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ABSTRACT

A numerical simulation approach was proposed to es-
timate the intrinsic viscosity of particles with complex geom-
etry. The approach is based upon the solution of the mass and
the momentum conservation equations for an incompressible
Newtonian fluid under steady-state creeping flow around the
particle. The reliability of the approach is demonstrated af-
ter solving the problem for fluid flow around a small sphere,
whose effect is known after theoretical work. The approach
is then applied in solving the same problem for different ap-
ple cells. The intrinsic viscosity varies with the particle shape
and its orientation, between 2.6 and 4.6.

INTRODUCTION

Understanding the rheology of food materials is es-
sential for the standardized characterization of raw materi-
als and innovative products, as well as for optimized indus-
trial processing (Fischer and Windhab 2011). In the case of
apple purees, bulk measurements have allowed to evaluate
the influence of particles size and insoluble solids content
on the suspension rheological properties (Espinosa-Muñoz
et al. 2013); further, direct observation has demonstrated the
ability of apple cells to compress and decrease their volume
when the concentration of the suspension increases (Lever-
rier et al. 2017). As a complement to experimental work,
numerical simulation can provide useful information link-
ing these two scales (bulk and cell). Indeed, the rheology of
particle-fluid suspensions through numerical simulation has
been studied since the 1990’s, for instance by solving the dy-
namics of the solid particles combined with a Lattice Boltz-
mann approach for the fluid phase in the case of spheres,
cylinders, or disks (Ladd and Verberg 2001).

It is clear that many of the complex phenomena as-
sociated with a flowing suspension cannot be explained by
using a classical Newtonian description of a fluid with an ef-

fective viscosity. The volume fraction of the particles in a
suspension (volume occupied by particles per unit volume of
suspension) has often been assumed to be the only variable
that influences the observed rheological properties of the sus-
pension. Experimental evidence has shown that this is incor-
rect and that other factors, such as the shape and size distri-
bution of the particles, the presence of electrical charges, and
the type of flow being experienced must be considered (Jef-
frey and Acrivos 1976). The study of the hydro-dynamical
contributions of non-Brownian particles to the rheology of
suspensions usually starts with diluted systems, i.e., those in
which there are so few particles that occasional collisions be-
tween particles can be ignored. In such case everything one
needs to know can be obtained from studying the flow around
a single particle (Mewis and Wagner 2012, p.41).

Einstein (1906) has shown that the viscosity η of a
diluted suspension of rigid spheres, treated as an incompress-
ible homogeneous liquid, divided by the viscosity η` of the
pure liquid, can be expressed as a linear function of the vol-
ume fraction of particles, φ :

η /η` = 1 + α φ . (1)

The parameter α is called intrinsic viscosity, being equal to
2.5 for very diluted spherical particles. Since then, much
work has been devoted in describing the relative viscosity
of disperse systems as a function of the concentration of the
dispersed phase: equations have been developed on a theo-
retical foundation; theoretical equations have been adapted
to empirical results; and empirical expressions have been re-
formulated in such a way that the Einstein equation (1) is
obtained at very low concentration. Fifty years ago, dozens
of formulas were already available (Rutgers 1962).

Theoretical computation of the relative viscosity due
to very diluted ellipsoidal particles has demonstrated that the
parameter α in the Einstein equation (1) can assume val-
ues from 2 up to 10 depending on the particle shape and
orientation (Jeffery 1922). These findings have provided a
physical, micro-structural explanation of observations, in-
cluding changes of rheological regime as the volume fraction
increases (Mueller et al. 2010).
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Looking for a method to investigate the role played
by the particle shape on the intrinsic viscosity, we propose
a numerical simulation approach for studying the effect on
the flow of a liquid around a particle suspended in it. In this
contribution two kinds of particles are considered: spheres,
as a way to assess the reliability of the approach; and some
apple cells, in order to explore the potential of our approach
in the case of irregularly-shaped particles.

METHODS

Particles in the liquid constitute obstacles to fluid flow;
hence their presence distorts the flow field. Further, there is
friction at the surface of particles. Both effects are expected
to increase the energy dissipation during flow, and hence the
apparent viscosity, above that of the pure suspending medium
(Mewis and Wagner 2012, p.46).

Our rationale is based on the thought experiment of
Einstein (1906) in his theoretical analysis dealing with the
viscosity of diluted suspensions. In a first step, we solve an
extensional stationary fluid flow problem associated with the
presence of a very small particle placed in the center of a vol-
ume of incompressible Newtonian liquid. The viscous dissi-
pation W is calculated by integrating η` (γ̇)

2 over the liquid
volume under consideration, where η` is the viscosity of the
liquid phase, and γ̇ is the shear rate field. The second step
involves the solution of the problem but without the particle
in the liquid volume. This second problem is associated with
a smaller viscous dissipation W`, due to a shear rate field γ̇`

which does not exhibit the features characterizing the flow
disturbances occurring in the first problem. The relative vis-
cosity η/η` due to the presence of the particle in the liquid
volume is finally obtained by computing the ratio W/W`.

