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Abstract: The adsorption of two pharmaceuticals, carbamazepine and paracetamol, onto the expand-
able clay mineral saponite has been studied through the combination of kinetic experiments, X-ray
diffraction, and theoretical modeling. Kinetic experiments indicate low adsorption for carbamazepine
and paracetamol on expandable smectite clay. Accordingly, X-ray diffraction experiments show that
neither compound enters smectite interlayer space. Molecular dynamics simulations were carried
out to understand the interactions between the two pharmaceuticals and the saponite basal surface
in the presence of Na+ cations. Calculations reveal that paracetamol almost does not coordinate
solution cations, whereas a rather low coordination to cation is observed for carbamazepine. As a
result, the adsorption onto the clay surface results mainly from van der Waals interactions for both
pharmaceuticals. Carbamazepine does adsorb the surface via two configurations, one involving
cation coordination, which corresponds to a rather stable adsorption compared to paracetamol. This
is confirmed by structural analyses completed with desorption free energy profile.

Keywords: organic contaminants; paracetamol; carbamazepine; smectite; interlayer space; molecular
dynamics; kinetic experiments; X-ray diffraction

1. Introduction

For about thirty years, the concern about the amount of organic contaminants that
can be found in various environmental compartments has grown [1–3], as massively used
pharmaceutical compounds (PCs) have been continuously introduced in the environment
over time. In addition to unused medication and pharmaceutical manufacturing plants and
hospitals discharge, a large fraction of consumed human or veterinary active compounds
are expelled from the body after a short period of time and end up in municipal sewage
systems and wastewater treatment plants [4–9]. Land applications of treated sewage
sludge contribute to nutrient recycling and soil fertilization but also lead to increasing PC
concentrations in soils such as agricultural fields as PCs do not always degrade during
wastewater treatments [10–12], nor in soils [13,14]. Retention of persistent PCs in sludge
or in soil minerals potentially prevents their release in groundwater where they can re-
enter the biosphere and drinking water supplies [15,16]. As such, the adsorption of
PCs by minerals is an important issue either to predict the PCs’ soil retention properties
or to develop minerals which, when added to sludge, may retain PCs, thus enhancing
biodegradation before land spreading.

Several studies investigated the degradation and mobility of persistent PCs (e.g.,
carbamazepine, diclofenac, or ibuprofen) in soils as a function of their mineralogy and/or
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organic matter composition. PC degradation is directly related to the presence of organic
matter, which also reduces their mobility [13,14,17]. The amount of clays was also observed
to have an impact, although less important than that of organic matter, on soil retention
properties by decreasing PC mobility. Retention studies were also performed as a function
of soil composition (clayey/sandy loam) for various pharmaceuticals and steroid hormones,
which also confirmed the role of clay materials in PC retention [18,19].

Clays minerals are abundant in nature and especially relevant for their adsorptive
properties owing to their layered structure and ionic exchange properties. They have thus
been widely used as environmental decontamination and low-cost substitution agents and
as materials for the removal of heavy metals from wastewaters [20,21]. Particular interest
is devoted also to their ability to adsorb organic compounds, especially pharmaceuti-
cals [22]. Recent studies investigated in detail the adsorption of PCs on sodium-exchanged
montmorillonite under various pH conditions [23]. The three investigated PCs (codeine,
diazepam, and oxazepam) were found to be intercalated into the interlayer space via cation
exchange at acidic pH, while at neutral pH, only codeine was protonated and present in
clay interlayers. Among a large pool of PCs, it was also found that anionic PCs may adsorb
to clay edges, while neutral ones may interact through van der Waals interactions [24].

Theoretical calculations are useful tools to understand further the adsorption of or-
ganic compounds onto clay surfaces, and they have already shown their ability to provide
a precise image of the molecular interactions at play in the adsorption mechanism [25–28].
For example, modeling the adsorption of two glyphosate ionic forms on kaolinite sur-
face [29] showed a larger adsorption free energy for the anionic form. Another study
coupling X-ray diffraction (XRD), infrared and nuclear magnetic resonance spectroscopies,
and molecular dynamics (MD) simulations provided a detailed description of oxytetracy-
cline interactions with sodium-montmorillonite [30]. MD simulations indicated that clay
charge localization controlled the binding conformation of intercalated oxytetracycline,
allowing the formation of multiple interactions consistent with the spectroscopic data.

