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Introduction

In his only paper devoted to the number theory published in 1859 [START_REF] Riemann | Üeber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] (it was also included as an appendix in [START_REF] Edwards | Riemann's zeta function[END_REF]) Bernhard Riemann continued analytically the series (1) ∞ n=1 1 n s , s = σ + it, σ > 1 to the complex plane with exception of s = 1, where the above series is a divergent harmonic series. He has done it using the integral

(2) ζ(s) = Γ(1 -s) 2πi C (-z) s e z -1 dz z ,
where the contour C is From (3) it is seen that Γ(z) is defined for all complex numbers z, except z = -n for integer n > 0, where are the simple poles of Γ(z). The most popular definition of the gamma function given by the integral Γ(z) = ∞ 0 e -t t z-1 dt is valid only for [z] > 0. Recently perhaps over 100 representations of ζ(s) are known, for review of the integral and series representations see [START_REF] Milgram | Integral and Series Representations of Riemann's Zeta Function and Dirichlet's Eta Function and a Medley of Related Results[END_REF]. The function ζ(s) has trivial zeros at s = -2n, n = 1, 2, 3, . . . and nontrivial zeros in the critical strip 0 < (s) < 1. In [START_REF] Riemann | Üeber die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] Riemann made the assumption, now called the Riemann Hypothesis (RH for short in following), that all nontrivial zeros ρ lie on the critical line [s] = 1 2 : ρ = 1 2 + iγ. Contemporary the above requirement is augmented by the demand that all nontrivial zeros are simple.

There are some results on the zero-free regions of ζ(s). K. Ford proved [START_REF] Ford | Zero-free regions for the Riemann zeta function[END_REF], [START_REF] Ford | Vinogradov's Integral And Bounds For The Riemann Zeta Function[END_REF] that ζ(σ + it) = 0 whenever [START_REF] Blanc | A new reason for doubting the Riemann hypothesis[END_REF] σ ≥ 1 -1 57.54(log |t|) 2 3 (log log |t|)

1 3
.

The best present bound seems to belong to M. Mossinghoff and T. Trudgian [START_REF] Mossinghoff | Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function[END_REF]: there are no zeros of ζ(σ + it) for |t| > 2 and

(5)

σ > 1 -1 - 1 5.573412 log |t| .
This is an improvement over (4) as the region free of non-trivial zeros off critical line is larger. In other words the width of the region with possible zeros violating the RH increases with t.

Riemann has shown that ζ(s) fulfills the functional identity:

(6) π -s 2 Γ s 2 ζ(s) = π -1-s 2 Γ 1 -s 2 ζ(1 -s), for s ∈ C \ {0, 1}.
The above form of the functional equation is explicitly symmetrical with respect to the line (s) = 1/2: the change s → 1 -s on both sides of [START_REF] Boros | Sums of arctangents and some formulas of Ramanujan[END_REF] shows that the values of the combination of functions π -s 2 Γ s 2 ζ(s) are the same at points s and 1 -s. Thus it is convenient to introduce the function [START_REF] Borwein | The Riemann Hypothesis: A Resource For The Afficionado And Virtuoso Alike[END_REF] ξ

(s) = 1 2 s(s -1)Γ s 2 ζ(s).
Then the functional identity takes the simple form:

(8) ξ(1 -s) = ξ(s)
The fact that ζ(s) = 0 for (s) > 1 and the form of the functional identity entails that nontrivial zeros ρ n = β n + iγ n are located in the critical strip:

0 ≤ [ρ n ] = β n ≤ 1.
From the complex conjugation of ζ(s) = 0 it follows that if ρ n = β n + iγ n is a zero, then ρ n = β n -iγ n also is a zero. From the symmetry of the functional equation ( 6) with respect to the line [s] =1 2 it follows, that if ρ n = β n + iγ n is a zero, then 1 -ρ n = 1 -β n -iγ n and 1 -ρ n = 1 -β n + iγ n are also zeros: they are located symmetrically around the straight line [s] = 1 2 and the axis t = 0, see Fig. 1. Riemann guesses and von Mangoldt proved that the number of zeta zeros N (T ) with positive imaginary parts < T (and real part inside critical strip) is (see eq.(2.3.6) in [START_REF] Borwein | The Riemann Hypothesis: A Resource For The Afficionado And Virtuoso Alike[END_REF]) ( 9)

