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Abstract

We study stochastic gradient descent (SGD) and the stochastic heavy ball method (SHB, otherwise
known as the momentum method) for the general stochastic approximation problem. For SGD, in the
convex and smooth setting, we provide the first almost sure asymptotic convergence rates for a weighted
average of the iterates . More precisely, we show that the convergence rate of the function values is
arbitrarily close to o(1/

√
k), and is exactly o(1/k) in the so-called overparametrized case. We show that

these results still hold when using stochastic line search and stochastic Polyak stepsizes, thereby giving
the first proof of convergence of these methods in the non-overparametrized regime. Using a substantially
different analysis, we show that these rates hold for SHB as well, but at the last iterate. This distinction is
important because it is the last iterate of SGD and SHB which is used in practice. We also show that the
last iterate of SHB converges to a minimizer almost surely. Additionally, we prove that the function values
of the deterministic HB converge at a o(1/k) rate, which is faster than the previously known O(1/k).
Finally, in the nonconvex setting, we prove similar rates on the lowest gradient norm along the trajectory
of SGD.

1 Introduction

Consider the stochastic approximation problem

x∗ ∈ argmin
x∈Rd

f(x) def= Ev∼D [fv(x)] , (1)

where D is a distribution on an arbitrary space Ω and fv is a real-valued function. Let X∗ ⊂ Rd be the set of
solutions of (1) (which we assume to be nonempty) and f∗ = f(x∗) for any solution x∗ ∈ X∗. The stochastic
approximation problem (1) encompasses several problems in machine learning, including Online Learning
and Empirical Risk Minimization (ERM). In these settings, when the function f can be accessed only through
sampling or when the size of the datasets is very high, first-order stochastic gradient methods have proven
to be very effective thanks to their low iteration complexity. The methods we analyze, Stochastic Gradient
descent (SGD, (Robbins and Monro, 1951)) and Stochastic Heavy Ball (SHB, (Polyak, 1964)), are among the
most popular such methods.

1.1 Contributions and Background

Here we summarize the relevant background and our contributions. All of our rates of convergence are also
given succinctly in Table 1.
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Almost sure convergence rates for SGD. The almost sure convergence of the iterates of SGD is a
well-studied question (Bottou, 2003, Zhou et al., 2017, Nguyen et al., 2018). For functions satisfying
∀(x, x∗) ∈ Rd × X∗, 〈∇f(x), x − x∗〉 ≥ 0, called variationally coherent, the convergence was shown in
Bottou (2003) by assuming that the minimizer is unique. Recently in Zhou et al. (2017), the uniqueness
assumption of the minimizer was dropped for variationally coherent functions by assuming bounded gradients.
The easier question of the almost sure convergence of the norm of the gradients of SGD in the nonconvex
setting, and of the objective values in the convex setting, has also been positively answered by several works,
see Bertsekas and Tsitsiklis (2000) and references therein, or more recently Mertikopoulos et al. (2020),
Orabona (2020a). In this work, we aim to quantify this (Nemirovski et al., 2009, Bach and Moulines, 2011,
Ghadimi and Lan, 2013) convergence. Indeed, while convergence rates are commonplace for convergence in
expectation (Nemirovski et al. (2009), Bach and Moulines (2011), Ghadimi and Lan (2013) for example), the
litterature on the convergence rates of SGD in the almost sure sense is sparse. For an adaptive SGD method,
Li and Orabona (2019) prove the convergence of a subsequence of the squared gradient at a rate arbitrarily
close to o(1/

√
k). More precisely, they show that lim infk k

1
2−ε‖∇f(xk)‖2 = 0 for all ε > 0, where xk is

the kth iterate of SGD. Godichon-Baggioni (2016) proves that, for locally strongly convex functions, the
sequence (‖xk − x∗‖2)k, where x∗ is the unique minimizer of f , converges almost surely at a rate arbitrarily
close to o(1/k).

Contributions: 1. In the convex and smooth setting, we show that the function values at a weighted average
of the iterates of SGD converge almost surely at a rate arbitrarily close to o(1/

√
k). In the so-called

overparametrized case, where the stochastic gradients at any minimizer ∇fv(x∗) are 0, we show that this
rate improves to o(1/k). The proof of these results is surprisingly simple, and relies on a new weighted
average of the iterates of SGD and on the classical Robbins-Siegmund supermartingale convergence theorem
(Lemma 2.1). We also complement the well-known Robbins-Monro (Robbins and Monro, 1951) conditions
on the stepsizes with new conditions (See Condition 1) that allow us to derive convergence rates in the almost
sure sense. We also show that our theory still holds in the nonsmooth setting when we assume bounded
subgradients (Appendix F). 2. In the nonconvex setting, under the recently introduced ABC condition (Khaled
and Richtárik, 2020), we derive almost sure convergence rates for the minimum squared gradient norm along
the trajectory of SGD which match the rates we derived for the objective values of SGD.

Asymptotic convergence of SGD with adaptive step sizes. One drawback of the theory of SGD in the
smooth setting is that it relies on the knowledge of the smoothness constant. Two of the earliest methods
which have been proposed to address this issue are Line-Search (LS) (Nocedal and Wright, 2006) and Polyak
Stepsizes (PS) (Polyak, 1987). But while their convergence had been established in the deterministic case, it
wasn’t until recently (Vaswani et al., 2019b, 2020, Loizou et al., 2020) that SGD with LS and with PS has
been shown to converge assuming only smoothness and convexity of the functions fv. For both methods, it
has been shown that SGD converges to the minimum at a rate O(1/k) in the overparametrized setting, but
converges only to a neighborhood of the minimum when overparametrization does not hold.

Contributions. We show that SGD with LS or PS converges asymptotically at a rate arbitrarily close to
O(1/

√
k) in expectation, and to o(1/

√
k) almost surely. Moreover, in the overparamztrized setting, using the

proof technique we developed for regular SGD, we show that SGD with LS or PS converges almost surely to
the minimum at a o(1/k) rate.

Almost sure convergence rates for SHB and o(1/k) convergence for HB. The first local convergence of
the deterministic Heavy Ball method was given in Polyak (1964), showing that it converges at an accelerated
rate for twice differentiable strongly convex functions. Only recently did Ghadimi et al. (2015) show that
the deterministic Heavy Ball method converged globally and sublinearly for smooth and convex functions.
The SHB has recently been analysed for nonconvex functions and for strongly convex functions in Gadat
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et al. (2018). For strongly convex functions, they prove a O
(
1/tβ

)
convergence rate for any β < 1. Using a

similar Lyapunov function to the one in Ghadimi et al. (2015), a O(1/
√
t) convergence rate for SHB in the

convex setting was given in Yang et al. (2016) and Orvieto et al. (2019) under the bounded gradient variance
assumption. For the specialized setting of minimizing quadratics, it has been shown that the SHB iterates
converge linearly at an accelerated rate, but only in expectation rather than in L2 (Loizou and Richtárik, 2018).
By using stronger assumptions on the noise as compared to Kidambi et al. (2018), Can et al. (2019) show that
by using a specific parameter setting, the SHB applied on quadratics converges at an accelerated rate to a
neighborhood of a minimizer. Finally, the almost sure convergence of SHB to a minimizer for nonconvex
functions was proven in Gadat et al. (2018) under an elliptic condition which guarantees that SHB escapes
any unstable point. But we are not aware of any convergence rates for the almost sure convergence of SHB.

Contributions. 1. In the smooth and convex setting, we show that the function values at the last iterate of SHB
converge almost surely at a rate close to o(1/

√
k). Similarly to SGD, this rate can be improved to o(1/k)

in the overparametrized setting. Moreover, we show that the last iterate of SHB converges to a minimizer
almost surely. In the deterministic setting, where we use the gradient ∇f at each iteration, we prove that
the function values of the deterministic HB converge at a o(1/k) rate, which is faster than the previously
known O(1/k) (Ghadimi et al., 2015) and matches the rate recently derived for Gradient Descent in Lee
and Wright (2019). Compared to the SGD analysis we develop, the derivation of almost sure convergence
rates for SHB is quite involved, and combines tools developed in Attouch and Peypouquet (2016) for the
analysis of the (deterministic) Nesterov Accelerated Gradient method and the classical Robbins-Siegmund
theorem. 2. Our results rely on an iterate averaging viewpoint of SHB (Proposition 1.6), which considerably
simplifies our analysis and suggests parameter settings different from the usual settings of the momentum
parameter, which is fixed at around 0.9, and often exhibits better empirical performance than SGD (Sutskever
et al., 2013). We show through extensive numerical experiments in Figure 1 that our new parameter setting is
statistically superior to the standard rule-of-thumb settings on convex problems. 3. Additionally, we show in
Appendix G that the bounded gradients and bounded noise assumptions used in Yang et al. (2016), Orvieto
et al. (2019) can be avoided, and prove that SHB at the last iterate converges in expectation at a O(1/k) rate
to a neighborhood of the minimum and at a O(1/

√
k) rate to the minimum exactly.

1.2 Assumptions and general consequences

Our theory in the convex setting relies on the following assumption of convexity and smoothness.

Assumption 1.1. For all v ∼ D, there exists Lv > 0 such that for every x, y ∈ Rd we have that

fv(y) ≥ fv(x) + 〈∇fv(x), y − x〉, (2)

fv(y) ≤ fv(x) + 〈∇fv(x), y − x〉+ Lv
2 ‖y − x‖

2, (3)

almost surely. Let L def= supv∼D Lv. We assume that L < ∞. Consequently, f is also smooth and we use
L > 0 to denote its smoothness constant.

Definition 1.2. Define the residual gradient noise as

σ2 def= sup
x∈X ∗

Ev∼D
[
‖∇fv(x∗)‖2

]
. (4)

Assumption 1.1 has the following simple consequence on the expectation of the gradients.

