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Introduction

Since the works of Lascoux, Leclerc, Thibon and Ariki in the 90's, it is known that the representation theory of Hecke algebras of complex reflection groups is closely related to the crystal basis theory for quantum groups. In particular, the crystal basis for Fock spaces in affine type A leads to a classification of the simple modules of the Hecke algebra of type G(l, 1, n) (also known as Ariki-Koike algebra) in the modular case by certain combinatorial objects called Uglov l-partitions. This includes the cases of Iwahori-Hecke algebras of type A and B (see [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF][START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]).

A lot of informations on the representation theory of Hecke algebras of type D n or, more generally, of type G(l, l, n) can be obtained from the G(l, 1, n) case. In fact, these latter algebras can be seen as subalgebras of Hecke algebras of type G(l, 1, n) and it is possible to produce all the simple modules by studying the restriction of the simple modules of the Hecke algebras of type G(l, 1, n), using Clifford theory. This problem has been studied in various papers using different approaches (see [START_REF] Hu | Crystal basis and simple modules for Hecke algebras of type G[END_REF][START_REF] Genet | Modular representations of cyclotomic Hecke algebras of type G[END_REF] and the references theirin). The one developed in [START_REF] Hu | Crystal basis and simple modules for Hecke algebras of type G[END_REF] and [START_REF] Lin | Crystal of affine sl l and Hecke algebras at a primitive 2l root of unity[END_REF] in particular involves the existence of two maps which are defined using the crystal graph of an irreducible highest weight module in affine type A:

• The first map associates to each Uglov l-partition labelling a vertex of the crystal, another Uglov l-partition.

• The second one associates to each e-regular partition, labelling a vertex of the crystal of the fundamental representation a certain Uglov l-partition.

The existence of such maps is non trivial and based on the structure of the associated crystals and their descriptions are only recursive on the size of the partitions/multipartitions involved. The interests of these maps is that they allow to describe the restriction of the simple modules of the Hecke algebras of type G(l, 1, n) to the Hecke algebras of type G(l, l, n). The aim of this note is to recover, generalize and explicit these results. The main tools of the proof are the crystal isomorphisms defined and described in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF]. Using them, the proofs become purely combinatorial and quite elementary. They also permits to explain how the approaches developed in [START_REF] Hu | Crystal basis and simple modules for Hecke algebras of type G[END_REF] and in [START_REF] Genet | Modular representations of cyclotomic Hecke algebras of type G[END_REF] are related.

Crystals

In this part, we quickly recall some basic combinatorial notions, then we focus on the definition and on important properties of the crystals for Fock spaces. In all this section, we set l ∈ Z >0 and e ∈ Z >1 .

2010 Mathematics Subject Classification: 20C08,05E10,17B37 1 2.1 Generalities on Fock spaces and crystals 2.1.1. A partition is by definition a nonincreasing sequence λ = (λ 1 , . . . , λ m ) of nonnegative integers. If 1≤i≤m λ i = n, we say that λ is a partition of n. For j = 1, . . . , l, let λ j be a partition of n j ∈ Z ≥0 then we say that the l-tuple (λ 1 , . . . , λ l ) is an l-partition of n if 1≤j≤l n j = n. We denote by Π l (n) the set of l-partitions of rank n. The empty l-partition is by definition the unique partition of 0 and it is denoted by ∅ := (∅, . . . , ∅). When l = 1, the 1-partitions are identified with the partitions in an obvious way.

2.1.2. Let s = (s 1 , . . . , s l ) ∈ Z l (we say that s is a multicharge). Let q be an indeterminate. The Q(q)-vector space generated by all the l-partitions:

F q := n∈Z ≥0 λ∈Π l (n) Q(q)λ
is called the Fock space. Let U q ( sl e ) be the quantum group of affine type A

(1) e-1 . This is an associative Q(q)-algebra with generators e i , f i , t i , t -1 i (for i = 0, . . . , e -1) and ∂ and relations given in [2, §6.1]. We denote by U ′ q ( sl e ) the subalgebra generated by e i , f i , t i , t -1 i (for i = 0, ..., e -1). For i = 0, . . . , e -1, we denote by Λ i the fundamental weights and the simple roots are given by:

α i = -Λ i-1 + 2Λ i -Λ i+1 ,
where the indices are taken modulo e. There is an action of U ′ q ( sl e ) on the Fock space. This action depends on the choice of s and the module generated by the empty multipartition is an irreducible highest weight module with weight Λ s1 + . . . + Λ s l . We do not need the precise definition of this action and we refer to [2, Ch. 6] for details.

2.1.3.