N (T ) = T 2π log T 2π - T 2π + 7 8 + O(log(T )).
The classical (from XX century) references on the RH are [START_REF] Titchmarsh | The Theory of the Riemann Zeta-function[END_REF], [START_REF] Edwards | Riemann's zeta function[END_REF], [START_REF] Ivić | The Riemann zeta-function: the theory of the Riemann zeta-function with applications[END_REF], [START_REF] Karatsuba | The Riemann zeta-function[END_REF]. In the XXI century there appeared two monographs about the zeta function: [START_REF] Borwein | The Riemann Hypothesis: A Resource For The Afficionado And Virtuoso Alike[END_REF] and [START_REF] Broughan | Equivalents of the Riemann Hypothesis[END_REF].

There was a lot of attempts to prove RH and the common opinion was that it is true. However let us notice that there were famous mathematicians: J. E. Littlewood [1], P. Turan and A.M. Turing [5, p.1209] believing that the RH is not true. In Karatsuba's talk [START_REF] Karatsuba | [END_REF] at 1:01:10 1 he mentions that Atle Selberg had serious doubts whether RH is true or not. See also the paper "On some reasons for doubting the Riemann hypothesis" [START_REF] Ivic | On some reasons for doubting the Riemann hypothesis[END_REF] (reprinted in [7, p.137]) written by A. Ivić. New arguments against RH can be found in [START_REF] Blanc | A new reason for doubting the Riemann hypothesis[END_REF]. When J. Derbyshire asked A. Odlyzko about his opinion on the validity of RH he replied "Either it's true, or else it isn't" [11, p. 357-358]. There were some attempts to prove RH using the physical methods, see [START_REF] Schumayer | Physics of the Riemann hypothesis[END_REF][START_REF] Wolf | Will a physicist prove the Riemann hypothesis[END_REF]. Some analogs of the RH were proved and some other were disproved. André Weil proved the Riemann hypothesis to be true for field functions [START_REF] Weil | Sur les courbes algebriques et les varietes qui s'en deduisent[END_REF], while the Davenport-Heilbronn zeta-function [START_REF] Davenport | On the Zeros of Certain Dirichlet Series II[END_REF], which shares many properties with usual ζ(s), has zeros outside critical line and even to the right of (s) = 1, see [START_REF] Balanzario | Zeros of the Davenport-Heilbronn counterexample[END_REF].

In this paper we are going to present incompatibility of RH with the theorem on the universality of the logarithmic derivative of the zeta function. In 1975 S.M. Voronin [START_REF] Voronin | Theorem on the Universality of the Riemann Zeta Function[END_REF] proved first universality theorem. He wanted to prove the RH but instead he proved remarkable theorem on the universality of the Riemann ζ(s) function: be a continuous function on K which is holomorphic on the interior of K and is not zero in U ⊂ K. Then for any > 0 there exists a T ( , f ) such that [START_REF] Davenport | On the Zeros of Certain Dirichlet Series II[END_REF] 

Voronin's theorem: Let K be a compact subset of the strip D(1/2, 1) = {s ∈ C : 1 2 < (s) < 1} ⊂ C such that the complement of K is connected. Let f : K → C
max |s|≤r f (s) -ζ s + 3 4 + i T ( , f ) < .
Put simply in words it means that the zeta function approximates locally any smooth function in a uniform way.

We will use the universality theorem for the logarithmic derivative of ζ(s) [22, Theorem 2]:

Laurinčikas's theorem: Let K be a compact subset of the strip

D(1/2, 1) = {s ∈ C : 1 2 < (s) < 1} ⊂ C such that the complement of K is connected. Let f : K → C be
an analytic function inside K and continuous up to the boundary of K. Then for any > 0: [START_REF] Derbyshire | Prime Obsession. Bernhard Riemann and the greatest unsolved problem in mathematics[END_REF] lim inf