Lemma 1.3. If Assumption 1.1 holds, then

ED
[
‖∇fv(x)‖2

]
≤ 4L (f(x)− f∗) + 2σ2. (5)
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In all our results of Sections 2 and 3, we only use convexity and the inequality (5). Thus, Assumption 1.1
can be slightly relaxed by removing the smoothness condition (3) and re-branding (5) as an assumption, as
opposed to a consequence. With this bound (5), we do not need to assume a uniform bound on the the squared
norm of the gradients or on their variance, as is often done when analyzing SGD (Nemirovski et al., 2009)
or SHB (Yang et al., 2016). Note, however, that the analysis carried for SGD and SHB in Nemirovski et al.
(2009) and Yang et al. (2016) is more general and applies to the nonsmooth case, for which assuming bounded
subgradients is often necessary. As an illustration, we show that our results hold in the nonsmooth case under
the bounded subgradients assumption in Appendix F. Note also that all our results still hold with the usual but
more restrictive assumption of bounded gradient variance (see for example Ghadimi and Lan (2013)). Indeed,
when this assumption holds, (5) holds with L in place of L, where L is the smoothness constant of f .

Definition 1.4 (Informal). When σ2 = 0, we say that we have an overparametrized model.

When our models have enough parameters to interpolate the data (Vaswani et al., 2019a), then ∇fv(x∗) =
0, ∀v ∼ D, and consequently σ2 = 0. This property has been observed especially for the training of large
neural networks in Empirical Risk Minimization, where f is a finite-sum.

Remark 1.5 (Finite-sum setting). Let n ∈ N∗ and define [n] def= {1, . . . , n}. Let f(x) = 1
n

∑n
i=1 fi(x), where

each fi is Li-smooth and convex, and Lmax = maxi∈[n] Li <∞. If we sample minibatches of size b without
replacement, then Gazagnadou et al. (2019), Gower et al. (2019) show that (5) holds with

L ≡ L(b) def= 1
b

n− b
n− 1Lmax + n

b

b− 1
n− 1L and σ2 ≡ σ2(b) = 1

b

n− b
n− 1σ

2
1,

where σ2
1

def= 1
n sup
x∈X∗

∑n
i=1 ‖∇fi(x∗)‖

2. Note that σ2(n) = 0 and L(n) = L, as expected, since b = n

corresponds to full batch gradients, or equivalently to using deterministic GD or HB. Similarly, L(1) = Lmax,
since b = 1 corresponds to sampling one individual fi function.

1.3 SGD and an iterate-averaging viewpoint of SHB

In Section 2, we will analyze SGD, where we sample at each iteration vk ∼ D, and iterate

xk+1 = xk − ηk∇fvk(xk), (SGD)

where ηk is a step size. In Section 3, we will analyze SHB, whose iterates are

xk+1 = xk − αk∇fvk(xk) + βk (xk − xk−1) , (SHB)

where αk is commonly referred to as the step size and βk as the momentum parameter. Our forthcoming
analysis of (SHB) leverages an iterate moving-average viewpoint of (SHB) and particular parameter choices
that we present in Proposition 1.6.

Proposition 1.6. Let z0 = x0 ∈ Rd and ηk, λk > 0. Consider the iterate-moving-average (IMA) method:

zk+1 = zk − ηk∇fvk(xk), xk+1 = λk+1
λk+1 + 1xk + 1

λk+1 + 1zk+1 (SHB-IMA)

If αk = ηk
1 + λk+1

and βk = λk
1 + λk+1

, (6)

then the xk iterates in (SHB-IMA) are equal to the xk iterates of the method (SHB) .
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Algorithm σ2 Stepsize Conv. Rate Iterate Ref

SGD 6= 0 O(k−1/2−ε) a.s. o(k−1/2+ε) average Cor. 2.4
SGD = 0 O(1) a.s. o(k−1) average Cor. 2.4
SGD-ALS, SGD-PS 6= 0 adaptive∗ a.s., E o(k−1/2+ε), O(k−1/2+ε) average Cor. 2.8
SGD-ALS, SGD-PS = 0 adaptive∗ a.s., E o(k−1), O(k−1) average Cor. 2.8
SHB 6= 0 O(k−1/2+ε), O(k−1/2) a.s., E o(k−1/2−ε), O(k−1/2) last Cor. A.1, G.2
SHB = 0 O(1) a.s., E o(k−1), O(k−1) last Cor. 3.2, G.2
SGD, nonconvex C 6= 0 O(k−1/2+ε) a.s. o(k−1/2+ε) min ‖∇‖2 Cor. A.2
SGD, nonconvex C = 0 O(1) a.s. o(k−1) min ‖∇‖2 Cor. A.2

Table 1: Summary of the rates we obtain. All small-o (resp. big-O) rates are almost surely (resp. in
expectation). The constants C,L and σ are defined in (ABC), (5) and (4), respectively. a.s.: almost surely,
E: in expectation. min ‖∇‖2: lowest squared norm of the gradient along the trajectory of SGD. adaptive∗:
Maximum step sizes need to verify conditions similar to Condition 1, but do not require knowing the
smoothness constant L.

The equivalence between this formulation and the original SHB is proven in the supplementary material
(Section B.2). The IMA formulation (SHB-IMA) is crucial in comparing SHB and SGD as it allows to
interpret the parameter αk in SHB as a scaled step size and unveils a natural stepsize ηk. In all of our theorems,
the parameters ηk and λk naturally arise in the recurrences and Lyaponuv functions. We determine how to set
the parameters ηk and λk, which in turn gives settings for αk and βk through (6). In the remainder of this
work, we will directly analyze the method SHB-IMA.
Having new reformulations often leads to new insights. This is the case for Nesterov’s accelerated gradient
method, where at least six forms are known (Defazio, 2019) and recent research suggests that iterate-averaged
reformulations are the easiest to generalize to the combined proximal and variance-reduced case (Lan and
Zhou, 2017).

2 Almost sure convergence rates for SGD and SGD with adaptive stepsizes

We will first present almost sure convergence rates for SGD, then for SGD with Line-Search and Polyak
Stepsizes.

2.1 SGD: average-iterates almost sure convergence

Our results rely on a classical convergence result (Robbins and Siegmund, 1971).

Lemma 2.1. Consider a filtration (Fk)k, the nonnegative sequences of (Fk)k−adapted processes (Vk)k,
(Uk)k and (Zk)k, and a sequence of positive numbers (γk)k such that

∑
k Zk <∞ almost surely,

∏∞
k=0(1 +

γk) <∞, and
∀k ∈ N, E [Vk+1|Fk] + Uk+1 ≤ (1 + γk)Vk + Zk.

Then (Vk)k converges and
∑
k Uk <∞ almost surely.

We use the following condition on the step sizes in our almost sure convergence results.

Condition 1. The sequence (ηk)k is decreasing,
∑
k ηk =∞,

∑
k η

2
kσ

2 <∞ and
∑
k

ηk∑
j
ηj

=∞.

The conditions
∑
k ηk = ∞ and

∑
k η

2
k < ∞ are known as the Robbins-Monro conditions (Robbins and

Monro, 1951) and are classical in the SGD litterature (see Bertsekas and Tsitsiklis (2000) for example). The
additional conditions,

∑
k

ηk∑
j
ηj

=∞ and (ηk)k is decreasing, allow us to derive convergence rates for the

almost sure convergence using a new proof technique. However, as we will see in the next remark, the usual
choices of step sizes which verify the Robbins-Monro conditions verify Condition 1 as well.
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Remark 2.2. Let ηk = η
kξ

with ξ, η > 0. Condition 1 is verified for all ξ ∈ (1
2 , 1] when σ2 6= 0, and for all

ξ ∈ [0, 1] when σ2 = 0.

See Appendix A for a proof of this remark. Indeed, all the formal proofs of our results are defered to the
appendix.

Theorem 2.3. Let Assumption 1.1 hold. Consider the iterates of SGD. Choose step sizes (ηk)k which verify
Condition 1, where ∀k ∈ N, 0 < ηk ≤ 1/(4L). Define for all k ∈ N

wk = 2ηk∑k
j=0 ηj

and

{
x̄0 = x0
x̄k+1 = wkxk + (1− wk)x̄k.

(7)

Then, we have a.s. that f(x̄k)− f∗ = o

(
1∑k−1
t=0 ηt

)
.

Proof. We present the main elements of the proof which help in understanding the difference between the
classical non-asymptotic analysis of SGD in expectation and our analysis. We present the complete proof in
Section C of the appendix.
In the convex setting, the bulk of the convergence proofs of SGD is in using convexity and smoothness of f to
establish that, if ηk ≤ 1

4L , we have

Ek
[
‖xk+1 − x∗‖2

]
+ ηk (f(xk)− f∗) ≤ ‖xk − x∗‖2 + 2η2

kσ
2. (8)

Classic non-asymptotic convergence analysis for SGD. Taking the expectation, using telescopic cancel-
lation and Jensen’s inequality, it is possible to establish that

E [f(x̃k)− f∗] ≤
‖x0 − x∗‖2∑k−1

t=0 ηt
+ 2σ2∑k−1

t=0 η
2
t∑k−1

t=0 ηt
, where x̃k =

k−1∑
t=0

ηt∑k−1
j=0 ηj

xt.

x̃k can then be computed on the fly using:

x̃k+1 = w̃kxk + (1− w̃k)x̃k, where w̃k = ηk∑k
j=0 ηj

. (9)

This sequence of weights (w̃k)k (which can be computed on the fly as w̃k+1 = ηk+1w̃k
ηk+ηk+1w̃k

) is the one which
allows to derive the tightest upper bound on the objective gap f(x)− f∗ in expectation. But it does not lend
itself to tight almost sure asymptotic convergence, as we will show next.

Naive asymptotic analysis. Applying Lemma 2.1 to (8) gives that
∑
k ηk (f(xk)− f∗) < ∞. Unfortu-

nately, this only gives that limk ηk (f(xk)− f∗) = 0.

Asymptotic analysis using the iterates defined in (9). What if we had used the sequence of iterates defined
in (9)? Let δ̃k = f(x̃k)− f∗. Using Jensen’s inequality, we have

f(xk)− f∗ ≥
1
w̃k
δ̃k+1 −

( 1
w̃k
− 1

)
δ̃k.

Using this bound in (8) gives, after replacing w̃k by its expression (9) and multiplying by ηk, that

Ek
[
‖xk+1 − x∗‖2

]
+

k∑
j=0

ηj δ̃k+1 ≤ ‖xk − x∗‖2 +
k−1∑
j=0

ηj δ̃k + 2η2
kσ

2.
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Applying Lemma 2.1 gives that
(∑k−1

j=0 ηj δ̃k
)
k

converges almost surely. Hence, there exist k0 ∈ N and a

constant Ck0 such that for all k ≥ k0, δ̃k ≤
Ck0∑k−1
j=0 ηj

. That is, we have

δ̃k = O

(
1∑k−1

j=0 ηj

)
.