To each λ ∈ Π l (n) is associated its Young tableau:

[λ] = {(a, b, c) | a ≥ 1, c ∈ {0, . . . , l -1}, 1 ≤ b ≤ λ c a }. We define the content of a node γ = (a, b, c) ∈ [λ] as follows: cont(γ) = b -a + s c ,
and the residue res(γ) is by definition the content of the node taken modulo e. We will say that γ is an i + eZ-node of λ when res(γ) ≡ i + eZ (we will sometimes simply called it an i-node). Finally, We say that γ is removable when γ = (a, b, c) ∈ [λ] and [λ]\{γ} is the Young diagram of an l-partition. Similarly, γ is addable when γ = (a, b, c) / ∈ [λ] and [λ] ∪ {γ} is the Young diagram of an l-partition. Let γ, γ ′ be two removable or addable i-nodes of λ. We denote

γ ≺ s γ ′ def ⇐⇒ either b -a + s c < b ′ -a ′ + s c ′ , or b -a + s c = b ′ -a ′ + s c ′ and c > c ′ .
2.1.4. For λ an l-partition and i ∈ Z/eZ, we can consider its set of addable and removable i-nodes. Let w (e,s) i (λ) be the word obtained first by writing the addable and removable i-nodes of λ in increasing order with respect to ≺ s , next by encoding each addable i-node by the letter A and each removable i-node by the letter R. Write w (e,s i (λ) = A p R q for the word derived from w (e,s) i (λ) by deleting as many of the factors RA as possible. In the following, we will sometimes write w i (λ) and w i (λ) instead of w (e,s) i (λ) and w (e,s) i (λ) if there is no possible confusion.

If p > 0, let γ be the rightmost addable i-node in w i . The node γ is called the good addable i-node. If r > 0, the leftmost removable i-node in w i is called the good removable i-node.

Example 2.1.5. For l = 2, s = (0, 1) and e = 3. Let us consider the 2-partition λ := ((4), (2, 1)) of 7. We write its Young tableau and the residues of the nodes in the associated boxes:

0 1 2 0 , 1 2 0 2
We have w 0 (λ) = RAR and thus (1, 4, 1) is a good removable 0-node for λ. We have w 2 (λ) = AAR and thus (2, 1, 1) is a good addable 2-node for λ and (1, 2, 2) is a good removable 2-node for it.

2.1.6. We denote by G e,s the crystal of the Fock space computed using the Kashiwara operators e e,s i and f e,s i . Again, we refer to [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] for details. This is the graph with • vertices : the l-partitions λ ⊢ l n with n ∈ Z ≥0 .

• arrows: λ i → µ if and only if f e,s i λ = µ (or equivalently e e,s i µ = λ). This means that µ is obtained by adding to λ a good addable i-node, or equivalently, λ is obtained from µ by removing a good removable i-node.

Example 2.1.7. For l = 3, e = 2 and s = (0, 0, 1) the graph below is the subgraph of G e,s containing the empty 3-partition and with the 3-partitions with rank less or equal than 4.
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Let Φ e,s (n) to be the set of l-partitions of rank n in the connected component of G e,s containing the empty l-partition. This is called the set of Uglov l-partitions. Hence, by definition, an Uglov l-partition is defined by adding successively good nodes to the empty l-partition (with arbitrary residues). It strongly depends on the choice of s. Assume that s is such that 0 < s js i < e for all 0 < i < j ≤ l then the set Φ e,s (n) is known as the set of FLOTW l-partitions and it has a nice non recursive description (see [2, §6.3.2]). We have λ = (λ 1 , . . . , λ l ) ∈ Φ s,e (n) if and only if:

1. For all j = 1, . . . , l -1 and i ∈ Z >0 , we have:

λ j i ≥ λ j+1 i+sj+1-sj .
2. For all i ∈ Z >0 , we have:

λ l i ≥ λ 1 i+e+s1-s l . 3. For all k ∈ Z >0 , the set {λ j i -i + s j + eZ | i ∈ Z >0 , λ j i = k, j = 1, . . . , l}, is a proper subset of Z/eZ.
In general, we don't have such a nice description of the set of Uglov l-partitions.

Example 2.1.9. In the case where l = 1, the set Φ e,(0) (n) is the set of e-regular partitions of n, that is, the set of partitions of rank n such that no non zero parts are repeated e or more times.

Example 2.1.10. Following Example 2.1.7, we have

Φ 2,(0,0,1) (4) = {(4, ∅, ∅), (3, 1, ∅), (2, ∅, 2), (2.1, ∅, 1), (2, 2, ∅), (1, 1, 2), (1, ∅, 3), (∅, ∅, 4)}

Crystal isomorphisms

In this part, we recall the definition of certain crystal isomorphisms studied in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF]. These maps will be intensively used in the next sections.

2.2.1.