T →∞ 1 2T µ τ ∈ [-T, T ] : sup s∈K ζ ζ (s + iτ ) -f (s) < > 0 2 Above µ(A)
is the Lebesgue measure of the set A ⊂ R. Let us remark that in Voronin's theorem the existence of just one T such that ζ(s+ iT ) approximates f(s) is guaranteed but in Laurinčikas's theorem the existence of uncountably many such T is secured. Tere are also such "strong" or " enhanced" versions of the Voronin theorem, where the set of T is uncountably, see [START_REF] Lauriničkas | Limit Theorems for the Riemann Zeta-Function[END_REF], [START_REF] Matsumoto | A Survey On The Theory Of Universality For Zeta And L-Functions[END_REF]. In fact, because we assume RH, ζ (s)/ζ(s) is continuous to the right of (s) = 1 . there will be some (short) intervals of T such that ζ (s + iT )/ζ(s + iT ) approximates f (s) -if some T is good then also neighboring T will satisfy |ζ (s + iT )/ζ(s + iT ) -f (s)| < . We stress that in these theorems the RH is not assumed. The idea of our proof is as follows: We assume RH, thus inside any rectangle on the right of critical line there are no zeros of ζ(s). Using the Argument principle and the universality of ζ (s)/ζ(s) we will show that it is possible to choose such rectangles that integral of ζ (s)/ζ(s) along edges of these rectangles will be different from zero meaning that there are zeros of ζ(s) to the right of (s) = 1 2 : contradiction. Thus our main result is:

Thereom: The Riemann Hypthesis is not true.

In the following section we will present proof of above theorem. The Argument Principle. If f (z) is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then

(12) 1 2πi C f f (z) dz = Z -P
where Z and P denote respectively the number of zeros and poles of f (z) inside the contour C, with each zero and pole counted as many times as its multiplicity.

Let us notice that the only pole of ζ(s) is at s = 1. We consider the rectangle ABCD shown in Figure 2. We will denote this rectangle also as D(α, β, T ) where T will be determined later. If we assume that the RH is true then inside this rectangle and on its border there are no zeros of ζ(s), thus the integral We choose f (s) from the Laurinčikas's theorem to be the complex constant on a compact K on the right half of the critical strip (that K can be chosen a horizontal segment):

(15)

F (s) = U + iV, U, V ∈ R.
This F (s) can be constant in fact on the whole complex plane C We can put U = 0 as it will cancels out later. From the Laurinčikas's theorem we know that there exists such T that ( 16)

ζ ζ (s + iT ) = U + iV + r(s)
where the remainder |r(s)| < 1 (later we will use yet other epsilons) on the horizontal side of our rectangle (α + iT, β + iT ), i.e. we choose T as the height of our rectangle ABCD. Thus for segment AB we have (17

) AB ζ ζ (s) ds = (α -β)(U + iV ) + o(1)
where o(1) absorbs term:

(18) AB r(s) ds < (β -α) 1
and can be made arbitrarily small. Because there is a symmetry with respect to real axis:

(19) ζ ζ (s) = ζ ζ (s)
we have (20

) CD ζ ζ (s) ds = (β -α)(U -iV ) + o(1)
and together (21

) AB ζ ζ (s) ds + CD ζ ζ (s) ds = 2i(α -β)V + o(1).
To calculate integrals along vertical segments we will use the following formula for the logarithmic derivative of the ζ(s) function (see e.g. [9, Chapt.12]): [START_REF] Laurinčikas | Zeros of the derivative of the Riemann zeta-function[END_REF] ζ (s)

ζ(s) = 1 1 -s + 1 2 log(π) - 1 2 Γ ( s 2 + 1) Γ( s 2 + 1) + ρ 1 s -ρ .
The last summation extends over all nontrivial zeros of ζ(s), i.e. assuming the RH over ρ = 1 2 ± iγ.

Integrating the first term on rhs of ( 22) we obtain ( 23)

DA 1 1 -s ds = log(β -1 + iT ) -log(β -1 -iT )
We have [START_REF] Matsumoto | A Survey On The Theory Of Universality For Zeta And L-Functions[END_REF] log(z) = log |z| + i arg(z)

hence we obtain ( 25)

DA 1 1 -s ds = 2i arg(β -1 + iT )
Similarly for left vertical segment CB we obtain ( 26)

CB 1 1 -s ds = 2i arg(α -1 + iT )
Together for the positive circulation of the contour ABCD we have ( 27)