In the present study, kinetic experiments combined to XRD measurements and MD
simulations are used to describe the adsorption of two PCs (carbamazepine and parac-
etamol) onto a smectite clay (saponite) and to understand the mechanisms driving these
sorptive interactions. We will focus on these two PCs because different behaviors in soil
were observed in previous studies [18].

2. Materials and Methods
2.1. Materials

Saponite ([Na0.8]inter[Mg6.0]octa[Si7.2Al0.8]tetraO20(OH)4; hereafter referred to as Sap)
was synthesized hydrothermally from a gel precursor of adequate stoichiometry [31]. Syn-
thesis was performed in an externally heated Morey-type pressure vessel with an internal
silver tubing [32,33]. Synthesis conditions were a temperature of 400 ◦C, a water pressure
of 1 kbar, and a duration of 4 weeks, as described elsewhere [31]. After synthesis, the Sap
was Na-saturated by contact with a 1 mol L–1 aqueous NaCl solution with mechanical
shaking for 24 h to ensure a complete exchange of interlayer cations before separation
of the solid fraction by centrifugation. Excess NaCl was removed by washing the solid
three times with deionized water (Siemens UltraClear, Metagenics, Inc., Aliso Viejo, CA,
USA 18.2 MΩ cm–1) and separation of the solid fraction. Sap cation exchange capacity was
previously measured at 105 meq/100 g [34].

2.2. Kinetic Experiments

Low PC concentrations have been considered in order to reflect values observed in
the environment. The presence of PCs in surface or ground water has been widely studied,
in which carbamazepine and, to a lesser extent, paracetamol rank among the most often
found molecules [35–37]. In the extensive monitoring they carried out across Europe, Loos
et al. reported carbamazepine in 42% of analyzed groundwaters (maximum concentration
0.39 µg/L) and in 95% of surface waters (maximum concentration 11.561 µg/L, average
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0.075 µg/L). Paracetamol is found at levels ranging from a few ng/L to 1.5 µg/L in water
resources [37].

To follow the adsorption kinetics of the two PCs onto Sap, 200 mg of clay was
introduced into tubes containing paracetamol or carbamazepine solutions (V = 1 mL,
C = 2 µg/L). This mixture was then stirred in the dark at room temperature. Tubes
were removed at regular times, centrifuged, and the supernatant was analyzed by liquid
chromatography coupled to tandem mass spectrometry (LC-MS/MS). The amount of PC
adsorbed onto the clay was determined indirectly as the difference between the quantity
initially introduced into the tube and the quantity remaining at the time of sampling.
We would like to stress at that such low concentrations (consistent with those found in
natural environments), interlayer sorption is expected to be unlikely. Using higher concen-
trations would likely involve different surface sites and thus different, environmentally
non-relevant sorption processes. In addition, one may note that even at such low concen-
trations, sorption is not complete, supporting the low affinity of the two PCs investigated
for smectite basal surfaces (and interlayers).

Analyses were performed using LC-MS/MS with a chromatograph system Agilent
1290 series liquid (Agilent Technologies, Avondale, AZ, USA) coupled to a 3200 QTrap
(AB Sciex, CA, USA) triple quadrupole mass spectrometer equipped with an electro-
spray ion source (ESI Turbo V) operated in positive mode. A Zorbax Eclipse C18 column
(50 mm × 2.1 mm i.d., 1.8 µm) from Agilent was used for the chromatographic separation,
set at 60 ◦C. The mobile phase was composed of Milli-Q quality water with 0.01% acetic
acid and methanol. The flow rate was 0.6 mL/min, and the sample volume injected was
50 µL. The quantification of paracetamol and carbamazepine was achieved in multiple re-
action monitoring mode (MRM). The two MRM transitions 151.8→ 110.2 and 151.8→ 64.9
were used for paracetamol; 236.9→ 193.9.2 and 236.9→ 192 were used for carbamazepine.
Nitrogen was used as the drying and nebulizing gas. All data were collected and processed
using Analyst 1.5.2 software.

