast O and non-O blood 

groups without further granularity. Some have even proposed that, compared to O, the A2 

blood group is associated with increased VT risk but to a lesser extent than A1 and B 13. 

Clarifying this association is required to provide more accurate risk predictions. Several 

explanations could be proposed to explain the aforementioned inconsistency including 

standard epidemiological issues such as population heterogeneity and limited sample size. 

However, another important aspect pertains to the fact that ABO blood group can be 

phenotypically assessed using serological tests or genetically defined using single nucleotide 

polymorphisms (SNPs) at the ABO locus. From an evolutionary perspective, the ancestral 

ABO blood group is A114. The A2 blood group is resulting from a Proline to Leucine 

substitution at amino acid 156 and is defined by the rs1053878-A allele. The O1 group that 

accounts for 95% of O  group is the consequence of a frameshift deletion (c.del261G, 

p.88fs118Stop) and is defined by the rs8176719_delG allele while the rs41302905-T allele (p. 

Arg268) corresponds to the O2 group 15. Finally, the B blood type results from a Glycine to 

Serine substitution at amino acid 235 and is defined by the rs8176743-T allele. These 4 SNPs 

then define 5 main common haplotypes in European ancestry populations (Figure 1) and, as 

the ancestry allele, the A1 group is generally called when none of the above alleles is 

present. However, it has been proposed to be tagged by the rs579459-G allele (or any SNP in 

perfect linkage disequilibrium (LD) with it) 6. The choice of studied SNPs and their groupings 

strongly influences the downstream association results. Indeed, because of complete 

negative LD between these SNPs (D’=-1), the analysis of only a subset of these SNPs may 

introduce biases in the estimation of genetic association parameters. These biases can be 

even amplified when these ABO blood group SNPs are substituted by other SNPs expected to 

serve as good but imperfect proxies (0.8 < r2 < 1). For example, rs514659 8 and rs687621 9 

have been used as proxies for rs8176719 (r2 ~0.84 for both). 

This work was initially designed 1 – to fine map the association of ABO haplotypes with VT 

risk, 2 – to identify the optimal set of SNPs needed to tag the VT-associated ABO haplotypes 

and 3 – to address the clinical utility of using such optimal set in the context of genetic risk 

estimation. To achieve these aims, a series of haplotype association analyses taking into 

account the LD between ABO SNPs were deployed in relation to AGT activity, VT risk and also 

toquantitative cardiovascular traits whose inter-individual variability have been 

demonstrated to be strongly influenced by the ABO locus.  
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Methods 

Selection of ABO SNPs. 

Six polymorphisms located at the ABO locus were selected to enter our series of haplotype 

association analyses: the four SNPs that characterize main ABO blood groups as discussed in 

the introduction (rs1053878, rs8176719, rs41302905, rs8176743), the rs579459 that has 

been proposed to tag the ABO A1 blood group, and the rs2519093 which has been proposed 

to be a genetic risk factor for VT independently of the ABO blood groups 16. 

 

Studies contributing to the association with VT risk 

Association of ABO haplotypes with VT risk was investigated in six case-control /prospective 

studies for VT risk that have been previously typed for genome-wide genotyped data: the 

Cardiovascular Health Study (CHS), the Early Onset Venous Thrombosis study (EOVT), the 

Heart and Vascular Health (HVH), the Marseille Thrombosis Association study (MARTHA),), 

the Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis 

(MEGA) study, and studies that have been previously described in Germain et al 17(Germain 

et al., 2015) and the RETROVE study 18. Briefly, CHS is a US population based cohort of adults 

aged more than 65yrs and recruited in 4 different centers, HVH is a population based case-

control study for cardiovascular events conducted in Washington State, EOVT and MARTHA 

two French case-control studies for VT, and MEGA and RETROVE are case-control studies 

from Netherlands and Spain, respectively. Detailed description of each study is given in 

Supplementary Materials. In total, 5,425 VT cases and 8,445 controls were assembled 

through these six studies 

 