DA 1 1 -s ds - CB 1 1 -s ds = 2i(arg(β -1 + iT ) -arg(α -1 + iT ))
The Laurinčikas's theorem assures that T can jump to arbitrarily large T hence:

(28) lim

T →∞ arg(α -1 + iT ) = π 2 lim T →∞ arg(β -1 + iT ) = π 2 
and it follows that for sufficiently large T :

(29) DA 1 1 -s ds + BC 1 1 -s ds = o(1).
For the constant term 1 2 log(π) in ( 22) we obtain:

(30) DA 1 2 log(π) ds = 1 2 log(π) T -T i dt = log(π)T i
Adding integral over left vertical segment we obtain: 

ds = -(s + 2) + (2 + s) log 1 + s 2 -log (2 + s) β+iT β-iT + O 1 T .
Because 1 + α/2 > 0 and hence also 1 + β/2 > 0, 2 + α > 0, 2 + β > 0 we avoid branch cut in logarithm for negative arguments. After straightforward calculations we obtain for T → ∞ (in fact T does not increase to infinity continuously but T leaps over large values in according with Laurinčikas's theorem):

(37) 1 2 DA Γ ( s 2 + 1) Γ( s 2 + 1) ds + BC Γ ( s 2 + 1) Γ( s 2 + 1) ds T →∞ ------→ (β -α) π 2 i.
Now we will calculate the integrals of the last sum in [START_REF] Laurinčikas | Zeros of the derivative of the Riemann zeta-function[END_REF] over vertical edges of the rectangle ABCD. In the sum (38)

S(t) = ρ 1 s -ρ ,
where s ∈ (α -iT, α + iT ), i.e. s = α + it. The sum over zeros ρ is convergent when zeros ρ and complex conjugate ρ are paired together

(39) 1 s -1 2 -iγ n + 1 s -1 2 + iγ n = 2 s -1 2 (s -1 2 ) 2 + γ 2 n
and summed according to increasing absolute values of the imaginary parts γ n , see [12, Sect.2.5] (it follows also from the M-test of Weierstrass): the sum ρ 1/|ρ -1/2| 1+ over all roots of ζ(s) converges for any > 0. If RH is not true there is a possibility that for some zero ρ denominator s -ρ will be zero and the sum will be infinite. Only when we assume RH ρ = 1 2 + iγ, thus even if for some k there will be t = γ k the denominator will be α -1 2 = 0 and we can have uniformly in t that for any 2 > 0 there exists such N ( 2 ) that ( 40)

n>N ( 2 ) 1 (s -1 2 ) 2 + γ 2 n < 2
for s on the vertical edges of rectangle: s ∈ (α -iT, α + iT ) or s ∈ (β -iT, β + iT ).

To have negligible integrals of the above sum over zeros above along the edges DA and BC we choose

(41) 2 = 1 T 2 .
Thus the remaining sum is finite and we can interchange integration with summation For the vertical CB we write (42)

BC n≤N ( 2 ) 1 s -1 2 -iγ n + 1 s -1 2 + iγ n ds = n≤N ( 2 ) log α - 1 2 -iT -iγ n -log α - 1 2 + iT -iγ n + log α - 1 2 -iT + iγ n -log α - 1 2 + iT + iγ n
The real parts of arguments under logarithms are positive and we use the main branch. Now we make use of ( 24) and the fact that log(|z|) = log(|z|) and arg(z) = -arg(z). Adding similar expression for edge DA we obtain for the summands:

(43) BC 1 s -1 2 -iγ n + 1 s -1 2 + iγ n ds + DA 1 s -1 2 -iγ n + 1 s -1 2 + iγ n ds = 2i arg β - 1 2 + i(T -γ n ) + arg β - 1 2 + i(T + γ n ) -arg α - 1 2 -i(T -γ n ) -arg α - 1 2 + i(T + γ n )
Next we use the relation (44) arg(x + iy) = arctan y x for x > 0 and obtain:

(45)

n≤N ( 2 ) BC 1 s -1 2 + iγ n + 1 s -1 2 -iγ n ds + DA 1 s -1 2 + iγ n + 1 s -1 2 -iγ n ds = 2i n≤N ( 2 ) arctan T -γ n β -1 2 + arctan T + γ n β -1 2 10 -arctan T -γ n α -1 2 -arctan T + γ n α -1 2
We collect separately terms with T + γ n and T -γ n and our sum is following (N = N ( 2 ) for short):