But we show that we can actually do much better.

Our analysis. Now consider the alternative averaging of iterates x̄k given in (7). First note that using
(8) and Lemma 2.1, we have that

(
‖xk − x∗‖2

)
k

converges almost surely. Let δk
def= f(x̄k) − f∗. As we

have done in the last paragraph, we can use Jensen’s inequality to lower-bound f(xk)− f∗ in (8) (detailed
derivations are given in Appendix C), and we obtain:

Ek
[
‖xk+1 − x∗‖2

]
+ 1

2

k∑
j=0

ηjδk+1 + ηk
2 δk ≤ ‖xk − x∗‖

2 + 1
2

k−1∑
j=0

ηjδk + 2η2
kσ

2.

By Lemma 2.1,
(∑k−1

j=0 ηjδk
)
k

converges almost surely, and
∑
k ηkδk <∞, which implies that limk ηkδk = 0.

But since
∑
k

ηk∑k−1
j=0 ηj

=∞, we have the desired result: limk
∑k−1
j=0 ηjδk = 0.

Note that in the first iteration, w0 = 2 and x̄1 = x0, and we don’t use Jensen’s inequality. �

With suitable choices of stepsizes, we can extract almost sure convergence rates for SGD, as we see in the
next corollary. These choices and all the rates we derive are also summarized in Table 1. To the best of our
knowledge, these are the first rates for the almost sure convergence of SGD in the convex setting.

Corollary 2.4 (Corollary of Theorem 2.3). Let Assumption 1.1 hold. Let 0 < η ≤ 1/4L and ε > 0.

• if σ2 6= 0. Let ηk = η
k1/2+ε .

f(x̄k)− f∗ = o

( 1
k1/2−ε

)
.

• If σ2 = 0. Let ηk = η. Then

f(x̄k)− f∗ = o

(1
k

)
.

Although the almost sure convergence of SGD with favourable convergence rates only requires the step sizes
to verify Condition 1, there are other popular methods to set the step sizes, such as Line-Search (Nocedal and
Wright, 2006) or Polyak Stepsizes (Polyak, 1987), which do not require knowing the smoothness constant L.
A natural question is whether the result we have derived in Theorem 2.3 extends to these methods. We answer
this question positively in the next section.

2.2 Convergence of Adaptive step size methods

We first present two adaptive step size selection methods and then present their convergence analysis.
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Armijo Line-Search Stepsize (ALS). We
say that α is an Armijo line-seach stepsize
at x ∈ Rd for the function g if, given con-
stants c, αmax > 0, α is the largest step size
in (0, αmax] such that

g(x− α∇g(x)) ≤ g(x)− cα ‖∇g(x)‖22 ,
(10)

which we denote by

α ∼ ALSc,αmax(g, x)

In practice, we use backtracking to find this α,
where we start with a value αmax and decrease
it by a factor β ∈ (0, 1) until (10) is verified.

Polyak Stepsize (PS). Let g be a function lower bounded
by g∗. We say that α is a Polyak step size at x ∈ Rd if, given
constants c, αmax > 0,

α = min
{
g(x)− g∗

c‖∇g(x)‖2
, αmax

}
,

which we denote by

α ∼ PSc,αmax(g, x)

The drawback of this method is that we need to know g∗.
There is a range of applications where we know this value
and Polyak Stepsizes have been shown to work well experi-
mentally. See Loizou et al. (2020) for more details.

Instead of using a pre-determined step size in SGD, we can choose at each iteration ηk ∼ ALSc,αmax(fvk , xk)
or ηk ∼ PSc,αmax(fvk , xk). SGD with ALS or PS is known to converge sublinearly to a neighborhood of the
minimum and to the minimum exactly if σ2 = 0 (Vaswani et al., 2019b, 2020, Loizou et al., 2020). However,
it is still not known whether these methods converge to the minimum when σ2 6= 0.
Let (ηmax

k )k and (γk) be two strictly positive decreasing sequences. Consider the following modified SGD
methods: at each iteration k, sample vk ∼ D and update

xk+1 = xk − ηkγk∇fvk(xk), where ηk ∼ ALSc,ηmax
k

(fvk , xk), (SGD-ALS)

xk+1 = xk − ηkγk∇fvk(xk), where ηk ∼ PSc,ηmax
k

(fvk , xk). (SGD-PS)

Assumption 2.5. For all v ∼ D, fv is lower bounded by f∗v > −∞ almost surely, and we define σ̄2 def=
f∗ − Ev [f∗v ].

Similar to our analysis of SGD, we can derive almost sure convergence rates to the minimum for an average
of the iterates. Remarkably, the analysis of the two methods SGD-ALS and SGD-PS can be unified.

Theorem 2.6. Let Assumptions 1.1 and 2.5 hold. Consider the iterates of SGD-ALS and SGD-PS. Choose
(ηmax
k )k and (γk)k such that (ηmax

k γk)k is decreasing, ηmax
k → 0,

∑
k η

max
k γk = ∞,

∑
k η

max
k γ2

kσ
2 < ∞

and
∑
k

ηmax
k γk∑k−1

j=0 η
max
j γj

=∞, c ≥ 1
2 and γk ≤ c. Define for all k ∈ N

wk = 2ηmax
k γk∑k

j=0 η
max
j γj

and

{
x̄0 = x0
x̄k+1 = wkxk + (1− wk)x̄k.

(11)

Then, we have almost surely that f(x̄k)− f∗ = o

(
1∑k−1

t=0 η
max
t γt

)
.

We also present upper bounds on the suboptimality for SGD-ALS and SGD-PS in expectation, from which
we can derive convergence rates.

Theorem 2.7. Let Assumptions 1.1 and 2.5 hold. Let (ηmax
k ) and (γk) be strictly positive, decreasing

sequences with γk ≤ c, for all k ∈ N and c ≥ 1
2 . Then the iterates of SGD-ALS and SGD-PS satisfy

E [f(x̄k)− f∗] ≤
2ca0‖x0 − x∗‖2 + 4c

∑k−1
t=0 γtη

max
t

(
ηmax
t L

2(1−c) − 1
)

+
σ̄2 + 2

∑k−1
t=0 γ

2
t η

max
t σ̄2∑k−1

t=0 γtη
max
t

, (12)

where x̄k =
∑k−1
t=0

ηmax
t γt∑k−1

j=0 η
max
j γj

xt and a0 = max
{
ηmax

0 L
2(1−c) , 1

}
.
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We now give precise convergence rates derived from the two previous theorems, in the overparametrized as
well as the non-overparametrized cases.

Corollary 2.8 (Corollary of Theorems 2.6 and 2.7). Let ε, η, γ > 0, with γ ≤ c. If ηmax
k = ηk−

4ε
3 and

γk = γk−
1
2 + ε

3

f(x̄k)− f∗ = o

( 1
k

1
2−ε

)
a.s. and E [f(x̄k)− f∗] = O

( 1
k

1
2−ε

)
. (13)

If σ̄2 = 0. Then, setting ηmax
k = η > 0, c = 2

3 and γk = 1, then for all x∗ ∈ X∗,

f(x̄k)− f∗ = o

(1
k

)
a.s. and E [f(x̄k)− f∗] ≤

2 max
{

3ηLmax
2 , 1

}
‖x0 − x∗‖2

ηk
.

Notice from (12) and (13) that our analysis highlights a tradeoff between the asymptotic and the nonasymptotic
convergence in expectation of SGD-ALS and SGD-PS. Indeed, (13) predicts that the slower the convergence
of (ηmax

k )k towards 0 (as ε→ 0), the better is the resulting asymptotic convergence rate. However, according
to (12), if (ηmax

k )k vanishes slowly, the second term on the right hand side of (13) vanishes slowly as well,
which makes the bound in (12) looser.
Notice also that to be able to derive convergence rates in the non-overparametrized case from the previous
theorem, we not only decrease the maximum step sizes, but also scale the adaptive step size ηk by multiplying
it by a decreasing sequence γk.

3 Almost sure convergence rates for Stochastic Heavy Ball

The rates we derived for SGD, SGD-ALS and SGD-PS in the previous section all hold at some weighted
average of the iterates. Yet, in practice, it is the last iterate of SGD which is used. In contrast, we show that
these rates hold for the last iterate of SHB, which is due to the online averaging inherent to SHB that we
highlight in Proposition 1.6. We present the first almost sure convergence rates for SHB, and also show that
the deterministic HB converges at a o(1/k) rate, which is asymptotically faster than the previously established
O(1/k) (Ghadimi et al., 2015).
We now present almost sure convergence rates for SHB. The proof of this result is inspired by ideas from
Chambolle and Dossal (2015), who prove the convergence of the iterates of FISTA (Beck and Teboulle, 2009)
and Attouch and Peypouquet (2016), who prove the o(1/k2) convergence of FISTA.

Theorem 3.1. Let x−1 = x0 and consider the iterates of SHB-IMA. Let Assumption 1.1 hold. Let ηk be a
sequence of stepsizes which verifies Condition 1 and ∀k ∈ N, 0 < ηk ≤ 1/8L. If

λ0 = 0 and λk =
∑k−1
t=0 ηt
4ηk

for all k ∈ N∗, (14)

then we have almost surely that xk →
k→+∞

x∗ for some x∗ ∈ X∗, and f(xk)− f∗ = o

(
1∑k−1
t=0 ηt

)
.

Note that when specialized to full gradients sampling, i.e. when we use the deterministic HB method, our
results hold without the need for almost sure statements.
To the best of our knowledge, Theorem 3.1 is the first result showing that the iterates of SHB converge to a
minimizer assuming only smoothness and convexity. Note that this result is not directly comparable to Gadat
et al. (2018), who study the more general nonconvex setting but use assumptions beyond smoothness.
In the general stochastic setting, Theorem 3.1 shows that SHB enjoys the same almost sure convergence rates
as SGD with averaging (See Table 1). However, an added benefit of SHB is that these rates hold for the last
iterate, which conforms to what is done in practice.
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Corollary 3.2. Assume σ2 = 0 and let ηk = η < 1/4L for all k ∈ N. By Theorem 3.1 we have

lim
k
k (f(xk)− f∗) = 0, almost surely.