2.3. X-ray Diffraction

For all samples, oriented slides were prepared by drying a clay suspension on glass
slides at room temperature following contact with the organic solution. X-ray diffraction
(XRD) patterns were then recorded using a Bruker D8 diffractometer equipped with an
MHG Messtechnik humidity controller coupled to an Anton Paar CHC+ chamber. Intensi-
ties were measured with a SolXE Si(Li) solid-state detector (Baltic Scientific Instruments) for
4 s per 0.04◦ 2θ step over the 2−50◦ 2θ Cu Kα angular range. The divergence slit, the two
Soller slits, the antiscatter, and resolution slits were 0.3◦, 2.3◦, 0.3◦, and 0.1◦, respectively.
Samples were kept at 23 ◦C in the CHC+ chamber during data collection. A constant
flow of mixed dry/saturated air maintained a 40% relative humidity (RH) during data
collection after an initial equilibration at ∼97% RH. RH was continuously monitored with
a hygrometer (uncertainty of ∼2% RH) located close to the sample.

2.4. Computational Details

The saponite layer consisted of two tetrahedral (T) SiO4 sheets sandwiching an octahe-
dral (O) MgO6(OH)2 one. As saponite is trioctahedral, all octahedral sites are occupied, and
only tetrahedral Si4+ atoms are substituted with Al3+, leading to a negative layer charge
compensated for by exchangeable counter ions present in the interlayer space. The general
formula for the saponite studied here is (Si7.2Al0.8)(Mg6)O20(OH)4Na0.8, which thus has a
0.8e charge per unit cell. An orthogonal model was considered with a 6 × 4 supercell with
dimensions of a = 32.22 Å and b = 37.12 Å within the layer plane and c = 60 Å. The con-
sidered cell included 19 tetrahedral substitutions and, thus, 19 Na+ counter ions. Atomic
substitutions were randomly located, respecting, however, a separation rule between
substitutions sites of at least one tetrahedral center between two substitutions.

In the simulation box, single molecules of the PCs were introduced. Both carba-
mazepine and paracetamol were considered in their neutral forms because of their high
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pKa. Geometries and charge parameters were refined through DFT calculations at the
B3LYP/6–31G* level. Molecules were optimized in the gas phase, in which the restrained
electrostatic potential (RESP) partial atomic charges reproducing the electrostatic poten-
tial of the molecular boundaries were used for initial guess adsorptions [38]. It is worth
bearing in mind that these simulated systems are model systems, exclusively focused on
investigating a particular problem: the interaction of PC with clays. Hence, we use one PC
molecule interacting with a smectite clay surface model, which includes most of its surface
features. The use of more molecules in the model would not add more information to the
studied problem. The aim of the simulations is to understand the sorption mechanism and
to explain it through the analysis (strength and type) of the molecular interactions taking
part in the sorption.

The ClayFF force field was used for the clay model [39], whereas water and ions
were modeled using the extended simple point charge (SPC/E) and Dang models, respec-
tively [40,41]. The SPC/E model is known to accurately reproduce water’s structure [42].
The general Amber force field [43] was used to generate the PCs’ molecular parameters
and Lorentz–Berthelot rules were applied for inter-force fields’ parameters. This approach
has already been successfully used in various theoretical works [28,44–46]. The Amber
force field has been extensively used for organic molecules’ modeling and reproduces well
their structure and dynamics. Amber and ClayFF are rather simple to combine as they both
use harmonic potential for bond terms, although ClayFF does not use angle and dihedral
terms. Periodic boundary conditions were applied in all three spatial directions.