Studies contributing to cardiovascular quantitative traits analysis 

ABO haplotypes were tested for association with 4 quantitative traits that are well known to 

be modulated by ABO blood groups: 

a) AGT activity was available in 213 VT patients of the MARTHA study 19; 

b) plasma levels of VWF were assessed in 13,527 individuals from 4 studies including the 

Atherosclerosis Risk in Communities (ARIC) study 20 the Framingham Heart study 21, MARTHA 

and RETROVE; 

c) plasma levels of Factor VIII (FVIII) were assessed in 19,085 individuals from 5 studies 

including ARIC, CHS, MARTHA, The Netherlands Epidemiology of Obesity (NEO) study 22,23 

and RETROVE; 
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d) plasma levels of ICAM-1 were available in 22,639 participants of the Women's Genome 

Health Study 24. 

For these analyses on quantitative traits, only control data from RETROVE participants were 

used. By contrast, only data from VT patients were available in MARTHA. Detailed 

description of the study samples and the biological measurements are given in the 

Supplemental data. 

 

Haplotype/diplotype association analyses 

In all these studies, haplotype association analyses were conducted using either the 

haplo.stats R package 25 or the THESIAS software 26. From best guessed genotypes obtained 

from imputed data, these two programs implement linear (for quantitative trait) and logistic  

(for disease status) regression models to estimate haplotype effects by comparison to a 

reference haplotype (taken here as the O1 haplotype) under the assumption of additive 

effects. Analyses were adjusted for cohort specific covariates (see Supplemental data). 

Because of the very strong negative LD between studied ABO SNPs (D’~-1) and of the 

resulting haplotype structure, it is possible to determine without nearly any ambiguity the 

pair of haplotypes (called diplotypes) carried by each individual. The percentages of 

individuals with no ambiguous haplotypes/diplotypes were 0.995, 0,997, 0,989, 0.992, 0.999 

and 0.996 in CHS, EOVT, HVH, MARTHA, MEGA and RETROVE, respectively. Therefore, to 

hold off the assumption of additivity in haplotype effects, we then tested the association 

between ABO diplotypes and VT risk using a logistic regression model adjusted for the same 

covariates as for the haplotype analyses.  

 

Haplotype/diplotype association results were meta-analyzed using a fixed-effects model 

based on the inverse-variance weighting and heterogeneity of associations across studies 

was assessed with the Cochran-Mantel-Haenszel test statistic 27. 

 

Genetic risk score and risk prediction analyses 

Based on the haplotypic and diplotypic odds ratios (ORs) for VT derived from the meta-

analyzed results of the 6 studies, two genetic risk scores (GRS) were computed. A first GRS 

assuming additive effects of haplotypes (GRSh) defined, for each individual i, as GRShi= 

log(ORhi1)+log(ORhi2), where (hi1,hi2) is the pair of haplotypes carried by individual i and ORk is 

the haplotypic OR associated with haplotype k. A second GRS (GRSd) that does not assume 

additivity of haplotype effects and defined from derived diplotypic ORs as GRSdi = 

log(ORhi1,hi2) where ORk,l is the OR for VT associated with the diplotype (k,l). We then 

assessed the discriminative properties of these GRS by comparison to a simple GRS defined 
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by the number of O1 alleles carried by an individual. GRS were calculated in an independent 

sample of 18,595 VT cases and 92,983 randomly selected controls, frequently matched to 

cases on age at the baseline exam, from the UK Biobank (UKBB) cohort (see Supplement 

Materials). We employed this independent sample to minimize the risk of overfitting when 

GRS are evaluated in the cohorts from which they are derived. The association between GRS 

and VT risk was assessed using a logistic regression analysis, adjusting for sex, age at the 

time of VT event, grouped year at the time of VT event, and the 10 first principal 

components derived from genome wide genotype data. Of note, the percentage of UKBB 

participants with unambiguous haplotypes/diplotypes was 0.992. GRS were compared in 

terms of area under the curve (AUC), continuous net Reclassification Index (NRI) and 

integrated discrimination improvement (IDI). These metrics were computed using the 

PredictABEL R program (https://cran.r-

project.org/web/packages/PredictABEL/PredictABEL.pdf).  