(46)

S N := N k=1 arctan T -γ k β -1 2 -arctan T -γ k α -1 2 + arctan T + γ k β -1 2 -arctan T + γ k α -1 2
Fortunately there is a method of calculating sums of arctan functions by telescoping. Namely we have (see [eq.(2.5)][6]):

Lemma 1: Let f (x) be defined by (47) h(x) = f (x + 1) -f (x) 1 + f (x + 1)f (x) Then (48) n k=1 arctan(h(k) 
) = arctan(f (n)) -arctan(f (1)) + π sgn f (k)
where the last sum is taken over all 1 ≤ k ≤ n for which f (k + 1)f (k) < -1.

We have [2, eq. (4.4.34)]

(49) arctan(x) + arctan(y) =

             arctan x + y 1 -xy if xy < 1 arctan x + y 1 -xy + πsgn(x) if xy > 1 where sgn(x) =      1 for x > 0 0 for x = 0 -1 for x < 0 Using it in (46) we obtain terms (50) arctan T -γ k β -1 2 -arctan T -γ k α -1 2 = arctan (α -β)(T -γ k ) (α -1 2 )(β -1 2 ) + (T -γ k ) 2 + πsgn T -γ k β -1 2 , (51) arctan 
T + γ k β -1 2 -arctan T + γ k α -1 2 = arctan (α -β)(T + γ k ) (α -1 2 )(β -1 2 ) + (T + γ k ) 2 + πsgn T + γ k β -1 2
Thus we have the sum

(52) S N = N k=1 arctan (α -β)(T -γ k ) (α -1 2 )(β -1 2 ) + (T -γ k ) 2 + N k=1 arctan (α -β)(T + γ k ) (α -1 2 )(β -1 2 ) + (T + γ k ) 2 + Q 1 π
where Q 1 is an integer. We introduce two functions:

(53) h 1 (k) = (α -β)(T -γ k ) (α -1 2 )(β -1 2 ) + (T -γ k ) 2 (54) h 2 (k) = (α -β)(T + γ k ) (α -1 2 )(β -1 2 ) + (T + γ k ) 2
To telescope sums (46) we need to find two functions f (k) and g(k) fulfilling recurrences:

(55)

f (k + 1) = (α -β)(T -γ k ) + (α -1 2 )(β -1 2 )f (k) + (T -γ k ) 2 f (k) (α -1 2 )(β -1 2 ) + (T -γ k ) 2 -(α -β)(T -γ k )f (k) , , (56) g 
(k + 1) = (α -β)(T + γ k ) + (α -1 2 )(β -1 2 )g(k) + (T + γ k ) 2 g(k) (α -1 2 )(β -1 2 ) + (T + γ k ) 2 -(α -β)(T + γ k )g(k)
with the initial coditions f (1) = 0, g(1) = 0. We do not need explicit solutions of above equations but behavior of these functions for large k. In the Appendix we will prove the Lemma 2: We have (57) lim

N →∞ f (N ) = ∞ (58) lim N →∞ g(N ) = -∞
Hence:

(59) lim

N →∞ arctan f (N ) = π 2 (60) lim N →∞ arctan g(N ) = - π 2 
Larger N ( 2 ) means smaller 2 and smaller term o(1). Finally we obtain:

(61)

S N = Q 1 π + Q 2 π + o(1) = Qπ + o(1)
where Q, Q 1 , Q2 are integers. For the total integral over the rectangle ABCD we get:

(62) 1 2πi ABCD ζ ζ (s)ds = β -α 4 + α -β π V + Q + o(1).
We can choose α and β ( 1 2 < α < β < 1) and V as we wish and we impose condition

(63) β -α 4 + α -β π V = 1 2 .
The term o(1) contains all contributions from epsilon expressions, in particular we choose 2 in (41) such that (64) o(1) < 1 2 .

At this point we reach contradiction: we assumed RH hence the above integral (62) should be zero, but we have impossible inequality with integer Q:

(65) 1 2 = -Q + o(1),
thus RH can not be true.

Final Comments

We assumed RH and using the Laurinčikas's universality theorem we reached the contradiction. In [START_REF] Edwards | Riemann's zeta function[END_REF] the integral on lhs (divided by 2πi) has to be an integer.