Let S l be the (extended) affine symmetric group. This is defined as follows. We denote by P l := Z l the Z-module with standard basis {y i | i = 1, . . . , l}. For i = 1, . . . , l -1, we denote by σ i the transposition (i, i + 1) of S l . Then S l can be seen as the semi-direct product P l ⋊ S l where the relations are given by σ i y j = y j σ i for j = i, i + 1 and σ i y i σ i = y i+1 for i = 1, . . . , l -1 and j = 1, . . . , l. This group acts on Z l by setting for any s = (s 1 , . . . , s l ) ∈ Z l : σ c .s = (s 1 , . . . , s c-1 , s c+1 , s c , s c+2 , . . . , s l ) for c = 1, . . . , l -1 and y i .s = (s 1 , s 2 , . . . , s i + e, . . . , s l ) for i = 1, . . . , l.

A fundamental domain for this action is given by

A e l := (s 1 , . . . , s l ) ∈ Z l | 0 ≤ s 1 ≤ . . . ≤ s l < e .
Note that we thus have a description of Φ s,e (n) when s is in this domain by §2.1.8. Let τ := y l σ l-1 . . . σ 1 then we see that S l is generated by τ and σ i for i = 1, . . . , l -1. In addition, we have:

τ.s = (s 2 , . . . , s l , s 1 + e).

2.2.2.

Assume that s ∈ Z l and s ′ ∈ Z l are in the same orbit modulo S l . As explained in [2, §6.2.17], the crystal graph theory allows to construct a combinatorial bijection between the two sets of Uglov l-partitions Φ s,e (n) and Φ s ′ ,e (n). Let λ ∈ Φ s,e (n) then there exists a sequence (i 1 , . . . , i n ) ∈ (Z/eZ) n such that:

f e,s i1 . . . f e,s in ∅ = λ Then there exists µ ∈ Φ s ′ ,e (n) such that f e,s ′ i1 . . . f e,s ′ in ∅ = µ We set Ψ e
s→s ′ (λ) := µ (it does not depends on the choice of the sequence (i 1 , . . . , i n )). This defines a bijection Ψ e s→s ′ : Φ s,e (n) → Φ s ′ ,e (n). A combinatorial description of this map is given in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight U v ( sl e )-modules of higher level[END_REF]. Let us quickly explain how. There exists w ∈ S l such that s ′ = w.s. Then, w is a product of τ and σ i 's (i = 1, . . . , l -1). Thus Ψ e s→s ′ is a composition of maps of the form Ψ e v→τ.v and Ψ e v→σi.v with v ∈ Z l explicit by induction. • For all λ = (λ 1 , . . . , λ l ) ∈ Φ e,v (n), we have

Ψ e v→τ.v (λ) = (λ 2 , . . . , λ l , λ 1 ).
• For all λ = (λ 1 , . . . , λ l ) ∈ Φ e,v (n), we have

Ψ e v→σi.v (λ) = (λ 1 , . . . , λ i-1 , λ i+1 , λ i , λ i+2 , . . . , λ l ),
where ( λ i+1 , λ i ) is obtained from (λ i , λ i+1 ) via a purely simple combinatorial process described in [7, th. 5.4.2] (in terms of Lusztig symbols) or in [6, §5.3] (in terms of Young tableaux).

2.2.3.

Assume that s = (s 1 , . . . , s l ) satisfies s is j ≥ n -1e for all i < j then we say that s is very dominant. If both s and s ′ are very dominant (comparing to n) and in the same orbit then Ψ e s→s ′ is the identity and the set Φ s,e (n) is known as the set of Kleshchev l-partitions (see [2, Ex. 6.2.16]).

If s ∈ Z l , one way to compute the set Φ s,e (n) of Uglov l-partitions consists in finding w ∈ S l such that s ′ = w.s ∈ A e l . We can then use the description of the set Φ s ′ ,e (n) in §2.1.8 and then apply the isomorphism Ψ e s ′ →s .

Example 2.2.4. For l = 3, e = 2 and s = (2, 0, 3) the graph below is the subgraph of G e,s containing the empty 3-partition.
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Looking at example 2.1.7, we see that Ψ 2 (0,0,1)→(2,0,3) is the identity for the Uglov 3-partitions of ranks ≤ 3, and we have

Ψ 2 (0,0,1)→(2,0,3) (2, ∅, 2) = (3, ∅, 1), Ψ 2 (0,0,1)→(2,0,3) (2, 2, ∅) = (2, 1, 1), Ψ 2 (0,0,1)→(2,0,3) (1, 1, 2) = (1, ∅, 2.
1), and Ψ 3 (0,0,1)→(2,0,3) is the identity for the others Uglov 3-partitions of ranks 4. This formulae can be also obtained without looking at the crystal. Indeed, we have (2, 0, 3) = (σ 1 τ ) 2 (0, 0, 1) and thus Ψ 2 (0,0,1)→(2,0,3) = Ψ 2 (0,0,1)→τ (0,0,1) • Ψ 2 τ (0,0,1)→σ1τ (0,0,1) • Ψ 3 σ1τ (0,0,1)→τ σ1τ (0,0,1) • Ψ 2 τ σ1τ (0,0,1)•σ1τ σ1τ (0,0,1) and one can use the combinatorial description of the isomorphisms.