Results  

As a first step, we assessed the association of ABO haplotypes with AGT activity, the main 

glycosyltransferase encoded by the A1 or A2 alleles, keeping in mind that, by definition, AGT 

shall be quantified only in A1 or A2 carriers. As shown in Table 1, the six studied ABO SNPs 

generated 5 common haplotypes. The rs2519093-T, rs8176719 delG, rs1053878-A, 

rs8176743-T and rs41302905-T alleles were each carried out by a unique haplotype, while 

the rare C allele at the rs579459 was carried by two distinct haplotypes. Two haplotypes 

demonstrated significant increased AGT activity compared with the O1 tagging haplotype: 

the haplotype carrying the rs1053878-A allele (i.e., A2) with modest AGT increase (β = 

1655.6 ± 708.36 , p = 0.019) and the haplotype carrying the rs2519093-T allele associated 

with a strong AGT modulation (β = 7983.2 ± 304.9, p = 4.5 10-150). By contrast, the haplotype 

carrying both the rs579459-C allele and the rs41302905-T allele was not associated with AGT 

(p = 0.864). These observations demonstrate that 1) the rs579459-C allele generally used to 

tag the A1 blood type is an imperfect genetic marker for the ABO A1 blood group as it also 

captures O2 carriers and in that case is not associated with AGT; 2) the rs2519093 variant is 

a better marker of the A1 blood group.  

 

We then assessed the association of ABO haplotypes with VT risk. Detailed haplotype 

association results obtained in each participating study for VT are provided in 

Supplementary Tables 1-6. A Forest plot reporting the haplotypic ORs in each individual 

study is shown in Figure 2. Results indicate that, compared to the O1 haplotype, the 

rs2519093-T and rs8176743-T alleles were associated with an increased risk for VT of OR 

[95% Confidence Interval -CI] = 1.78 [1.67 – 1.92] (p = 3.15 10-60) and 1.76 [1.58 – 1.96] (p = 

1.88  10-24), respectively, with little heterogeneity across studies (p= 0.136 and p = 0.018, 

respectively). The rs1053878-A allele (A2 allele) also showed a trend for moderate increased 

VT risk with OR of 1.16 [1.03 – 1.31], p = 0.013 (p for heterogeneity = 0.738) (Figure 2, Table 
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2). Interestingly, the A2-associated OR for VT was significantly (p = 3.25 10-10) lower than the 

common OR (OR = 1.78 [1.68 – 1.88]) associated with the rs2519093-T and rs8176743-T 

alleles. Of note, of the two haplotypes carrying the rs579459-C allele, only the one also 

carrying the rs2519093-T (A1) allele associated with increased VT risk. By contrast, the 

second, which is also the sole haplotype carrying the rs41302905-T allele coding for O2, was 

associated with decreased risk of VT (OR = 0.70 [0.57 – 0.86], p = 7.75 10-4) but with some 

evidence of statistical (p = 0.001) heterogeneity across studies.  

The association of ABO diplotypes with VT is illustrated in Figure 3 where meta-analyzed 

results from the 6 contributing studies are shown. Diplotype association results per study are 

given in Supplementary Table 7. Compared to O1O1 diplotype, diplotype ORs ranged from 

0.81 [0.60 – 1.09] (p = 0.166) for the O1O2 diplotype to 3.45 [1.88 – 6.32] (p = 5.91 10-5) for 

the BO2 diplotype. This analysis illustrates the variability of risk estimates within a given 

serological group. For example, diplotype risk estimates were significantly different (p = 

0.002) across individuals from the same A serological group, A1A1 (OR = 2.98 [2.50 – 3.57]), 

A1A2 (OR = 2.65 [2.10 – 3.33], A1O1 (OR = 2.12 [1.92 – 2.35]) and A1O2 (OR = 1.68 [1.17 – 

2.41]). 