This corollary has fundamental implications in the deterministic and the stochastic case. In the stochastic
case, it shows that when σ2 = 0, SHB-IMA with a fixed step size converges at a o(1/k) rate at the last iterate.
In the deterministic case, σ2 = 0 always holds, as at each iteration we use the true gradient∇f(xk), and we
have ∇f(x∗) = 0 for all x∗ ∈ X∗. Thus Corollary 3.2 shows that the HB method enjoys the same o(1/k)
asymptotic convergence rate as gradient descent (Lee and Wright, 2019).
It seems that it is our choice iteration-dependent momentum coefficients given by (6) and (14) that enable this
fast ‘small o’ convergence of the objective values for SHB. Recent work by Attouch and Peypouquet (2016)
corroborates with this finding, where the authors also showed that a version of (deterministic) Nesterov’s
Accelerated Gradient algorithm with carefully chosen iteration dependent momentum coefficients converges
at a o(1/k2) rate, rather than the previously known O(1/k2).

4 Non-convex almost sure convergence rates for SGD

We now move on to the non-convex case, where we use the following assumption from Khaled and Richtárik
(2020).

Assumption 4.1. There exist constants A,B,C ≥ 0 s.t. for all x ∈ Rd,

Ev
[
‖∇fv(x)‖2

]
≤ A (f(x)− f∗) +B‖∇f(x)‖2 + C. (ABC)

This assumption is called Expected Smoothness in Khaled and Richtárik (2020). It includes the bounded
gradients assumption, with A = B = 0 and C = G > 0, and the bounded gradient variance assumption,
with A = 0, B = 1 and C = σ2, as special cases. See (Khaled and Richtárik, 2020, Th. 1) for a thorough
investigation of the other assumptions used in the litterature which are implied by (ABC). A major benefit of
this assumption is that when f is a finite-sum (Remark 1.5) and the fi functions are lower-bounded, (ABC)
always holds (Khaled and Richtárik, 2020, Prop. 3).

Remark 4.2 (Khaled and Richtárik (2020), Prop. 3). In the setting of Remark 1.5, and assuming that for all
i ∈ [n], fi ≥ f∗i > −∞, Assumption (ABC) holds with:

A = n− b
b(n− b)Lmax, B = n(b− 1)

b(n− 1) , and C = 2A
n

n∑
i=1

(f∗ − f∗i ) .

Since a global minimizer of f does not always exist in the nonconvex case, we can now only hope to find a
stationary point. Hence, we present asymptotic convergence rates for the squared gradient norm.

Theorem 4.3. Consider the iterates of SGD. Assume that (ABC) holds. Choose stepsizes which verify
Condition 1 (with C in place of σ2) such that ∀k ∈ N, 0 < ηk ≤ 1/(BL). Then, we have a.s that

min
t=0,...,k−1

‖∇f(xt)‖2 = o

(
1∑k−1
t=0 ηt

)
.

From this result, we can derive almost sure convergence rates arbitrarily close to o(1/
√
k), which can be

improved to o(1/k) in the overparametrized setting (See Table 1). Since these results are similar to Corollary
2.4, we omit them for brievity and report them in Table 1 and Corollary A.2 in Appendix A.
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5 Experiments

In our experiments, we aimed to examine whether or not SHB-IMA with the parameter settings suggested
by our theory performed better than SGD and SGD with three common alternative parameter settings used
throughout the machine learning literature: SGD with fixed momentum β of 0.9 and 0.99 as well as no
momentum.
For our experiments, we selected a diverse set of multi-class classification problems from the LibSVM
repository, 25 problems in total. These datasets range from a few classes to a thousand, and they vary from
hundreds of data-points to hundreds of thousands. We normalized each dataset by a constant so that the largest
data vector had norm 1. We used a multi-class logistic regression loss with no regularization so we could test
the non-strongly convex convergence properties, and we ran for 50 epochs with no batching.
We use SHB to denote the method (SHB) withαk and βk set using (6) (or equivalently the method (SHB-IMA))
and we left η, as well as the step sizes of all the methods we compare, as a constant to be determined through
grid search. For the gridsearch, we used power-of-2 grid (2i), we ran 5 random seeds and chose the learning
rate that gave the lowest loss on average for each combination of problem and method. We widened the grid
search as necessary for each combination to ensure that the chosen learning-rate was not from the endpoints
of our grid search. Although it is possible to give a closed-form bound for the Lipschitz smoothness constant
for our test problems, the above setting is less conservative and has the advantage of being usable without
requiring any knowledge about the problem structure.
We then ran 40 different random seeds to produce Figure 1. To determine which method, if any, was best
on each problem, we performed t-tests with Bonferroni correction, and we report how often each method
was statistically significantly superior to all of the other three methods in Table 2. The stochastic heavy ball
method using our theoretically motivated parameter settings performed better than all other methods on 11 of
the 25 problems. On the remaining problems, no other method was statistically significantly better than all of
the rest.
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Figure 1: Average training error convergence plots for 25 LibSVM datasets, with using the best learning rate
for each method and problem combination. Averages are over 40 runs. Error bars show a range of +/- 2SE.

SHB SGD Momentum 0.9 Momentum 0.99 No best method
Best method for 11 0 0 0 14

Table 2: Count of how many problems each method is statistically significantly superior to the rest on
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The appendix is organized as follows:

• In Section A we present the proofs of Remark 2.2 and the stepsize choices and the corresponding
convergence rates derived in the corollaries listed in Table 1.

• In Section B we present proofs for Section 1.

• In Section C we present proofs for Section 2.

• In Section D we present proofs for Section 3.

• In Section E we present proofs for Section 4.

• In Section F, we present our results for the convergence of stochastic subgradient descent under the
bounded gradients assumptions.

• In Section G, we present convergence rates for SHB in expectation without the bounded gradients and
bounded gradient variance assumptions.

A Proofs of corollaries on convergence rates and stepsize choices

A.1 Proof of remark 2.2

Proof. Let ηk = η
kξ

with η > 0 and ξ ∈ [0, 1). Clearly, (ηk)k is decreasing and
∑
k ηk =∞. And we have

k−1∑
t=0

ηt ∼ ηk1−ξ.

Hence,

ηk∑k−1
t=0 ηt

∼ 1
k
.

Hence,
∑
k

ηk∑k−1
t=0 ηt

=∞.

• If σ2 6= 0. Let ξ ∈ (1
2 , 1]. Then

∑
k η

2
k <∞, and the stepsizes verify Condition 1.

• If σ2 = 0. Let ξ ∈ [0, 1). We have
∑
k η

2
kσ

2 = 0 <∞. Hence, the stepsizes verify Condition 1.

�

A.2 SGD: Proof of Corollary 2.4

Proof. • If σ2 6= 0. Let ηk = η
k1/2+ε . From Remark 2.2, we have that the stepsizes verify Condition 1.

Moreover,
∑
k

1
k

1
2 +ε ∼ k

−1/2+ε. Thus, from Theorem 2.3:

f(x̄k)− f∗ = o

( 1
k1/2−ε

)
.

• If σ2 = 0. Let ηk = η. From Remark 2.2, the stepsizes verify Condition 1. Thus, from Theorem 2.3:

f(x̄k)− f∗ = o

(1
k

)
.

�
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A.3 SGD with adaptive step sizes: Proof of Corollary 2.8

Proof. Let η, γ, c > 0. We first prove the almost sure convergence results.

• If σ̄2 6= 0. Let ηmax
k = ηk−4ε/3 and γk = γk−

1
2 +ε/3. Clearly, (ηmax

k γk)k is decreasing,
∑
k ηk = ∞

and
∑
k η

max
k γ2

k <∞. And

k−1∑
t=0

ηmax
t γt ∼ ηγk1/2−ε.

Hence,

ηmax
k γk∑k−1

t=0 η
max
t γt

∼ 1
k
.

Hence,
∑
k

ηmax
k γk∑k−1

t=0 η
max
t γt

=∞. Thus, the stepsizes verify the conditions of Theorem 2.6, and we have

f(x̄k)− f∗ = o

( 1
k1/2−ε

)
.

• If σ̄2 = 0. Let ηmax
k = η and γk = 1. Clearly (ηmax

k γk)k is decreasing since it is constant,∑
k η

max
k γk = ∞,

∑
k η

max
k γ2

kσ̄
2 = 0 < ∞, and

∑
k

ηmax
k γk∑k−1

t=0 η
max
t γt

=
∑
k 1 = ∞. Thus, the step-

sizes verify the conditions of Theorem 2.6, and we have

f(x̄k)− f∗ = o

(1
k

)
.

We now prove the convergence rates in expectation. Remember that from Theorem 2.7, we have that if (ηmax
k )

and (γk) are strictly positive, decreasing sequences with γk ≤ c for all k ∈ N and c ≥ 1
2 , then the iterates of

SGD-ALS and SGD-PS satisfy

E [f(x̄k)− f∗] ≤
2ca0‖x0 − x∗‖2 + 4c

∑k−1
t=0 γtη

max
t

(
ηmax
t L

2(1−c) − 1
)

+
σ̄2 + 2

∑k−1
t=0 γ

2
t η

max
t σ̄2∑k−1

t=0 η
max
t γt

, (15)

where x̄k =
∑k−1
t=0

ηmax
t γt∑k−1

j=0 η
max
j γj

xt and a0 = max
{
ηmax

0 L
2(1−c) , 1

}
.

• If σ̄2 6= 0. Let ηmax
k = ηk−4ε/3 and γk = γk−

1
2 +ε/3 Since ηmax

t → 0, there exists k0 ∈ N such that for
all t ≥ k0, γtη

max
t

(
ηmax
t L

2(1−c) − 1
)

+
= 0. Hence, for all k ≥ k0

E [f(x̄k)− f∗] ≤
2ca0‖x0 − x∗‖2 + 4c

∑k0−1
t=0 γtη

max
t

(
ηmax
t L

2(1−c) − 1
)

+
σ̄2 + 2

∑k−1
t=0 γ

2
t η

max
t σ̄2∑k−1

t=0 η
max
t γt

.

Replacing ηmax
k and γk with their values gives

E [f(x̄k)− f∗] = O

( 1
k1/2−ε

)
.