The large-scale atomistic/molecular massively parallel simulator (LAMMPS) [47]
was used for all simulations. A unique clay layer was considered to model the clay basal
surface, divided with half of it at the bottom and at the top of the box along the vertical
parameter. The initial separation between the lower and upper surfaces was set to 60 Å,
with PC molecules being placed at the box’s center. Water molecules were included to
fill the empty space using a regular grid (with an interval of 3.3 Å) and including the
amount of Na+ needed to ensure charge compensation. A cutoff of 12 Å was applied for the
electrostatic and Lennard–Jones interactions. Coulombic interactions were computed using
the Ewald summation and the particle-particle-particle-mesh method at a 0.0001 accuracy.
All simulations were carried out at 300 K and 1 atm. The oxygen–hydrogen bonds of
water molecules were kept fixed by applying the shake algorithm [48]. The equilibration
period consisted of warming up the system, starting from water/ions moiety, then the
clay particles, and finally, PC molecules in the canonical NVT ensemble. The system was
then allowed to relax along all directions through the isothermal–isobaric NPT ensemble to
model the hydrated interlayer space in real conditions and density. The vertical separation
between basal surfaces was then kept fixed during the whole production time. The system
was then equilibrated through a two-step procedure, increasing the time step from 0.1 to
0.5 fs. The whole equilibration run included a total of 800,000 time steps. During the whole
simulation and production, octahedral Mg atoms were kept fixed. The production time
during which data were collected and analyzed was 100 ns.

The desorption free energy profiles were obtained through umbrella sampling [49] via
the plumed module [50,51] patched to LAMMPS. These simulations were performed using
a series of productions where the molecule–surface distance (along z) is varied, from an
adsorbed configuration to a desorbed one. The vertical distance was computed between
the center of benzene cycles of the molecules to the average surface oxygen atoms for the
clay surface. PC molecules were thus allowed to rotate but kept parallel to the surface.
Each simulation step of the umbrella sampling consisted of 4 million steps (∆t = 0.5 fs).
Molecule–surface distances were varied from 2.5 to 8.5 Å with a 0.1-Å displacement step
(61 simulations were thus performed for each molecule). The potential of mean force (PMF)
was integrated over all simulations.
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3. Results
3.1. Kinetics

As shown in Figure 1, the adsorption of both carbamazepine and paracetamol onto
clay is very fast over the first hours of contact time, and maximal retention is reached
after the initial first hours. After reaching the saturation value in about 50 h of contact
time, the quantity adsorbed no longer varies significantly. The small amounts adsorbed
at equilibrium (35% and 20% for carbamazepine and paracetamol, respectively) are also
noteworthy.
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Figure 1. Sorption of carbamazepine (a) and paracetamol (b) onto saponite clay at 200 g/L.

3.2. X-ray Diffraction (XRD)

For the two series of samples, the XRD patterns exhibit a series of basal reflections at
~14.9, 7.7, 5.07, 3.85, and 3.05 Å (5.9, 11.45, 17.5, 23.4, and 29.2 ◦2θ Cu Kα, respectively),
typical of bi-hydrated smectites (see Figure 2 ) [52,53]. The slight departure from rationality
indicates the coexistence of different hydration states and the interstratification of a minor
amount of mono-hydrated layers interstratified in mainly bi-hydrated smectite crystals. In
addition, a shoulder is visible at ~12.8 Å (~6.9 ◦2θ Cu Kα) on the high-angle side of the first
basal reflection, indicative of minor domains in which mono-hydrated layers prevail. The
dual hydration state exhibited by the samples is likely related to the presence of both Ca2+

(from solution during the sorption experiments) and Na+ (from the initial clay saturation)
cations in saponite interlayers.

In any case, the XRD patterns for all samples collected during the sorption isotherms
are essentially similar, showing no significant evolution with increasing contact time with
carbamazepine or paracetamol. This remarkable stability of the layer-to-layer distance
indicates that neither paracetamol nor carbamazepine molecules enter the Sap interlayer
space, consistent with the low sorption capacity determined from kinetic experiments.
Rather, Ca2+ and Na+ cations persist in these interlayers to compensate for the layer charge
deficit, thus keeping constant the overall hydration state of Sap at a given RH.
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Figure 2. X-ray diffraction patterns of saponite (Sap) contacted with (a) carbamazepine and (b) paracetamol for different
times (see text for details). Exposure time to organic contaminants increases from top (blank—no contact) to bottom. Dashed
lines indicate the position of diffraction lines typical for bi-hydrated smectites (14.9 and 3.05 Å).