 

From Table 2, it can be deduced that about 19% (= 0.07/0.37) of non O1 individuals are A2 

individuals at moderate risk of VT (OR ~1.2), ~76% are individuals with A1 or B blood type at 

significant stronger risk (OR ~1.8) of VT while the remaining 5% with O2 blood type are not 

exposed to a higher risk of disease. These observations suggest that the sole use of O1-

tagging rs8176719 to estimate the individual risk of VT associated with ABO blood groups 

may lead to risk misclassification. To further assess whether integrating haplotype/diplotype 

ABO information could be more clinically relevant than using the sole information on O1 

polymorphism, we used the independent sample from UKBB to evaluate the AUC of three 

GRS: GRSh defined from haplotype effect estimates reported in Table 2, GRSd defined from 

diplotype effect estimates reported in Figure 3 and GRSo1 defined by the number of O1 

alleles carried by individuals. Corresponding AUCs [95% CI] were 0.561 [0.557 – 0.566], 0.559 

[0.555 – 0.564] and 0.553 [0.548 – 0.558], respectively. GRSh- and GRSd- associated AUCs 

were significantly higher (p = 1.01 10-9 and p = 1.31 10-5, respectively) than the AUC obtained 

using only O1 polymorphism, but the improvement remains modest. Similarly, the IDI 

associated with GRSh and with GRSd compared to GRSO1 were significantly different from 

zero (p < 10-10) but weak (IDI = 0.2% for both). The NRI associated with GRSh was also 

modest (0.023 [ 0.011 - 0.035], p = 1.7 10-4). 

 

As a final step, we investigated how these observations extend to VWF (Supplementary 

Tables 8-11), FVIII (Supplementary Tables 12-16) and ICAM (Supplementary Table 17) plasma 

levels. First, in all studied samples, the same 5 common haplotypes were derived from the 6 



8 

 

studied SNPs. In all investigated studies, the effect of the O2 allele on the studied 

phenotypes was not significantly different from that of the most frequent haplotype tagging 

the O1 blood group. Furthermore, both haplotypes carrying the rs2519093-T (A1) or 

rs8176743-T (B) alleles were homogeneously associated with strong increased VWF and FVIII 

levels while the rs1053878-A (A2) allele was also associated, but more modestly, with 

increased VWF and FVIII levels. These results are completely in line with those observed for 

VT risk. Interestingly, only the haplotypes tagging for A1 or A2 blood groups, not B, were 

associated with ICAM-1 levels but, unlike VWF and FVIII, with decreased levels 

(Supplementary Table 17, Table 2). 

Discussion  

This work started by the first haplotype analysis of ABO SNPs in relation to AGT activity. The 

modest sample size of this analysis was counterbalanced by the nature of the studied trait, 

AGT activity being the most proximal biological trait influenced by the ABO locus, and by the 

strength of association between ABO haplotypes and AGT activity. ABO haplotypes explained 

~80% of the variability in AGT activity, and this was mainly due to A1 haplotype associated 

with extremely increased AGT, and to a lesser extent to A2 haplotype associated with a 

modest increase in AGT activity. Very interestingly, this haplotype analysis demonstrates 

that the rs579459 often used to tag the A1 blood group is an imperfect marker of the 

phenotypic A1 blood group. Indeed, about 10% (~0.02/0.22) of rs579459-C allele carriers are 

in fact O2 carriers and have AGT activity similar to O1 blood group. By contrast, our analyses 

demonstrated that the rs2519093, initially thought to be an independent ABO blood group 

polymorphism contributing to VT risk 16, appears to be an optimal tag for the A1 group as it 

uniquely defines the haplotype associated with the highest AGT levels. 

Capitalizing on 6 independent studies for VT risk totaling 5,425 VT cases and 8,445 controls, 

we then performed the first haplotype and diplotype analyses of ABO SNPs with VT. The 

haplotype  analysis demonstrated that A1- and B-tagging haplotypes are at similar risk of VT 

(OR~1.8) and that the A2 haplotype is also associated, but more modestly (OR ~1.2), to 

increased VT risk, the latter observation corroborating the recent findings of Vasan et al., 13. 