• If σ̄2 = 0. Let ηmax
k = η > 0 and γ = 1. We have from (15) that for all k ∈ N,

E [f(x̄k)− f∗] ≤
2 max

{
3ηL

2 , 1
}
‖x0 − x∗‖2

ηk
.

�
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A.4 SHB

Corollary A.1 (Corollary of Theorem 3.1). Let Assumption 1.1 hold. Let 0 < η ≤ 1/4L and ε > 0.

• if σ2 6= 0. Let ηk = η
k1/2+ε . Then

f(xk)− f∗ = o

( 1
k1/2−ε

)
.

• If σ2 = 0. Let ηk = η. Then

f(xk)− f∗ = o

(1
k

)
.

Proof. The proof is the same as the proof of Corollary 2.4, using Theorem 3.1 instead of Theorem 2.3. �

A.5 SGD, nonconvex

Corollary A.2 (Corollary of Theorem 4.3). Let Assumption (ABC) hold. Let 0 < η ≤ 1/4L and ε > 0.

• If σ2 = 0. Let ηk = η
k1/2+ε . Then,

min
t=0,...,k−1

‖∇f(xk)‖2 = o

( 1
k1/2−ε

)
.

• If σ2 6= 0. Let ηk = η. Then,

min
t=0,...,k−1

‖∇f(xk)‖2 = o

(1
k

)
.

Proof. • If C 6= 0. Let ηk = η
k1/2+ε . From Remark 2.2, we have that the stepsizes verify Condition 1

with C in place of σ2. Moreover,
∑
k

1
k

1
2 +ε ∼ k

−1/2+ε. Thus, from Theorem 4.3:

min
t=0,...,k−1

‖∇f(xk)‖2 = o

( 1
k1/2−ε

)
.

• If C = 0. Let ηk = η. From Remark 2.2, the stepsizes verify Condition 1 with C in place of σ2. Thus,
from Theorem 4.3:

min
t=0,...,k−1

‖∇f(xk)‖2 = o

(1
k

)
.

�

B Proofs for Section 1

B.1 Proof of Lemma 1.3

Proof. Since for all v ∼ D, fv is convex and Lv smooth, we have from (Nesterov, 2013, Equation 2.1.7) that

‖∇fv(x)−∇fv(x∗)‖2 ≤ 2Lv (fv(x)− fv(x∗)− 〈∇fv(x∗), x− x∗〉)
Asm. 1.1
≤ 2L (fv(x)− fv(x∗)− 〈∇fv(x∗), x− x∗〉)

19



Hence,

Ev∼D
[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L (f(x)− f(x∗)) .

Therefore,

Ev∼D
[
‖∇fv(x)‖2

]
≤ 2Ev∼D

[
‖∇fv(x)−∇fv(x∗)‖2

]
+ 2Ev∼D

[
‖∇fv(x∗)‖2

]
≤ 4L (f(x)− f(x∗)) + 2Ev∼D

[
‖∇fv(x∗)‖2

]
.

�

B.2 Proof of Proposition 1.6

Proof. Consider the iterate-averaging method

zk+1 = zk − ηk∇fvk(xk), (16)

xk+1 = λk+1
λk+1 + 1xk + 1

λk+1 + 1zk+1, (17)

and let

αk = ηk
λk+1 + 1 and βk = λk

λk+1 + 1 . (18)

Substituting (16) into (17) gives

xk+1 = λk+1
λk+1 + 1xk + 1

λk+1 + 1 (zk − ηk∇fvk(xk)) . (19)

Now using (17) at the previous iteration we have that that

zk = (λk + 1)
(
xk −

λk
λk + 1xk−1

)
= (λk + 1)xk − λkxk−1.

Substituting the above into (19) gives

xk+1 = λk+1
λk+1 + 1xk + 1

λk+1 + 1 ((λk + 1)xk − λkxk−1 − ηk∇fvk(xk))

= xk −
ηk

λk+1 + 1∇fvk(xk) + λk
λk+1 + 1 (xk − xk−1) .

Consequently, (18) gives the desired expression. �

C Proofs for Section 2

C.1 Proof of Theorem 2.3

Proof. Consider the setting of Theorem 2.3. Expanding the squares we have that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2ηk〈∇fvk(xk), xk − x∗〉+ η2
k‖∇fvk(xk)‖2.

Then taking conditional expectation Ek [·] def= E [· | xk] gives

Ek
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2ηk〈∇f(xk), xk − x∗〉+ η2

kEk
[
‖∇fvk(xk)‖2

]
(2)+(5)
≤ ‖xk − x∗‖2 − 2ηk (1− 2ηkL) (f(xk)− f∗) + 2η2

kσ
2.
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Since ηk ≤ 1
4L , we have that 1− 2ηkL ≥ 1

2 . Hence, rearranging, we have

Ek
[
‖xk+1 − x∗‖2

]
+ ηk (f(xk)− f∗) ≤ ‖xk − x∗‖2 + 2η2

kσ
2. (20)

Using Lemma 2.1, we have that
(
‖xk − x∗‖2

)
k

converges almost surely.

From (7) we have that wk = 2ηk∑k

j=0 ηj
. Since w0 = 2η0

η0
= 2 we have that x̄1 = 2x0 − x̄0 = 2x0 − x0 = x0.

Hence, it holds that

f(x̄1)− f∗ = f(x0)− f∗ = w0 (f(x0)− f∗) + (1− w0) (f(x̄0)− f∗) . (21)

Now for k ∈ N∗ we have that following equivalence

wk ∈ [0, 1] ⇐⇒ 2ηk ≤
k∑
j=0

ηj ⇐⇒ ηk ≤
k−1∑
j=0

ηj .

The right hand side of the equivalence holds because (ηk)k is a decreasing sequence. Hence, by Jensen’s
inequality, we have ∀k ∈ N∗,

f(x̄k+1)− f∗ ≤ wk (f(xk)− f∗) + (1− wk) (f(x̄k)− f∗) .

Together with (21), this shows that the last inequality holds for all k ∈ N. Thus,

ηk (f(xk)− f∗) ≥
ηk
wk

(f(x̄k+1)− f∗)− ηk
( 1
wk
− 1

)
(f(x̄k)− f∗) .

Replacing this expression in (20) gives:

Ek
[
‖xk+1 − x∗‖2

]
+ ηk
wk

(f(x̄k+1)− f∗)

≤ ‖xk − x∗‖2 + ηk

( 1
wk
− 1

)
(f(x̄k)− f∗) + 2η2

kσ
2.

Hence substituting in the definition of wk from (7) gives

Ek
[
‖xk+1 − x∗‖2

]
+ 1

2

k∑
j=0

ηj (f(x̄k+1)− f∗)

≤ ‖xk − x∗‖2 + 1
2

k−1∑
j=0

ηj − ηk

 (f(x̄k)− f∗) + 2η2
kσ

2.

Thus re-arranging

Ek
[
‖xk+1 − x∗‖2

]
+ 1

2

k∑
j=0

ηj (f(x̄k+1)− f∗) + ηk
2 (f(x̄k)− f∗)

≤ ‖xk − x∗‖2 + 1
2

k−1∑
j=0

ηj (f(x̄k)− f∗) + 2η2
kσ

2,

which, by Lemma 2.1, has the three following consequences:‖xk − x∗‖2 +
k∑
j=0

ηj (f(x̄k+1)− f∗)


k

converges almost surely,

and
∑
k

ηk (f(x̄k)− f∗) <∞.
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And since
(
‖xk − x∗‖2

)
k

converges almost surely, we have that
(∑k−1

j=0 ηj (f(x̄k)− f∗)
)
k

converges almost

surely. Hence, we have that limk
ηk∑k−1
j=0 ηj

∑k−1
j=0 ηj (f(x̄k)− f∗) = limk ηk (f(x̄k)− f∗) = 0. But since we

assumed that
∑
k

ηk∑k−1
j=0 ηj

diverges, this implies that limk
∑k−1
j=0 ηj (f(x̄k+1)− f∗) = 0, that is

f(x̄k)− f∗ = o

(
1∑k−1

j=0 ηj

)

�

C.2 Proofs of Theorems 2.6 and 2.7

The results of Theorems 2.6 and 2.7 can be derived as corollaries of the following theorem.

Theorem C.1. Let (ηmax
k ) and (γk) be strictly positive, decreasing sequences with γk ≤ 3c

2 for all k ∈ N and
c ≥ 2

3 . Then the iterates of (SGD-ALS) and the iterates of (SGD-PS) satisfy

2ak+1Ek
[
‖xk+1 − x∗‖2

]
+ ηmax

k γk (f(xk)− f∗) ≤ 2ak‖xk − x∗‖2 (22)

+ 4γkηmax
k

(
ηmax
k L

2(1− c) − 1
)

+
σ̄2 + 2γ2

kη
max
k σ̄2

c
,

where σ̄2 def= f∗ − Ev [f∗v ], ak = max
{
ηmax
k L

2(1−c) , 1
}

and where (b)+
def= max(b, 0) for all b ∈ R.

Before proving Theorem C.1, we need the following lemma:

Lemma C.2 (Vaswani et al. (2019b), Loizou et al. (2020)). Let g be an Lg-smooth function, αmax > 0 and
c ∈ [0, 1]. If α ∼ SALSc,αmax(g, x) or SPc,αmax(g, x), then

min
{

2(1− c)
Lg

, αmax

}
≤ α ≤ αmax and α‖∇g(x)‖2 ≤ g(x)− g∗

c‖∇g(x)‖2
. (23)

Proof of Theorem C.1. Let us now prove Theorem C.1.

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2ηkγk〈∇fvk(xk), xk − x∗〉+ η2
kγ

2
k‖∇fvk(xk)‖2

(2)
≤ ‖xk − x∗‖2 − 2ηkγk

(
fvk(xk)− f∗vk

)
+ η2

kγ
2
k‖∇fvk(xk)‖2

(23)
≤ ‖xk − x∗‖2 − 2ηkγk (fvk(xk)− fvk(x∗)) + ηkγ

2
k

c

(
fvk(xk)− f∗vk

)
= ‖xk − x∗‖2 − 2ηkγk

(
1− γk

2c

)(
fvk(xk)− f∗vk

)
+ 2ηkγk

(
fvk(x∗)− f∗vk

)
.