Two maps on crystals

The above results will allow us to recover and give precisions on two results on crystals in affine type A thanks to quite elementary proofs. These two results concern a particular choice of multicharge which naturally appears in the context of Hecke algebras, as we will see in the next part. In this section, we thus assume that l divides e and that s ∈ Z l is in the orbit of the multicharge (0, e/l, . . . , (l -1)e/l) modulo S l .

Hu's map

The first result that we want ro recover is in fact a direct generalization of a result by Hu [START_REF] Hu | Crystal basis and simple modules for Hecke algebras of type G[END_REF]Theorem 3.6]. We propose here an elementary proof of this result using our crystal isomorphisms and we will also give a general method to explicitly compute the l-partitions that this results allows to define. Proposition 3.1.1 (Hu). Assume that λ ∈ Φ e,s (n). Then there exists a sequence (i 1 , . . . , i n ) ∈ (Z/eZ) n such that: f e,s i1 . . . f e,s in ∅ = λ. Then for any such sequences, there exists µ ∈ Φ e,s (n) such that f e,s i1+e/l . . . f e,s in+e/l ∅ = µ

To prove this proposition, we will proceed in two steps, we first prove the proposition for a particular choice of multicharge which is in A e l , and then make use of the crystal isomorphisms we have already defined. Lemma 3.1.2. Let s = (0, e/l, . . . , (l -1)e/l) Assume that λ ∈ Φ e,s (n) and that we have a sequence (i 1 , . . . , i n ) ∈ (Z/eZ) n such that: f e,s i1 . . . f e,s in ∅ = λ.

Then we have that µ := (λ l , λ 1 , . . . , λ l-1 ) ∈ Φ e,s (n) and we have f e,s i1+e/l . . . f e,s in+e/l ∅ = µ.

Proof. We argue by induction on n. The lemma is clear for the empty l-partition. Assume now that n > 0.

Let λ ∈ Φ e,s (n) and assume that we have a sequence (i 1 , . . . , i n ) ∈ (Z/eZ) n such that f e,s i1 . . . f e,s in ∅ = λ.

Set λ ′ := f e,s i2 . . . f e,s in ∅ then λ ′ = (λ ′ 1 , . . . , λ ′ l ) is in Φ e,s (n -1) and by induction, µ ′ := (λ ′ l , λ ′ 1 , . . . , λ ′ l-1 ) is in Φ e,s (n -1) and we have µ ′ = f e,s i2+e/l . . . f e,s in+e/l ∅. Now, by hypothesis, we have that γ = [λ]/[λ ′ ] is a good addable i n -node for λ ′ (and (e, s)). Set (a, b, c) := γ. Then γ ′ := [µ]/[µ ′ ] is an addable node for µ ′ . We have γ ′ = (a, b, c + 1) (where the 3rd component is understood modulo l) and, by our choice of multicharge, it is a i n + e/l-node. We want to show that this is a good addable node for µ ′ .

Assume that

γ 1 = (a 1 , b 1 , c 1 ) is a i n -addable or removable node for λ ′ . Then γ ′ 1 := (a 1 , b 1 , c 1 + 1
) is an addable or removable node for µ ′ (and it is removable, resp. addable, if and only if γ 1 is). We have that 

cont(γ ′ 1 ) = cont(γ 1 ) + e/l if c 1 = l, cont(γ 1 ) + e/l -e if c 1 = l.
(λ ′ ) = w (e,s)
i1+e/l (µ ′ ). This discussion implies that γ ′ is good addable i 1 + e/l-node for µ ′ and thus that f e,s i1+e/l . . . f e,s in+e/l ∅ = µ, as required.

We can now give a proof of Proposition 3.1.1. Assume that s ∈ Z l is in the orbit of (0, e/l, . . . , (l -1)e/l) modulo S l , that λ ∈ Φ e,s (n) and that we have a sequence (i 1 , . . . , i n ) ∈ (Z/eZ) n such that: f e,s i1 . . . f e,s in ∅ = λ. Set s ′ := (0, e/l, . . . , (l -1)e/l), then by definition, we have f e,s ′ i1 . . . f e,s ′ in ∅ = Ψ e s→s ′ (λ). We can thus use Lemma 3.1.2 to deduce that there exists µ ′ ∈ Φ e,s ′ (n) such that f e,s ′ i1+e/l . . . f e,s ′ in+e/l ∅ = µ ′ , and using again our crystal isomorphism, we get that: f e,s i1+e/l . . . f e,s in+e/l ∅ = Ψ e s ′ →s (µ ′ ), so the result follows. Note in addition that the l-partition µ ′ may be explicitly described thanks to the explicit description of the crystal isomorphism without the computation of the crystal itself.