The diplotype analysis suggested that there is a substantial variability in disease risk among 

individuals that would have been assigned the same serological ABO phenotype (O/A/B/AB), 

providing support for defining the ABO blood group using genetic markers. This work also 

demonstrates that using only the ABO O1-tagging rs8176719 to address the ABO locus 

contribution to VT risk, as it has been proposed, is suboptimal. Indeed, ~76% of non O1 

carriers are at higher risk (OR ~1.8) of VT, ~19% at moderate risk (OR~1.2) and ~5% at no 

risk. However, we showed in an independent sample of 18,595 cases and 92,983 non cases 

that a GRS based on ABO haplotypes adds marginal information compared to a GRS defined 

from the sole rs8176719. This work is not aimed at encouraging the use of ABO information 

in clinical practice, especially as the use of others VT-associated SNPs with stronger effects 

(such as FV Leiden) is still debated 28,29, but rather at emphasizing the need to study 
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haplotypes rather than only one SNP when assessing the impact of ABO locus in relation to 

VT risk.  

Finally beyond these results pertaining to VT risk, we performed additional haplotype 

analyses on endothelial biomarkers that revealed some intriguing findings. The most likely 

hypothesis that is generally put forward to explain the relationship between VT and ABO is 

that, by modifying GT expressions, ABO participates in controlling the degree of VWF 

glycosylation, and consequently in its clearance and/or cleavage by ADAMTS13 30,31. This 

would explain the robust association found between the ABO blood group and circulating 

concentrations of VWF 32 and FVIII of which VWF is the transport protein. However, the 

effect of the ABO locus on VTE risk cannot be explained only by a VWF dependent 

mechanism. Indeed, it has been shown that the association between the ABO blood group 

and VT persists after adjusting for FVIII or VWF levels 12. While the pattern of associations of 

ABO haplotypes with VWF/FVIII parallels that observed with VT risk, our work provides 

strong evidence that only  A1- and A2-tagging haplotypes, and not B, are associated with 

plasma levels of ICAM-1. Additionally, the directions of haplotype effects are opposite to 

those observed for VWF and FVIII as A carriers displayed lower ICAM-1 levels. Unfortunately, 

VWF and FVIII levels were not available in participants measured for ICAM-1, which 

prevented us from conducting in-depth joint analysis of these biomarkers. Further work is 

needed to clarify this point as well as to assess whether this phenomenon also holds for 

other endothelial biomarkers (e.g., P-selectin, E-selectin) and cardiovascular diseases (e.g., 

coronary artery disease, stroke) with an ABO-dependent component. 

Additional limitations must be discussed. Our association analyses were conducted using 

imputed genotypes. Even if all studied SNPs were imputed with high accuracy (imputation r2 

> 0.93 in all studies for all SNPs), we cannot exclude that this has introduced some extra 

variability in the estimated haplotype frequencies and the corresponding 

haplotype/diplotype effects. Besides, built upon GWAS data, this work focused on common 

ABO SNPs and common ABO blood groups. As a consequence, very rare ABO blood groups 

such as A3 and O3 were not addressed here. These rare groups are molecularly defined by 

extremely rare coding variations (https://www.presentica.com/doc/10230663/names-for-

abo-isbt-001-blood-group-alleles-pdf-document) that would be more efficiently investigated 

using sequencing strategies. All the analyses reported in this work were performed in 

European ancestry individuals where ABO blood group tagging SNPs are in complete 

negative LD and where the rs8176719-delG allele tagging O1 is carried by only one 

haplotype. It would be very interesting to perform similar investigations in other population 

where LD may not be so complete. For instance, the rs8176719-delG allele is found on 4 

different haplotypes in African populations ((https://ldlink.nci.nih.gov/?tab=ldhap). In such 

case, the impact of using haplotypes rather than rs8176719 alone in estimating disease risk 

may be even greater than that observed here in Europeans. The GRS proposed in this work 

was evaluated in an independent sample of the UKBB population whose specific design (incl 

inclusion/exclusion criteria) differs from those of the derivation cohorts and may have 
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contributed to impact on GRS properties. In addition, the assessment of the proposed 

haplotype/diplotype GRS in high-risk populations (including cancer patients or women under 

oral contraceptives) warrants further investigations. 