Rearranging, we have

2ηkγk
(

1− γk
2c

)(
fvk(xk)− f∗vk

)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2ηkγk

(
fvk(x∗)− f∗vk

)
.

Define ηmin
k

def= min
{

2(1−c)
L , ηmax

k

}
. Then,

2ηmin
k γk

(
1− γk

2c

)(
fvk(xk)− f∗vk

) (23)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2ηkγk

(
fvk(x∗)− f∗vk

)
.
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Hence,

2ηmin
k γk

(
1− γk

2c

)
(fvk(xk)− fvk(x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 (24)

+ 2γk
(
ηk −

(
1− γk

2c

)
ηmin
k

)(
fvk(x∗)− f∗vk

)
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

+ 2γk
(
ηmax
k −

(
1− γk

2c

)
ηmin
k

)(
fvk(x∗)− f∗vk

)
.

Notice that
ηmax
k

ηmin
k

= max
{
ηmax
k L

2(1− c) , 1
}
.

Since (ηmax
k )k is decreasing,

(
ηmax
k

ηmin
k

)
k

is decreasing as well. Hence, multiplying both sides of (24) by ηmax
k

ηmin
k

,

2ηmax
k γk

(
1− γk

2c

)
(fvk(xk)− fvk(x∗)) ≤

ηmax
k

ηmin
k

‖xk − x∗‖2 −
ηmax
k+1
ηmin
k+1
‖xk+1 − x∗‖2

+ 2γkηmax
k

(
ηmax
k

ηmin
k

− 1 + γk
2c

)(
fvk(x∗)− f∗vk

)
.

Hence, taking the expectation,

2ηmax
k γk

(
1− γk

2c

)
(f(xk)− f∗) ≤

ηmax
k

ηmin
k

‖xk − x∗‖2 −
ηmax
k+1
ηmin
k+1

Ek
[
‖xk+1 − x∗‖2

]
+ 2γkηmax

k

(
ηmax
k

ηmin
k

− 1 + γk
2c

)
σ̄2.

where σ̄2 def= f∗ − Ev [f∗v ]. Using the fact that 1− γk
2c ≥

1
4 and rearranging, we have

2ηmax
k+1

ηmin
k+1

Ek
[
‖xk+1 − x∗‖2

]
+ ηmax

k γk (f(xk)− f∗) ≤
2ηmax
k

ηmin
k

‖xk − x∗‖2

+ 4γkηmax
k

(
ηmax
k L

2(1− c) − 1
)

+
σ̄2 + 2γ2

kη
max
k σ̄2

c
,

where for all a ∈ R, (a)+ = max(a, 0). �

C.2.1 Proof of Theorem 2.6

Proof. Using the inequality (22) from Theorem C.1, the proof of Theorem 2.6 procedes exactly as the proof
of Theorem 2.3, with the conditions on the stepsizes of Theorem 2.6 instead of Condition 1. See Section 2
and C. �

C.2.2 Proof of Theorem 2.7

Proof. Taking the expectation in (22), rearranging and summing between t = 0, . . . , k − 1, we have,
k−1∑
t=0

ηmax
t γtE [f(xt)− f∗] ≤ 2a0‖x0 − x∗‖2 − 2ak+1E

[
‖xk+1 − x∗‖2

]

+ 4
k−1∑
t=0

γtη
max
t

(
ηmax
t L

2(1− c) − 1
)

+
σ̄2 + 2

∑k−1
t=0 γ

2
t η

max
t σ̄2

c
.

Dividing by
∑k−1
j=0 η

max
t γt and using Jensen’s inequality gives the desired result. �
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D Proofs for Section 3

D.1 Proof of Theorem 3.1

In the remainder of this section and the forthcoming lemmas we consider the iterates of (SHB) and the setting
of Theorem 3.1, that is

λ0 = 0, λk = λk =
∑k−1
t=0 ηt
4ηk

, αk = ηk
1 + λk+1

and βk = λk
1 + λk+1

, (25)

where
0 < ηk ≤ 1/4L,

∑
k

η2
kσ

2 <∞ and
∑
k

ηk =∞. (26)

Note that from (SHB-IMA), we have

zk = xk + λk (xk − xk−1) . (27)

We also assume that Assumption 1.1 holds throughout.
To make the proof more readable, we first state and prove the two following lemmas.

Lemma D.1.
∑
k ηk (f(xk)− f∗) < +∞ almost surely.

Lemma D.2.
∑
k λk+1‖xk − xk−1‖2 < +∞, and thus, limk λk+1‖xk+1 − xk‖2 = 0 almost surely.

We first prove Lemma D.1.

Proof of Lemma D.1. From (43), we have

Ek
[
‖zk+1 − x∗‖2

]
≤ ‖zk − x∗‖2 − 2ηk

(1
2 + λk

)
(f(xk)− f∗)

+ 2ηkλk (f(xk−1)− f∗) + 2η2
kσ

2. (28)

Using (14) we have that

2ηk
(1

2 + λk

)
= 2ηk

(
2ηk +

∑k−1
t=0 ηt

4ηk

)

= 2ηk

(
ηk
4ηk

+
∑k−1
t=0 ηt
4ηk

)

= 2ηk

(
1
4 +

∑k−1
t=0 ηt

4ηk+1

ηk+1
ηk

)
= ηk

2 + 2ηk+1λk+1. (29)

Using (29) in (28) gives

Ek
[
‖zk+1 − x∗‖2 + 2ηk+1λk+1 (f(xk)− f∗)

]
+ ηk (f(xk)− f∗)

≤ ‖zk − x∗‖2 + 2ηkλk (f(xk−1)− f∗) + 2η2
kσ

2.

Hence, applying Lemma 2.1 with

Vk = ‖zk − x∗‖2 + 2ηkλk (f(xk−1)− f∗) , γk = 0, Uk+1 = ηk (f(xk)− f∗) and Zk = 2η2
kσ

2,

we have by (26) that ∑
k

ηk (f(xk)− f∗) < +∞ almost surely.

�
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We now turn to prove Lemma D.2.

Proof of Lemma D.2. We have,

Ek
[
‖xk+1 − xk‖2

] (SHB)= β2
k‖xk − xk−1‖2 + α2

k‖∇fvk(xk)‖2 − 2αkβk〈∇f(xk), xk − xk−1〉.

Multiplying by (1 + λk+1)2 and using (25) we have that βk = λk
1+λk+1

and αk = ηk
1+λk+1

and thus

(1 + λk+1)2 Ek
[
‖xk+1 − xk‖2

]
= λ2

k‖xk − xk−1‖2 + η2
k‖∇fvk(xk)‖2 − 2ηkλk〈∇f(xk), xk − xk−1〉.

Thus using the convexity of f and (5), which follows from Lemma 1.3, we have

(1 + λk+1)2 Ek
[
‖xk+1 − xk‖2

]
≤ λ2

k‖xk − xk−1‖2 + 4η2
kL (f(xk)− f∗) + 2ηkλk (f(xk−1)− f(xk)) + 2η2

kσ
2

= λ2
k‖xk − xk−1‖2 − 2ηk (λk − 2ηkL) (f(xk)− f∗)

+ 2ηkλk (f(xk−1)− f∗) + 2η2
kσ

2.

Re-arranging the above gives,

(1 + λk+1)2 Ek
[
‖xk+1 − xk‖2

]
+ 2ηk (λk − 2ηkL) (f(xk)− f∗)

≤ λ2
k‖xk − xk−1‖2 + 2ηkλk (f(xk−1)− f∗) + 2η2

kσ
2. (30)

Combining both (30) and (28) we have that

Ek
[
‖zk+1 − x∗‖2

]
+ 4ηk

(1
2 − 2ηkL+ λk

)
(f(xk)− f∗) + (1 + λk+1)2 Ek

[
‖xk+1 − xk‖2

]
≤ ‖zk − x∗‖2 + 4ηkλk (f(xk−1)− f∗) + λ2

k‖xk − xk−1‖2 + 4η2
kσ

2.

Hence, since ηk ≤ 1
8L ,

Ek
[
‖zk+1 − x∗‖2

]
+ 4ηk

(1
4 + λk

)
(f(xk)− f∗) + (1 + λk+1)2 Ek

[
‖xk+1 − xk‖2

]
≤ ‖zk − x∗‖2 + 4ηkλk (f(xk−1)− f∗) + λ2

k‖xk − xk−1‖2 + 4η2
kσ

2.

Using (25), we have ηk
(

1
4 + λk

)
= ηk+1λk+1. Hence,

‖zk+1 − x∗‖2 + 4ηk+1λk+1 (f(xk)− f∗) + (1 + λk+1)2 ‖xk+1 − xk‖2

≤ ‖zk − x∗‖2 + 4ηkλk (f(xk−1)− f∗) + λ2
k‖xk − xk−1‖2 + 4η2

kσ
2.

Hence, noting Vk
def= ‖zk − x∗‖2 + 4ηkλk (f(xk−1)− f∗) + λ2

k‖xk − xk−1‖2, we have

Ek [Vk+1] + (2λk+1 + 1) ‖xk − xk−1‖2 ≤ Vk + 4η2
kσ

2.

Hence, since
∑
k η

2
kσ

2 < +∞, applying Lemma 2.1, we have

∑
k

λk+1‖xk − xk−1‖2 < +∞ almost surely, thus lim
k
λk+1‖xk+1 − xk‖2 = 0 almost surely.

�

We can now prove Theorem 3.1.
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Proof of Theorem 3.1. This proof aims at proving that, almost surely

1. xk →
k→+∞

x∗ for some x∗ ∈ X∗.

2. f(xk)− f∗ = o

(
1∑k−1
t=0 ηt

)
.

In our road to prove the first point, we will prove the second point as a byproduct.
We will now prove that limk ‖zk − x∗‖2 exists almost surely.

‖zk − x∗‖2
(27)= ‖xk − x∗ + λk (xk − xk−1)‖2

= λ2
k‖xk − xk−1‖2 + 2λk〈xk − x∗, xk − xk−1〉+ ‖xk − x∗‖2

=
(
λ2
k + λk

)
‖xk − xk−1‖2 + λk

(
‖xk − x∗‖2 − ‖xk−1 − x∗‖2

)
+ ‖xk − x∗‖2.