Example 3.1.3. Take l = 2 and assume that e = 4. We set s = (0, 10) which is in the orbit of s ′ = (0, 2) ∈ A 4 2 . We take λ = (1.1, 5.1) ∈ Φ 4 (0,10) [START_REF] Naito | Lakshmibai-Seshadri paths fixed by a diagram automorphism[END_REF]. Note that the multicharge is very dominant for 2-partitions of rank 8 so (1.1, 5.1) is a Kleshchev bipartition. If we want to find the bipartition µ of Proposition 3.1.1, we first need to find the bipartition λ ′ ∈ Φ 4 (0,2) (8) such that Ψ 4 s→s ′ (λ) = λ ′ . Using our description of the isomorphisms, we get λ ′ = (2.1, 5). We then have µ = Ψ 4 s ′ →s (5, 2.1) = (4, 3.1).

The map ι s k

We keep the hypothesis that s is in the orbit of the multicharge (0, e/l, . . . , (l -1)e/l) modulo S l . We now consider another map defined using the crystal. As explained in [START_REF] Lin | Crystal of affine sl l and Hecke algebras at a primitive 2l root of unity[END_REF], its existence follows from [START_REF] Naito | Lakshmibai-Seshadri paths fixed by a diagram automorphism[END_REF] in the case where l = 2. Here we will give a general version and we will again give an easy proof using our crystal isomorphism. We will also make things more explicit.

Proposition 3.2.1. Let k be an integer dividing l. Set v := (0, e/l, . . . , e(k -1)/l) ∈ Z k . There exists a unique map ι s k : Φ ke/l,v (n) → Φ e,s (ln/k) well-defined as follows. For all λ ∈ Φ ke/l,v (n), there exists (i 1 , . . . , i n ) ∈ Z n such that

f ke/l,v i1 . . . f ke/l,v in ∅ = λ,
(the indices are understood modulo ke/l.) Then for all such sequences, we have: 

f e,
∅ = ι s k (λ)
(the indices are understood modulo e.)

In the same spirit as the last result, our strategy consists in proving the result when s is in the fundamental domain A e l . Lemma 3.2.2. Let k be an integer dividing l. Set s = (0, e/l, . . . , (l-1)e/l) and v := (0, e/l, . . . , e(k-1)/l) ∈ Z k . There exists a unique map ι s k : Φ ke/l,v (n) → Φ e,s (ln/k) well-defined as follows. For all λ ∈ Φ ke/l,v (n), there exists (i 1 , . . . , i n ) ∈ Z n such that

f ke/l,v i1 . . . f ke/l,v in ∅ = λ
Then for all such sequences, we have: ).

f e,
Proof. We again argue by induction on n ∈ Z ≥0 . The lemma is clear for the empty l-partition. Assume now that n > 0. Let λ ∈ Φ ke/l,v (n) and assume that we have a sequence (i 1 , . . . , i n ) ∈ Z n such that

f ke/l,v i1 . . . f ke/l,v in .∅ = λ Set λ ′ := f ke/l,v i2 . . . f ke/l,v in
.∅. By induction, we have:

f e,s i1 f e,s i1+ke/l . . . f e,s i1+e-ke/l l/k . . . f e,s in f e,s in+ke/l . . . f e,s in+e-ke/l l/k .∅ = (λ ′ 1 , . . . , λ ′ k , λ ′ 1 , . . . , λ ′ k , . . . , λ ′ 1 , . . . , λ ′ k ) Denote λ[0] := (λ ′ 1 , . . . , λ ′ k , λ ′ 1 , . . . , λ ′ k , . . . , λ ′ 1 , . . . , λ ′ k ) Set γ = [λ]/[λ ′
] and let (a, b, c) := γ. This is a good addable i 1 + (ke/l)Z-node for λ ′ . We have by definition ba + (c -1)e/l ≡ i 1 + (ke/l)Z. So there exists j ∈ {0, 1, . . . , l/k -1} such that ba + (c -1)e/l = i 1j(ke/l) + eZ. We thus have ba + (c -1 + (j -1)k)e/l = i 1 -(ke/l) + eZ. Let use denote γ j := (a, b, c + (j -1)k) (where the 3rd component is understood modulo l). We have that the residue of γ j is i 1 -(ke/l) + eZ for λ[0] and the multicharge s. Now assume that η = (a ′ , b ′ , c ′ ) is an addable or a removable i 1 -(ke/l) + eZ-node for λ, different from γ. As above, there exists j ′ ∈ {1, . . . , l} such that η j ′ := (a ′ , b ′ , j ′ -1) is an addable or removable i 1ke/l + eZ-node for λ[0] (and removable if and only if η is).

In addition, by our definition of ≺ . , we have η ≺ v γ if and only is η j ′ ≺ s γ j . Reciprocally, all the i 1ke/l + eZ-nodes are obtained in this way.

This discussion implies that γ j is a good addable i 1ke/l-node for λ[0] because γ is a good one for λ. We denote by λ [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF] the l-partition obtained from this one by adding γ j to λ[0]. We thus have λ [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF] = f e,s i1+e-ke/l λ ′ = 0.