3.3. Simulations

The simulation box is shown in Figure 3, whereas Figure 4 shows the density profiles
(DPs) calculated along the box z-coordinates for both carbamazepine and paracetamol.
For both PCs, we observe two planes of water molecules at 2.60–2.65 Å and 6.20–6.30 Å
above/below saponite surfaces; a third plane, less pronounced, appears at ~9.15–9.30 Å
(Table 1). The water density is constant in the center of the box and corresponds to that of
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liquid water. Sodium cations are also organized as two planes, with a well-defined first
atomic plane presenting a higher peak near the upper layer compared to the lower one, with
~37.7% and ~24.5% of the total number of Na+ cations, respectively. This difference arises
from a larger number of substitutions in the upper layer (11 out of 19 substitutions), thus
attracting more cations. The second cationic planes are at 4.15–4.25 Å and each contains
~7% of the total number of cations. Overall, ~75% of charge-compensating cations are
present in these two sets of planes.
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Figure 4. Density profiles (DPs) along the z-coordinate (interlayer separation orthogonal to basal surfaces). Surface oxygen
(Os) DPs are in red, water oxygen (Ow) in light blue, and sodium cations in purple; for carbamazepine (left), the nitrogens
are in blue and the oxygen is in green; for paracetamol (right), the hydroxyl oxygen is in blue and the nitrogen is in green.
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Table 1. Density profile data (see Figure 4). Peak coordinates (along z) and densities are given in Å.
In parentheses, the percentage of the total atom/molecule density is reported.

Paracetamol
1st peak 2nd peak 3rd peak

Lower Surf. Upper Surf. Lower Surf. Upper Surf. Lower Surf. Upper Surf.

Ow 2.65 (7.5%) 2.65 (7.6%) 6.20 (7.1%) 6.25 (6.9%) 9.15 (6.6%) 9.25 (5.0%)
Na+ 2.10 (24.5%) 2.10 (37.1%) 4.25 (7.6%) 4.20 (6.5%)
NH 3.2 (97.8%)
OH 3.2 (97.1%)

Carbamazepine
1st peak 2nd peak 3rd peak

Lower Surf. Upper Surf. Lower Surf. Upper Surf. Lower Surf. Upper Surf.

Ow 2.60 (7.3%) 2.65 (7.7%) 6.20 (6.8%) 6.30 (7.0%) 9.15 (8.0%) 9.30 (7.7%)
Na+ 2.05 (24.4%) 2.10 (38.3%) 4.20 (6.8%) 4.15 (6.8%)
NH2 1.95 (15.7%) 2.00 (36.4%) 7.20 (18.7%) 6.65 (26.0%)

O 3.15 (16.2%) 3.20 (36.7%) 7.05 (18.4%) 6.85 (25.7%)

The paracetamol molecule remains adsorbed onto the upper clay surface during the
whole production time. Both the oxygen of the hydroxyl group and the nitrogen of the
amine group, in para position, are located at 3.2 Å from the clay surface. This indicates that
the paracetamol remains coplanar to the saponite surface, interacting mainly through van
der Waals forces and the aromatic ring (see Figure 5a). Interactions with cations through
the carboxyl or hydroxyl oxygen atoms of paracetamol are negligible, as indicated by the
small number of interacting cations (Figure S1 in the Supplementary Materials).
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grey, silicium in yellow, and sodium cations in pink. Water molecules have been omitted for the sake of clarity.

Carbamazepine first adsorbs to the lower layer surface, then desorbs, and finally
adsorbs to the upper surface. Carbamazepine thus spent ~34% of the production time
bound to the lower layer surface before desorption, transfer, and adsorption to the upper
layer surface, where it remained until the end of the production. On both surfaces, there
are two peaks for both the amine nitrogen and the carboxyl oxygen atoms. For nitrogen,
the first peak is located at 1.95–2.00 Å and the second peak is at 6.65–7.20 Å from the
surface oxygen; for oxygen, the two peaks are located at 3.15–3.20 Å and 6.85–7.05 Å. For
each atom, these two peaks correspond to two adsorption modes (Figure 5b,c). In the
γ-mode (Figure 5b), carbamazepine interacts with the surface through the amine group
and hydrogen bonds involving negatively charged surface oxygen atoms directly bind
to the substituted Al. Additionally, the carboxyl oxygen coordinates a cation and one
aromatic ring with the surface, maximizing van der Waals interactions with the surface.
In this mode, N and O atoms are at ~2.0 and 3.2 Å from the layer surface, respectively.
The second adsorption mode (λ-mode; Figure 5c) involves only van der Waals interactions
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between the aromatic rings and the layer surface, with both N and O atoms being at ~7 Å
from the layer surface. The two adsorption modes are observed on both layer surfaces, and
carbamazepine can thus readily rotate to change its adsorption conformation. In fact, the γ