Define

δk
def= λk

(
‖xk − x∗‖2 − ‖xk−1 − x∗‖2

)
+ ‖xk − x∗‖2, (31)

so that

‖zk − x∗‖2 =
(
λ2
k + λk

)
‖xk − xk−1‖2 + δk.

We will first prove that limk

(
λ2
k + λk

)
‖xk − xk−1‖2 exists almost surely, then that limk δk exists almost

surely.
First, we have from Lemma D.2 that (λk‖xk − xk−1‖2)k converges to zero almost surely. Hence, it remains
to show that limk λ

2
k‖xk − xk−1‖2 exists almost surely. From (30), we have that

λ2
k+1Ek

[
‖xk+1 − xk‖2

]
+ 2ηk (λk − 2ηkL) (f(xk)− f∗)

≤ λ2
k‖xk − xk−1‖2 + 2ηkλk (f(xk−1)− f∗) + 2η2

kσ
2.

Using (25) and the fact that ηk ≤ 1
8L , we have that 2ηk+1λk+1 = 2ηk

(
1
4 + λk

)
≤ 2ηk

(
1
2 − 2ηkL+ λk

)
.

Hence, 2ηk (λk − 2ηlL) ≥ 2ηk+1λk+1 − ηk. Therefore, denoting

dk
def= ‖xk − xk−1‖2 and θk

def= 2ηk (f(xk−1)− f∗) ,

we have

Ek
[
λ2
k+1dk + λk+1θk+1

]
≤ λ2

kdk + λkθk + ηk (f(xk)− f∗) + 2η2
kσ

2.

From Lemma D.1, we have
∑
k ηk (f(xk)− f∗) < +∞. Moreover,

∑
k η

2
kσ

2 < +∞. Hence, we have by
Lemma 2.1 that limk λ

2
kdk + λkθk exists almost surely.

Moreover, by Lemma D.2,
∑
k λkdk < +∞, and we have

∑
k θk < +∞ almost surely. Hence,

∑
k λkdk + θk < +∞

a.s. Rewriting

λkdk + θk = 1
λk

(
λ2
kdk + λkθk

)
,

we have, since limk λ
2
kdk + λkθk exists almost surely and

∑
k

1
λk

0<ηk≤ 1
4L= 4

∑
k

ηk∑k−1
t=0 ηt

Condition 1= ∞
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that

lim
k
λ2
kdk + λkθk = 0,

which means that both limk λ
2
kdk = 0 and limk λkθk = 0 a.s. Writing out limk λkθk = 0 explicitly, we have

f(xk)− f∗ = o

(
1∑k−1
t=0 ηt

)
almost surely

This proves the second point of Theorem 3.1 and that limk λ
2
kdk = 0 almost surely. To prove the first point

of Theorem 3.1 it remains to show that limk δk exists almost surely.
Note uk = ‖xk − x∗‖2. We have

uk+1
(SHB)= ‖xk − x∗ + βk (xk − xk−1)‖2 + α2

k‖∇fvk(xk)‖2 − 2αkβk〈∇fvk(xk), xk − xk−1〉 (32)

−2αk〈∇fvk(xk), xk − x∗〉.

Taking expectation conditioned on xk, and using the convexity of f and Lemma 1.3 we have that

Ek [uk+1] ≤ ‖xk − x∗ + βk (xk − xk−1)‖2 − 2αk (1 + βk − 2αkL) (f(xk)− f∗)
+ 2αkβk (f(xk−1)− f∗) + 2α2

kσ
2. (33)

Furthermore note that

‖xk − x∗ + βk (xk − xk−1)‖2 = uk + β2
kdk + 2βk〈xk − x∗, xk − xk−1〉

= uk +
(
β2
k + βk

)
dk + βk (uk − uk−1) . (34)

Hence, using the fact that 0 ≤ βk ≤ 1 and inserting (34) into (33) gives

Ek [uk+1] ≤ uk + 2dk + βk (uk − uk−1)− 2αk (1 + βk − 2αkL) (f(xk)− f∗)
+ 2αkβk (f(xk−1)− f∗) + 2α2

kσ
2.

Multiplying the above by (1 + λk+1), rearranging and using (6) results in

(1 + λk+1)Ek [uk+1 − uk] ≤ 2 (1 + λk+1) dk + λk (uk − uk−1)− 2ηk (1 + βk − 2αkL) (f(xk)− f∗)

+ 2ηkβk (f(xk−1)− f∗) + 2 η2
kσ

2

1 + λk+1
. (35)

Using the definition of δk+1 given in (31) we have that

δk+1 − δk = (1 + λk+1) (uk+1 − uk)− λk (uk − uk−1) ,

which we use to re-write (35) as we have

δk+1 + ηk
ηk+1

(1 + βk − 2αkL) θk+1 ≤ δk + 2 (1 + λk+1) dk + βkθk + 2 η2
kσ

2

1 + λk+1
.

Hence, since ηk+1 ≤ ηk,

Ek [δk+1 + (1 + βk − 2αkL) θk+1] ≤ δk + βkθk + 2 (1 + λk+1) dk + 2 η2
k

1 + λk+1
σ2.
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And since,

1 + βk − 2αkL = 1 + λk
1 + λk+1

− 2ηkL
1 + λk+1

= 1
1 + λk+1

(1 + λk+1 + λk − 2ηkL)

≥ λk+1
1 + λk+1

≥ λk+1
1 + λk+2

= βk+1,

we have

Ek [δk+1 + βk+1θk+1] ≤ (δk + βkθk) + 2 (1 + λk+1) dk + 2η2
k

1 + λk+1
σ2.

Since by Lemma D.2 we have that
∑
k 2 (1 + λk+1) dk < +∞ almost surely, and

∑
k

η2
kσ

2

1+λk+1
< +∞, we

have by Lemma 2.1 that limk δk + βkθk exists almost surely And since limk βkθk = 0 almost surely, we
deduce that limk δk exists almost surely.
Thus we have now shown that limk ‖zk − x∗‖2 exists almost surely. Therefore, since xk − x∗ = zk − x∗ −
λk (xk − xk−1) and

| ‖xk − x∗‖ − ‖zk − x∗‖ | ≤ λk ‖xk − xk−1‖ →
k→+∞

0 almost surely,

we have that limk ‖xk − x∗‖ − ‖zk − x∗‖ exists almost surely, and so does limk ‖xk − x∗‖.
We also have that both ‖zk − x∗‖ and λk ‖xk − xk−1‖ are bounded almost surely, thus ‖xk − x∗‖ is bounded
almost surely Hence, (xk)k is bounded almost surely, thus almost surely sequentially compact.
Let (xnk)k be a subsequence of (xn)n which converges to some x ∈ Rd a.s. Since f(xn)→n f∗ almost surely
for all x∗ ∈ argmin f , we have x ∈ argmin f a.s. Finally, applying Lemma 2.39 in Bauschke and Combettes
(2011) (restricted to our finite dimensional setting, where weak convergence and strong convergence are
equivalent), there exists x∗ ∈ argmin f such that

xk →
k→+∞

x∗, almost surely

This proves the first point of Theorem 3.1. �

E Proofs for Section 4

E.1 Proof of Theorem 4.3

Proof. Consider the setting of Theorem 4.3. Let ηk ≤ 1
LB for all k ∈ N. From (Khaled and Richtárik, 2020,

Proof of Lemma 2), we have

Ek [f(xk+1)− f∗] + ηk‖∇f(xk)‖2 ≤
(
1 + η2

kAL
)

(f(xk)− f∗) + η2
kLC

2 .

Since
∑
k η

2
k < ∞, we also have that

∏∞
k=0(1 + η2

kAL) < ∞. Thus, by Lemma 2.1, we have that
(f(xk)− f∗)k converges almost surely.
Define for all k ∈ N,

wk = 2ηk∑k
j=0 ηj

, g0 = ‖∇f(x0)‖2, gk+1 = (1− wk)gk + wk‖∇f(xk)‖2.

Note that since (ηk)k is decreasing, wk ∈ [0, 1]. Plugging this back in the previous inequality gives

Ek [f(xk+1)− f∗] +
∑k
j=0 ηj

2 gk+1 + ηk
2 gk ≤

(
1 + η2

kAL
)

(f(xk)− f∗) +
∑k−1
j=0 ηj

2 gk + η2
kLC

2 .

28



Since
∑
k η

2
k <∞, we also have that

∏∞
k=0(1 + η2

kAL) <∞. Thus, by Lemma 2.1, we havef(xk)− f∗ +

k−1∑
j=0

ηj

 gk

k

converge almost surely, and
∑
k

ηkgk <∞ almost surely

And since (f(xk)− f∗)k converges almost surely, we have that
((∑k−1

j=0 ηj
)
gk
)
k

converges almost surely.

Hence, we have that limk
ηk∑k−1
j=0 ηj

∑k−1
j=0 ηjgk = limk ηkgk = 0. But since we assumed that

∑
k

ηk∑k−1
j=0 ηj

diverges, this implies that limk
∑k−1
j=0 ηjgk = 0, that is, we have that,

gk = o

(
1∑k−1

j=0 ηj

)
almost surely

But since for all k ∈ N, gk+1 = (1 − wk)gk + wk‖∇f(xk)‖2, gk is a weighted average of all past
‖∇f(xj)‖2, j = 0, . . . , k − 1. Hence, there exists a sequence (w̃j)j in [0, 1] which verifies

∑k−1
j=0 w̃j = 1

such that gk =
∑k−1
j=0 w̃j‖∇f(xj)‖2. Thus, gk ≥ mint=0,...,k−1 ‖∇f(xt)‖2 ≥ 0. Hence we have almost

surely

min
t=0,...,k−1

‖∇f(xt)‖2 = o

(
1∑k−1

j=0 ηj

)

�

F Extension of our results to the nonsmooth setting

In this section, we will consider the stochastic subgradient descent method under the bounded gradients
assumption, as in Nemirovski et al. (2009) . Under this assumption, we show that we can derive the same
convergence rates as in Theorem 2.3.

Proposition F.1. Consider the following method: at each iteration k, let gk be such that Ek [gk] = g(xk) for
some g(xk) ∈ ∂f(xk), and update

xk+1 = xk − ηkgk,

where we assume that f is convex and that there exists G such that ∀k ∈ N, E
[
‖gk‖2

]
≤ G.