Let us now consider γ 2 := (a, b, (c -1 + (j -2)k)) (where the 3rd component is understood modulo e). It is an addable i 1 + (l -2)e/l + eZ-node for λ [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF] and by exactly the same argument as above, we see that this is a good addable node. Let λ [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] be the l-partition obtained by adding this node to λ [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF]. We obtain f e,s i1+e-2ke/l f e,s i1+e-ke/l λ ′ = λ [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]. Continuing in this way we deduce f e,s i1 . . . f e,s i1+(l-2)e/l f e,s i1+(l-1)e/l λ ′ = λ, as required.

One can now give a general proof of the proposition. Assume that s ∈ Z l is in the orbit of (0, e/l, . . . , (l -1)e/l), that λ ∈ Φ e,s (n) and that we have a sequence (i 1 , . . . , i n ) ∈ Z n such that

f ke/l,v i1 . . . f ke/l,v in ∅ = λ.
Then, by the above lemma, if we set s ′ = (0, e/l, . . . , (l -1)e/l), we have

f e,s ′ i1 f e,s ′ i1+ke/l . . . f e,s ′ i1+e-ke/l l/k . . . f e,s ′ in f e,s ′ in+ke/l . . . f e,s ′ in+e-ke/l l/k ∅ = (λ 1 , . . . , λ k , λ 1 , . . . , λ k , . . . , λ 1 , . . . , λ k )
and thus one can conclude that f e,s i1 f e,s i1+ke/l . . . f e,s i1+e-ke/l l/k . . . f e,s in f e,s in+ke/l . . . f e,s in+e-ke/l l/k ∅ = Ψ e s ′ →s (λ 1 , . . . , λ k , λ 1 , . . . , λ k , . . . , λ 1 , . . . , λ k ).

which proves the theorem and also gives en explict way to compute the l-partition involved.

Example 3.2.3. We take l = 2 and e = 4. We set k = 1. Let λ = (4.3.1), this is a e/2-regular partition and thus in Φ 2,(0) [START_REF] Naito | Lakshmibai-Seshadri paths fixed by a diagram automorphism[END_REF]. By Lemma 3.2.2, we have ι ( 

Hecke algebras of type G(p, p, n)

In this part, we apply the results above to recover and generalize some of the results of [START_REF] Hu | Crystal basis and simple modules for Hecke algebras of type G[END_REF] and [START_REF] Lin | Crystal of affine sl l and Hecke algebras at a primitive 2l root of unity[END_REF] and give precisions on them. We will freely use the results in [START_REF] Genet | Modular representations of cyclotomic Hecke algebras of type G[END_REF].

Definition

Let η ∈ C × . Assume that n > 2. Let s = (s 1 , . . . , s l ) ∈ Z l and let η ∈ C × . The cyclotomic Hecke algebra H n (s) of type G(l, 1, n) (also known as Ariki-Koike algebra) is the C-algebra with a presentation by:

• generators : T 0 , T 1 , ..., T n-1 ,

• relations :

(T 0 -η s1 ) . . . (T 0 -η s l ) = 0 (T i -η)(T i + 1) = 0 (1 ≤ i ≤ n -1) (T 0 T 1 ) 2 = (T 1 T 0 ) 2 T i T i+1 T i = T i+1 T i T i+1 (1 ≤ i < n) T i T j = T j T i (j ≥ i + 2).
The cyclotomic Hecke algebra H ′ n of type G(l, l, n) is the C-algebra with a presentation by : • generators : T 0 , T 1 , ..., T n-1 ,

• relations :

(T i -η)(T i + 1) = 0 for 0 ≤ i ≤ n -1, T i T i+1 T i = T i+1 T i T i+1 for 1 ≤ i ≤ n -2, T 0 T 2 T 0 = T 2 T 0 T 2 , (T 1 T 0 T 2 ) 2 = (T 2 T 1 T 0 ) 2 , T 0 T j = T j T 0 for j > 2, T i T j = T j T i for i > 0 et j > i + 1, T 0 T 1 T 0 T 1 ... l terms = T 1 T 0 T 1 T 0 ... l terms
.