adsorption mode is more frequently observed than the λ-mode on the upper surface (36%
and 26% for γ- and λ-modes, respectively) while both modes are observed at the same
frequency on the lower surface. This contrast is most likely due to the larger number of
substitutions on the upper surface that promotes cation coordination.

Figure 6 shows the position of the molecules’ center when adsorbed on the upper
layer surface. Paracetamol remains in diffuse regions free of substitutions, consistent
with the lack of interactions with cations. On the contrary, high-density positions of
carbamazepine at the surface are more localized, although carbamazepine density appears
lower than that of paracetamol (carbamazepine adsorption on the upper surface represents
only 2/3 of the production time). The high-density regions are systematically located
close to substituted tetrahedral sites, where carbamazepine is retained through cation
coordination, corresponding to the adsorption in the γ-mode. When adsorbed in the λ-
mode, carbamazepine is more mobile, interacting only through van der Waals interactions
with the layer surface. In contrast, for the γ-mode, carbamazepine remains in the same
adsorption site until a cation exchange occurs, which drags the molecule, leading to the
disruption of the H-bond with surface oxygens.
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In addition, the desorption energies of the two PCs were computed from a free energy
profile constructed using an umbrella sampling method to assess the strength of their
adsorption to the clay surface. PMF curves (Figure S2 in the Supplementary Materials)
show minimal distances between the centers of the molecules and the layer surfaces of 2.95
and 3.12 Å for paracetamol and carbamazepine, respectively. In addition, the desorption
energies were evaluated at 9.6 and 45.2 kJ mol−1 for paracetamol and carbamazepine,
respectively. Although these values must be considered cautiously, they provide a strong
indication that carbamazepine adsorption may be stronger than that of paracetamol, owing
to the presence of cation coordination and H-bond interactions in the former compared
to the latter. However, this is not observable from the experimental data obtained in the
present study.

4. Conclusions

The adsorption of the pharmaceutical compounds carbamazepine and paracetamol
onto smectite clays has been investigated using synthetic saponite. The study combines
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kinetic experiments, XRD measurements, and MD simulations with the aim to obtain a
complete picture of adsorption events. According to kinetic studies, PC adsorption is
somehow limited for both compounds. XRD data show that neither carbamazepine nor
paracetamol enter the interlayer space of saponite, suggesting that adsorption occurs only
on clay external basal surfaces, leading to limited adsorption. MD simulations investigated
the adsorption mechanism on clay basal surfaces, showing interaction resulting mainly
from van der Waals interactions between the aromatic rings and the clay surface. For
paracetamol, molecule adsorbed parallel to the saponite surface was the only configuration
identified. For carbamazepine, however, two adsorption modes were identified. The
first one relies also on van der Waals interactions between the aromatic rings and the
clay surface (λ-mode), whereas the other adsorption mode (γ-mode) involves stronger
interactions. These interactions occur through both coordination to interlayer cations,
anchored at substituted tetrahedral sites, and hydrogen bonds with the more acidic oxygen
atoms coordinating tetrahedral Al.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-163
X/11/1/62/s1, Figure S1: Radial distribution functions for (a) hydroxyl oxygen atom of paracetamol
and sodium cations, (b) carboxyl oxygen atom of paracetamol and sodium cations, and (c) carboxyl
oxygen of carbamazepine and sodium cations. In red, the distance at which the rdf’s maximum
is found, and in blue, the coordination number computed over the whole simulation; Figure S2:
Potential of mean force (kJ mol−1) computed for paracetamol (purple curve) and carbamazepine
(green curve).
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