Choose step sizes (ηk)k which verify Condition 1 (with G in place of σ2). Define for all k ∈ N

wk = 2ηk∑k
j=0 ηj

and

{
x̄0 = x0
x̄k+1 = wkxk + (1− wk)x̄k.

(36)

Then, we have a.s. that f(x̄k)− f∗ = o

(
1∑k−1
t=0 ηt

)
.

Proof. The proof procedes exactly as in the smooth case, but with replacing the bound (5) by the bound
∀k ∈ N, E

[
‖gk‖2

]
≤ G. Indeed, expanding the squares we have that

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2ηk〈gk, xk − x∗〉+ η2
k‖gk‖

2.
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Then taking conditional expectation Ek [·] def= E [· | xk] gives, since Ek [gk] = g(xk) for some g(xk) ∈
∂f(xk), we have

Ek
[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2ηk〈g(xk), xk − x∗〉+ η2

kEk
[
‖gk‖2

]
≤ ‖xk − x∗‖2 − 2ηk (f(xk)− f∗) + η2

kG,

where we used in the last inequality the fact that g(xk) is a subgradient of f at xk, and that Ek
[
‖gk‖2

]
≤ G.

Hence, rearranging, we have

Ek
[
‖xk+1 − x∗‖2

]
+ 2ηk (f(xk)− f∗) ≤ ‖xk − x∗‖2 + η2

kG. (37)

From (36) we have that wk = 2ηk∑k

j=0 ηj
. Since w0 = 2η0

η0
= 2 we have that x̄1 = 2x0 − x̄0 = 2x0 − x0 = x0.

Hence, it holds that

f(x̄1)− f∗ = f(x0)− f∗ = w0 (f(x0)− f∗) + (1− w0) (f(x̄0)− f∗) . (38)

Now for k ∈ N∗ we have that following equivalence

wk ∈ [0, 1] ⇐⇒ 2ηk ≤
k∑
j=0

ηj ⇐⇒ ηk ≤
k−1∑
j=0

ηj .

The right hand side of the equivalence holds because (ηk)k is a decreasing sequence. Hence, by Jensen’s
inequality, we have ∀k ∈ N∗,

f(x̄k+1)− f∗ ≤ wk (f(xk)− f∗) + (1− wk) (f(x̄k)− f∗) .

Together with (38), this shows that the last inequality holds for all k ∈ N. Thus,

ηk (f(xk)− f∗) ≥
ηk
wk

(f(x̄k+1)− f∗)− ηk
( 1
wk
− 1

)
(f(x̄k)− f∗) .

Replacing this expression in (37) gives:

Ek
[
‖xk+1 − x∗‖2

]
+ ηk
wk

(f(x̄k+1)− f∗)

≤ ‖xk − x∗‖2 + ηk

( 1
wk
− 1

)
(f(x̄k)− f∗) + η2

kG.

Hence substituting in the definition of wk from (36) gives

Ek
[
‖xk+1 − x∗‖2

]
+

k∑
j=0

ηj (f(x̄k+1)− f∗)

≤ ‖xk − x∗‖2 +

k−1∑
j=0

ηj − ηk

 (f(x̄k)− f∗) + η2
kG.

Thus re-arranging

Ek
[
‖xk+1 − x∗‖2

]
+

k∑
j=0

ηj (f(x̄k+1)− f∗) + ηk (f(x̄k)− f∗)

≤ ‖xk − x∗‖2 +
k−1∑
j=0

ηj (f(x̄k)− f∗) + η2
kG,
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which, by Lemma 2.1, has the three following consequences:

(‖xk − x∗‖2)k and

 k∑
j=0

ηj (f(x̄k+1)− f∗)


k

converge almost surely,

and
∑
k

ηk (f(x̄k)− f∗) <∞.

Hence, we have that limk
ηk∑k−1
j=0 ηj

∑k−1
j=0 ηj (f(x̄k)− f∗) = limk ηk (f(x̄k)− f∗) = 0. But since we as-

sumed that
∑
k

ηk∑k−1
j=0 ηj

diverges, this implies that limk
∑k−1
j=0 ηj (f(x̄k+1)− f∗) = 0, that is

f(x̄k)− f∗ = o

(
1∑k−1

j=0 ηj

)

�

G Convergence rates for SHB in expectation without the bounded gradients
and bounded gradient variance assumptions

Our first theorem provides a non-asymptotic upper bound on the suboptimality given any sequence of step
sizes. Later we develop special cases of this theorem through different choices of the stepsizes.

Theorem G.1. Let Assumption 1.1 hold. Let x−1 = x0. Consider the iterates of SHB-IMA. Let (ηk)k be such

that 0 < ηk ≤ 1
4L for all k ∈ N. Define λ0

def= 0 and λk =
∑k−1

t=0 ηt
2ηk for k ≥ 1. Then,

E [f(xk)− f∗] ≤
‖x0 − x∗‖2∑k

t=0 ηt
+ 2σ2

∑k
t=0 η

2
t∑k

t=0 ηt
.

Note that in Theorem G.1 the only free parameters are the ηk’s which in the iterate-moving-average view-
point (SHB-IMA) play the role of a learning rate. The scaled step sizes αk and the momentum parameters
βk of the usual formulation (SHB) are given by (6) once we have chosen ηk. We now explore three different
settings of the ηk’s in the following corollaries.

Corollary G.2. Consider the setting of Theorem G.1. Let η ≤ 1/4L.

1. Let ηk = η. Then, E [f(xk)− f∗] ≤ ‖x0−x∗‖2

η(k+1) + 2ησ2. (39)

2. Let ηk = η√
k+1 . Then, E [f(xk)− f∗] ≤

‖x0−x∗‖2
2+4σ2η2(log(k+1)+1)
2η(√k+1−1) ∼ O

(
log(k)√

k

)
. (40)

3. Suppose Algorithm (SHB) is run for T iterations. Let ηk = η√
T+1 for all k ∈ {0, . . . , T}. Then,

E [f(xT )− f∗] ≤
∥∥x0 − x∗

∥∥2
2 + 2σ2η2

η
√
T + 1

. (41)

(39) shows how to set the parameters of SHB so that the last iterate converges sublinearly to a neighborhood
of the minimum. In particular, for overparametrized models with σ2 = 0, the last iterate of SHB converges
sublinearly to the minimum. Moreover, when using the full gradient, which corresponds to directly using the
gradient ∇f(xk) at each iteration, we have L = L and σ2 = 0, which recovers the rate derived in Ghadimi
et al. (2015) for the deterministic HB method upto a constant.
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The O
(
log(k)/

√
k
)

convergence rate in (40) is the same rate that can be derived for the iterates of SGD, as
is done by Nemirovski et al. (2009) for a weighted average of the iterates of SGD, or by Orabona (2020b) for
the last iterate. The difference with SGD is that it is also possible to drop the log(k) factor in (40) for the last
iterate if we know the stopping time of the algorithm as shown in (41). So far in the litterature, shaving of this
log factor has been shown only for convex lipschitz functions over closed bounded sets (Jain et al., 2019).

G.1 Proof of Theorem G.1

The proof uses the following Lyaponuv function

Lk = E
[
‖zk − x∗‖2

]
+ 2ηkλkE [f(xk−1)− f∗]

Proof. We have

‖zk+1 − x∗‖2 = ‖zk − x∗ − ηk∇fvk(xk)‖2

(SHB-IMA)= ‖zk − x∗‖2 − 2ηk〈∇fvk(xk), zk − x∗〉+ η2
k‖∇fvk(xk)‖2

(SHB-IMA)= ‖zk − x∗‖2 − 2ηk〈∇fvk(xk), xk − x∗〉 − 2ηkλk〈∇fvk(xk), xk − xk−1〉+ η2
k‖∇fvk(xk)‖2

Then taking conditional expectation Ek [·] def= E [· | xk] we have

Ek
[
‖zk+1 − x∗‖2

]
= ‖zk − x∗‖2 − 2ηk〈∇f(xk), xk − x∗〉

− 2ηkλk〈∇f(xk), xk − xk−1〉+ η2
kEk

[
‖∇fvk(xk)‖2

]
,

(5)+(2)
≤ Ak + 4η2

kL (f(xk)− f∗) + 2η2
kσ

2

− 2ηk (f(xk)− f∗))− 2ηkλk (f(xk)− f(xk−1))
= ‖zk − x∗‖2 − 2ηk (1 + λk − 2ηkL) (f(xk)− f∗)
+ 2ηkλk (f(xk−1)− f∗) + 2η2

kσ
2. (42)

≤ ‖zk − x∗‖2 − 2ηk
(1

2 + λk

)
(f(xk)− f∗)

+ 2ηkλk (f(xk−1)− f∗) + 2η2
kσ

2, (43)

where we used the fact that ηk ≤ 1
4L in the last inequality. Since λk+1 =

∑k

t=0 ηt
2ηk+1

we have that

ηk+1λk+1 = ηk

(1
2 + λk

)
.

Using this in (42) then taking expectation and rearranging gives

E
[
‖zk+1 − x∗‖2

]
+ 2ηk+1λk+1E [f(xk)− f∗] ≤ E

[
‖zk − x∗‖2

]
+ 2ηkλkE [f(xk−1)− f∗] + 2η2

kσ
2.

Summing over t = 0 to k and using a telescopic sum, we have

E
[
‖zk+1 − x∗‖2

]
+
(

k∑
t=0

ηt

)
E [f(xk)− f∗] ≤ ‖x0 − x∗‖2 + 2σ2

k∑
t=0

η2
t ,

where we used that λ0 = 0. Thus, writing λk explicitly, gives

E [f(xk)− f∗] ≤
‖x0 − x∗‖2∑k

t=0 ηt
+ 2σ2∑k

t=0 η
2
t∑k

t=0 ηt
.

�
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G.2 Proof of Corollary G.2

Proof. (39) and (41) can be easily derived from Theorem G.1. (40) requires some additional sum computations.
Using the integral bound and plugging in our choice of ηk gives

k−1∑
t=0

η2
t = η2

k−1∑
t=0

1
t+ 1 ≤ η2 (log(k) + 1) and

k−1∑
t=0

ηt ≥ 2η
(√

k − 1
)
,

which we use to obtain (40). �
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