From now, we assume that η is a primitive root of order e > 1. Let s ∈ Z l be in the orbit of (0, e/l, . . . , (l -1)e/l) then the subalgebra of H n := H n (s) generated by {T 0 := T 0 -1

T 1 T 0 , T 1 , ..., T n-1 } is isomorphic to H ′ n . Moreover H n is Z/lZ-graded with respect to H ′ n with gradation H n = l-1 j=0 T 0 j H ′ n .
As a consequence, one may use Clifford Theory to obtain results for the representation theory of H ′ n from the one of H n . To do this, we first need to recall some known results on the representation theory of H n 4.2 Simple H n -modules 4.2.1. The classification of the simple H n -modules that we need comes from the theory of basic sets. A complete review of this can be found in [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] but we quickly recall what we need here. One can define a certain set of finite dimensional H n -modules which are parametrized by the set of l-partitions, they are called Specht modules

{S λ | λ ∈ Π l (n)}.
These modules are non simple (nor semisimple) in general but we have associated composition series. Let us denote by [S λ : M ] the multiplicity of M ∈ Irr(H n ) in a composition series for S λ (this is well-defined by the Jordan-Hölder theorem). Then the matrix defined by:

D := ([S λ : M ]) λ∈Π l (n),M∈Irr(Hn)
controls a part of the representation theory of H n .This is called the decomposition matrix.

4.2.2. We here follow [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF]Ch.5,Ch.6]. Then one can define a pre-order ≪ s on the set of l-partitions which depends on the choice of s. We don't give the definition of this pre-order here, all we need to know is the following theorem (see [2, §6.7]). The map M → λ M is injective. As a consequence, if for all M ∈ Irr(H n ) we denote D λM s,e := M , we have:

Irr(H n ) = {D µ
s,e | µ ∈ Φ s,e (n)}. It is thus important to note that this theorem does not give one way to label the simple modules of the algebra H n but in fact several ones: one for each choice of an element in the orbit of s modulo S l . It is now natural to ask how all these parametrization are connected. It turns out that the crystal isomorphisms make the links between them. 

Restriction of simple H n -modules

We here set s = (0, e/l, . . . , (l -1)e/l). There is a natural action of the cyclic group Z/lZ on Π l (n) generated by the following map:

(λ 1 , λ 2 , ..., λ l ) → (λ l , λ 1 , ..., λ l-2 ).

For λ ∈ Π l (n) we denote by λ the associated equivalence class. Let

r := r(λ) = l Cardinality of λ .
The following theorem is proved in [START_REF] Genet | Modular representations of cyclotomic Hecke algebras of type G[END_REF]. ) is a direct sum of r(Ψ e s→,s (λ)) simple H ′ n -modules. The above proposition gives thus an explicit way to find the number of simple modules in the restriction of the simple H n -modules without refering to the notion of crystal and for all the known parametrization of the simples. This thus includes the usual parametrization by set the Kleshchev l-partitions using our isomorphisms.

Proposition 4.3.3. Let s ′ ∈ Z l in the same class as s = (0, e/l, . . . , (l -1)e/l). Let λ ∈ Φ s ′ ,e (n) then Res(D λ s ′ ,e ) splits into a sum of x simple modules if and only if λ ∈ Im(ι s ′ l/x ) and λ / ∈ Im(ι s ′ l/s ) for s > x. Proof. Take first s ′ = s. Then by Lemma 3.2.2, we have that λ ∈ Im(ι s

x ) if and only if λ is of the form (λ 1 , . . . , λ k , λ 1 , . . . , λ k , . . . , λ 1 , . . . , λ k ) where k = l/x and the result follows from the last proposition. Now, if s ′ ∈ Z l in the same class as s = (0, e/l, . . . , (l -1)e/l), then for all λ ∈ Φ s,e (n), we have

D λ s,e = D Ψ e s→s ′ (λ) s ′ ,e
and one can conclude noticing that λ ∈ Im(ι s l/x ) ⇐⇒ Ψ e s ′ →s (λ) ∈ Im(ι s ′ l/x ). by the definition of the maps and the properties of crystal isomorphisms. Then we have that r(λ) = 2, this implies that Res(D λ s,e ) splits in two simple H ′ n -modules. Note that we have λ = ι s 2 (3.1, 2). Set s = (0, 13, 26, 39), this multicharge is very dominant and in the same orbit as s. One can compute Ψ e s→s ′ (λ) and we obtain λ ′ = (2.1, 1, 3.2, 2.1). So we have that Res(D λ ′ s ′ ,e ) splits in two simple H ′ n -modules.

The case l = 2

We assume in this part that l = 2 and that e is odd. Then one can apply the results above. In particular, for all s in the orbit of (0, e/2) modulo S 2 and λ ∈ Φ e,s (n), the H ′ n -module Res(D λ s,e ) splits into one or two simple modules.