In our final expression (62) it seems that this value is not an integer. The same appears in the von Mangoldt formula (9): it also does not take integer values, it is a continuous function of T but there is an error term present which can ensure integer values of the total expression. We also have error term for integral of F (s) = U + iV coming from epsilon in Laurinčikas's theorem. There is an integer Q in (62) and fractional numbers with α -β but the term o(1) can assure that the total value of rhs of ( 62) is integer and equal to the number of zeta zeros inside rectangle ABCD.

There are effective versions of the universality Voronin's Theorem e.g. [START_REF] Garunkštis | Effective uniform approximation by the Riemann zeta-function[END_REF], and obtained numbers are enormously large: they grow like double iterated exponentials. We can expect that T appearing in the Laurinčikas's theorem is also very large. Thus we can say that RH is practically true. Odlyzko has expressed the view that the hypothetical zeros off the critical line are unlikely to be encountered for t below 10 10 10000 , see [11, p.358]. It seems there is no hope to find explicit values of the zeros off the critical line.

In [START_REF] Holt | When Einstein Walked with Goedel : Excursions to the Edge of Thought[END_REF] on pp.60-61 we can read: "Long open conjectures in analysis tend to be false ".

Appendix: prove of Lemma 2

We repeat here in another form equations (55), (??) (66)

f (k + 1) = (T -γ k ) 2 + (α -1 2 )(β -1 2 ) f (k) + (α -β)(T -γ k ) -(α -β)(T -γ k )f (k) + (T -γ k ) 2 + (α -1 2 )(β -1 2 ) , (67) g 
(k + 1) = (α -1 2 )(β -1 2 ) + (T + γ k ) 2 g(k) + (α -β)(T + γ k ) -(α -β)(T + γ k )g(k) + (T + γ k ) 2 + (α -1 2 )(β -1 2 )
, with initial conditions f (1) = 0, g(1) = 0. The above equations have the form of the Riccati equation, see e.g [21, Appendix A], [START_REF] Milne-Thomson | TThe Calculus Of Finite Differences[END_REF]:

(68)

x n+1 = a(n)x n + b(n) c(n)x n + d(n) ,
where the denominator cannot be zero. We will first cinsider (66). In our case:

(69)

a(n) = d(n) = (T -γ n ) 2 + (α - 1 2 )(β - 1 2 ), (70) b(n) = -c(n) = (α -β)(T -γ n ).
The customary way to solve the Ricccati equation is to perform transformation of unknown variables in order to get second order linear difference equation. We introduce new variable We also note that (86)

x(n + 1) -x(n) = b(n)(1 + (x(n) 2 ) a(n) -b(n)x(n)
From (85) and above equation we obtain that for sufficiently large n we have (87)

x(n + 1) -x(n) > 0 so for large n the sequence x(n) is increasing. From (68) we see that x(n) can not have real limit, because the equation fulfilled by the limit x * = lim n→∞ x(n)

(88) x * = a(n)x * + b(n) -b(n)x * a(n)
has no real solution. The conclusion is that the sequence x(n) tends to infinity and hence we have also 

-

  Appearing in (2) the gamma function Γ(z) has many representations, we present the Weierstrass product: n) = 0.577216 . . . .

Figure 1 :

 1 Figure 1: The location of zeros of the Riemann ζ(s) function.

Figure 2 .

 2 Figure 2. The rectangle D(α, T ), in red critical line is plotted. Sides AB and CD have length β -α while sides CB and DA have length 2T .

  (71)y(n) = H(n)f (n)From Perron's theorem see [26, Chapt.17] we have )H(n) = C From above and (83) we conclude that (85) lim n→∞ |x(n)| |T -γ n | = 0.

  to obtain. Similar calculations lead to the conclusion(90) lim n→∞ g(n) = -∞and the Lemma 2 is proved.

We thank A. Kourbatov for bringing this fact to our attention

where (72)

Then the relation (66) becomes ( 73)

where (74)

Now we perform the second reansformation:

(75)

This change of variables reduces our starting equation (66) to a linear second order equation:

where we have (77)

We note that (78)

so the characteristic equation for the linear linear second order difference equation is:

(79)