 

 

In conclusion, common ABO haplotypes and diplotypes are associated with different VT risks. 

Four common   SNPs, rs2519093 , rs1053878 , rs8176743  and rs41302905  should be 

analyzed in any study aimed at accurately estimating the risk of VT attributable to the ABO 

locus.  
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Figure 1:Linkage disequilibrium matrix and haplotype frequencies at the ABO locus. 

Displayed SNPs are those discussed in the manuscript (and in supplemental materials). 

Numerical values shown in the upper triangle of the matrix are pairwise linkage 

disequilibrium r2 values. Shown values for r2 and allele/haplotype frequencies were 

estimated from European populations  available at https://ldlink.nci.nih.gov/?tab=ldmatrix.  

 

Figure 2:Forest plot showing the association of ABO haplotypes with VT risk  

The figure shows the haplotypic odds ratio for VT associated with the O2, A1, A2 and B haplotypes  

compared to the O1 haplotype taken as reference. Odds ratio were computed under the assumption 

of haplotype effect additivity. 

 

Figure 3:Forest plot showing the association of ABO diplotypes with VT risk  

In this figure , the O1O1 diplotype was used as reference. Diplotypic Odds Ratio were those obtained 

from the meta-analysis of results observed in each of the 6 contributing study (Supplementary Table 

7). 
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Table 1. Haplotype association analysis of ABO SNPs with A glycosyltransferase activity in 213 VT patients from the MARTHA cohort 

ABO blood 

group 
rs2519093 rs8176719 rs579459 rs1053878 rs8176743 rs41302905 

Haplotype 

Frequencies 
Haplotype Additive effects 

O1 C delG T G C C 0.528 reference 

O2 C G C G C T 0.014 
β =-249.54 [-3115.8 - 2616.8] 

p=0.864 

A1 T G C G C C 0.357 
β = 7983.2 [7385.6 - 8580.8] 

p = 4.5 10-150 

A2 C G T A C C 0.046 
β = 1655.6 [267.2 - 3044.0] 

p=0.019 

B C G T G T C 0.033 
β = -239.2 [-1475.0 - 996.6] 

p=0.704 

The analysis was conducted using THESIAS, and adjusted for age, sex and the 4 first principal components 
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Table 2 Summary information about the association of ABO haplotypes with studied traits. 

 

ABO blood 

group 
rs2519093 rs8176719 rs579459 rs1053878 rs8176743 rs41302905 Frequency1 OR for VT2 

Impact on 

VWF/FVIII levels4 

Impact on ICAM1 

levels4 

           

O1 C delG T G C C 0.63 reference reference reference 

O2 C G C G C T 0.02 
0.703 

[0.57 – 0.86] 
- - 

A1 T G C G C C 0.20 
1.78  

[1.67 – 1.92] 
↑↑↑ ↓↓↓ 

A2 C G T A C C 0.07 
1.16 

[1.03 – 1.31] 
↑ ↓ 

B C G T G T C 0.08 
1.76 

[1.58 – 1.96] 
↑↑↑ - 

1 Haplotype frequencies in European ancestry populations 
2 Haplotypic risk estimate [95% Confidence Interval] for VT obtained from the meta-analysis of results listed in Supplementary Tables 1-6 
3 This risk estimate exhibited statistical heterogeneity (p = 1.210-3) across the 6 investigated studies  
4 Direction (↑= increase; ↓= decrease) of haplotype effects on plasma levels. Strong compared to modest effects are illustrated with three arrows instead 

of one.  
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