The aim is to study the set of Uglov bipartitions λ ∈ Φ e,s (n) such that Res(D λ s,e ) splits into a sum of two simple modules. Such bipartitions will be called divided bipartitions for the multicharge s. This notion strongly depends on s. In the case where s = (0, e/2), by the results above, these bipartitions correspond exactly to the bipartitions of the form (λ, λ) in Φ e,s (n). This is exactly the set of bipartitions (λ, λ) where λ is an e/2-regular partition of n/2 by §2.1.8. Proposition 4.4.1. Let N ∈ Z ≥0 . We have that (λ 1 , λ 2 ) is a divided bipartition for s = (0, e/2 + N e) if and only if we have Ψ e (0,e/2+N e)→(N e,e/2) (λ 1 , λ 2 ) = (λ 2 , λ 1 ) Proof. Let s = (0, e/2 + N e). Assume that (λ 1 , λ 2 ) is a divided bipartition. Let (i 1 , . . . , i n ) ∈ (Z/eZ) n be such that f e,s i1 . . . f e,s in ∅ = λ Then we also have f e,s i1+e/2 . . . f e,s in+e/2 ∅ = λ Now we have that s ′ := τ.s = (e/2 + N e, e) and by §2.2.2, we obtain: f e,s ′ i1 . . . f e,s ′ in ∅ = (λ 2 , λ 1 ) Then we also have f e,s ′ i1+e/2 . . . f e,s ′ in+e/2 ∅ = (λ 2 , λ 1 ) But now note that s = (N e, e/2) = s ′ -(e/2, e/2) so it is clear that we obtain : and this implies that Ψ e (0,e/2+N e)→(N e,e/2) (λ 1 , λ 2 ) = (λ 2 , λ 1 ). Reciprocally, assume that Ψ e (0,e/2+N e)→(N e,e/2) (λ 1 , λ 2 ) = (λ 2 , λ 1 ). Assume that (i 1 , . . . , i n ) ∈ (Z/eZ) n is such that f e,s i1 . . . f e,s in ∅ = (λ 1 , λ 2 ). Then we have: f which implies that (λ 1 , λ 2 ) is a divided partition (for (0, e/2 + N e)).

  s i1 f e,s i1+ke/l . . . f e,s i1+e-ke/l l/k . . . f e,s in f e,s in+ke/l . . . f e,s in+e-ke/l l/k ∅ = (λ 1 , . . . , λ k l/k , λ 1 , . . . , λ k l/k , . . . , λ 1 , . . . , λ k l/k

  .1) = (4.3.1, 4.3.1). Then we obtain for example ι (0,22) 1 (4.3.1) = Ψ 4 (0,2)→(0,22) (4.3.1, 4.3.1) = (3.2.1, 4.3.2.1).

Theorem 4 . 2 . 3 .

 423 Under the above hypotheses, for all M ∈ Irr(H n ),1. there exists λ M ∈ Φ s,e (n) such that [S λM : M ] = 1, 2. for all µ ⊢ l n, if [S µ : M ] = 0 then µ ≪ m λ M .

Proposition 4 . 2 . 4 (

 424 [START_REF] Jacon | On the one dimensional representations of Ariki-Koike algebras at roots of unity[END_REF]). Let s ∈ Z l and s ′ ∈ Z l be two multicharge in the same orbit then for all λ ∈ Φ s,e (n), we have D λs,e = D Ψ e s→s ′ (λ) s ′ ,e .

Theorem 4 . 3 . 1 .

 431 Let λ ∈ Φ s,e (n) then we have that Res(D λ s,e ) is a direct sum of r(λ) simple H ′ n -modules. It is also possible to show that if λ and µ are in the same equivalence class then Res(D λ s,e ) and Res(D µ s,e ) are isomorphic. In addition, the simple modules appearing in the restriction of the D λ s,e 's determined the equivalence class of λ. As a consequence, one can obtain a classification of the simple H n -modules knowing the numbers r(λ). Applying Proposition 4.2.4 yields: Proposition 4.3.2. Let s ′ ∈ Z l in the same class as s = (0, e/l, . . . , (l -1)e/l). Let λ ∈ Φ s ′ ,e (n) then we have that Res(D λ s ′ ,e

Example 4 . 3 . 4 .

 434 Take l = 4 and e = 4. Let s = (0, 1, 2, 3). Then we have λ := (3.1, 2, 3.1, 2) ∈ Φ e,s (16).

  f e,(N e,e/2) i1-e/2 . . . f e,(N e,e/2) in-e/2 ∅ = (λ 2 , λ 1 )

∅ 2 ∅

 2 = (λ 2 , λ 1 ). We have τ.(N e, e/2) = (e/2, N e + e), and thus f e,(e/2,N e+e) i1 . . . f e,(e/2,N e+e) in ∅ = (λ 1 , λ 2 ). As (0, e/2 + N e) = (e/2, N e + e) -(e/2, e/2), we obtain f = (λ 1 , λ 2 )

  Thus, we have γ 1 ≺ e,s γ if and only ifγ ′ 1 ≺ e,s γ ′ . Reciprocally, if γ ′ 1 = (a 1 , b 1 , c 1) is a i n + e/l-addable or removable node for µ ′ . Then γ 1 := (a 1 , b 1 , c 1 -1) is an addable or removable for i n -node for λ ′ (and it is removable, resp. addable, if and only if γ ′ 1 is). We have that γ 1 ≺ e,s γ if and only if γ ′

1 ≺ e,s γ ′ . Thus we have w (e,s) i1