

Discrete simulations of an armoured sediment bed during bedload transport

Rémi Chassagne, Raphaël Maurin, Julien Chauchat, Philippe Frey

▶ To cite this version:

Rémi Chassagne, Raphaël Maurin, Julien Chauchat, Philippe Frey. Discrete simulations of an armoured sediment bed during bedload transport. EGU General Assembly 2020, May 2020, Vienna (Online), Austria. 10.5194/egusphere-egu2020-9367 . hal-03135479

HAL Id: hal-03135479 https://hal.science/hal-03135479v1

Submitted on 1 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Introduction O	Numerical Model	Transport law

Discrete simulations of an armoured sediment bed during bedload transport

Rémi Chassagne, Raphaël Maurin, Julien Chauchat and Philippe Frey

May 5 2020

Introduction - Context

During bedload transport :

- Necessity to estimate sediment flux
- Poorly sorted sediment \rightarrow size sorting
- Impact on the sediment flux. Which one? Are we able to characterise them?

Pictures of armouring on the field resulting from size-segregation

Discrete Element Method (DEM) coupled with a 1D turbulent fluid model (Maurin et al. 2015, 2016) :

- DEM (code YADE) : Lagragian method based on contact between particles
- Fluid : 1D vertical turbulent fluid flow based on mixing length closure

Granular phase, for each particle p:

$$m^p \frac{d^2 \vec{x}^p}{dt^2} = \vec{f}^p_c + \vec{f}^p_g + \vec{f}^p_f$$

$$\mathcal{I}^p \frac{d\vec{\omega}^p}{dt} = \vec{\mathcal{T}} = \vec{x}_c \times \vec{f}_c^p$$

Fluid phase :

$$\rho^{f} \epsilon \frac{\partial \langle u_{x} \rangle^{f}}{\partial t} = \frac{\partial S_{xz}^{f}}{\partial z} - \frac{\partial R_{xz}^{f}}{\partial z} + \rho^{f} \epsilon g_{x} - n \langle f_{D} \rangle$$

$$\begin{split} \vec{f}_{f}^{p} &: \text{fluid forces over particles} \\ & \vec{f}_{b}^{p} : \text{Buoyancy force} \\ & \vec{f}_{D}^{p} : \text{Drag force} \\ & \vec{f}_{D}^{p} = \frac{1}{2}\rho^{f}\frac{\pi d^{2}}{4}C_{D}\left\|\vec{u}^{f} - \vec{v}^{p}\right\|\left(\vec{u}^{f} - \vec{v}^{p}\right) \end{split}$$

Discrete Element Method (DEM) coupled with a 1D turbulent fluid model (Maurin et al. 2015, 2016) :

- DEM (code YADE) : Lagragian method based on contact between particles
- Fluid : 1D vertical turbulent fluid flow based on mixing length closure

Granular phase, for each particle p:

$$\begin{split} m^p \frac{d^2 \vec{x}^p}{dt^2} &= \vec{f}_c^p + \vec{f}_g^p + \vec{f}_f^p \\ \mathcal{I}^p \frac{d \vec{\omega}^p}{dt} &= \vec{\mathcal{T}} = \vec{x}_c \times \vec{f}_c^p \end{split}$$

Fluid phase :

$$\rho^{f} \epsilon \frac{\partial \langle u_{x} \rangle^{f}}{\partial t} = \frac{\partial S_{xz}^{f}}{\partial z} - \frac{\partial \mathbf{R}_{xz}^{f}}{\partial z} + \rho^{f} \epsilon g_{x} - n \langle f_{D} \rangle$$

Reynolds shear stress :

$$R_{xz}^f = \rho^f \nu^t \frac{d \langle u_x \rangle^f}{dz}$$

 $\boldsymbol{\nu}^t$: turbulent viscosity computed with a mixing length

Numerical setup

Geometrical parameters :

- 3D bi-periodic domain
- Slope : 10%
- $d_l/d_s = 2 \text{ (6 mm / 3 mm)}$
- $\blacksquare \ H = 8d_l$
- Shields Number : $\theta = \frac{\tau_f}{(\rho^p \rho^f)gd_l}$

(a) $N_l = 2$

Simulations

Transport rate :

$$Q_s = \int_z \phi v_x^p dz$$

 $Q_s^* = \frac{Q_s}{\sqrt{(\rho^p/\rho^f-1)gcos(\alpha)\bar{d}^3}},\,\bar{d}$: mean surface diameter

Transport. Comparison Monodisperse and $N_l = 2$

Comparison Mono, $N_l = 2$:

- $\blacksquare Q_s^{*mono} = 15.77\Theta^{1.88}$
- $Q_s^{*N2} = 21.59\Theta^{1.88}$
- Transport 37% more efficient

Transport. Comparison Monodisperse and $N_l = 2$

Comparison Mono, $N_l = 2$:

- $Q_s^{*mono} = 15.77\Theta^{1.88}$
- $\blacksquare Q_s^{*N2} = 21.59 \Theta^{1.88}$
- Transport 37% more efficient

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Both small and large particlesare transported

Transport. Comparison Monodisperse and $N_l = 2$

Comparison Mono, $N_l = 2$:

 $Q_s^{*mono} = 15.77\Theta^{1.88}$

$$Q_s^{*N2} = 21.59\Theta^{1.88}$$

■ Transport 37% more efficient

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Both small and large particlesare transported

Transport. Comparison Monodisperse and $N_l = 4$

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

Transport. Comparison Monodisperse and $N_l = 4$

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Necessity to transport small particles
- Not a rugosity effect

Transport. Comparison Monodisperse and $N_l = 4$

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Necessity to transport small particles
- Not a rugosity effect

Conclusion

Summary :

- Model : reproduce an increase of mobility in bidisperse case
- Small particles need to be transported
- Small and large particles take part of the increase

Why are small particles sometimes transported?

- Fluid effect : fluid shear stress sufficient to transport small particles?
- Granular effect : how, what effect?