The mass and momentum conservation equations for
an incompressible Newtonian fluid under stationary condi-
tions can be written as:

∇ ·u = 0 (2)
ρ (u ·∇)u = ∇ · (− pI + η` (∇u + (∇u)T )) , (3)

where u is the velocity (magnitude in m.s−1) and p the pres-
sure (Pa); ρ is the liquid density (kg.m−3) and η` its viscosity
(Pa.s).

Following Einstein, here we consider extensional flow
around the particle. The computational domain is a cube; two
opposite faces are associated with outflow, while the four re-
maining ones correspond to inflow. At the particle surface,
the velocity field is assumed to vanish. At the two outlet
boundaries, the pressure p is assumed to vanish under no vis-
cous stress. At the four inlet boundaries, the velocity compo-
nents u, v, w are prescribed as:

u = A (x− x0) , v = B (y− y0) , w =C (z− z0) , (4)

where the coordinates (x0,y0,z0) indicates the barycenter of
the particle. On account of the incompressibility of the liq-

uid, the constants A, B, and C must fulfill the condition A+
B+C = 0. Three scenarios are here considered:

• A = 1, B =C =−1/2; outflow through the cube faces
which are parallel to the plane YZ;

• B = 1, A =C =−1/2; outflow through the cube faces
which are parallel to the plane XZ; and

• C = 1, A = B =−1/2; outflow through the cube faces
which are parallel to the plane XY.

Only one scenario is required in assessing the relative viscos-
ity due to spheres. In the case of apple cells, the application
of these scenarios is equivalent to consider three arbitrary
orientations for the particle in respect to the fluid flow. The
liquid is characterized by the density ρ = 1000 kg.m−3 and
the dynamic viscosity η` = 0.001 Pa.s (similar to pure wa-
ter at 20 ◦C). This problem is solved under creeping regime:
Reynolds number is smaller than 1.5 for all the cases.

Equations (2) and (3) need to be solved firstly with the
particle at the center of the computational domain, and later
in its absence. These equations are solved through the finite-
element method as implemented in the simulation package
COMSOL Multiphysics software (version 5.2.0.220; COM-
SOL, Inc., Burlington, Massachusetts) (Zimmerman 2006).
Three-dimensional domains are commonly approximated by
a mesh of polyhedrons in the process of setting up the equa-
tions for finite-element analysis. In this study the domains
are subdivided into large numbers of small, non-overlapping
tetrahedrons, which allow suitable geometrical approxima-
tions of virtually any three-dimensional shape. Discretiza-
tion of equations (2) and (3) considers first-order Lagrange
finite elements for the velocity components and the pressure.
The solution of the linear system obtained after discretization
of governing equations is reached through the direct solver
PARDISO (Schenk and Gartner 2004). Satisfactory conver-
gence of the numerical model is reached in looking for a rel-
ative tolerance smaller than 10−6.

SPHERES

Figure 1A illustrates the computational domain, built
around a sphere corresponding to the volume fraction of 0.4
%. Figure 1B displays model predictions of the velocity field,
after solving the fluid flow problem in the presence of that
sphere. Velocities vanish in the vicinity of the sphere, as
a consequence of friction (no slip condition at the particle
surface). This leads to distortion of the flow field, which is
put in evidence in Figures 1C and 1D.

Model predictions of the relative viscosity were ob-
tained at different mesh resolutions. Solving the problem
with the coarser mesh required less than 2 Gb-RAM and few
seconds; the application of the finer mesh required above 190
Gb-RAM, and results were available after some days of work
on a Windows-7 64-bit SP1, Intel Xeon CPU ES-2630 v3 @
2.40 GHz, 192 Gb-RAM computer.
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Figure 1: Display A shows the computational domain for a sphere corresponding to the volume fraction of 0.4 %, where the blue
faces indicate domain outlets when outflow boundary conditions correspond to A = 1. Display B presents model predictions of
the velocity field around such a sphere, in 3D representation; the same model predictions are presented in display C with the help
of streamlines and velocity vectors in the plane Y = 0. Display D presents model predictions of the velocity field in the absence
of the sphere. Dimensions are expressed in meters.

3



Figure 2 summarizes results obtained for spheres cor-
responding to the volume fractions of 0.1 % and 0.4 %. Model
results converged with the mesh resolution, and the values
predicted for the relative viscosity due to such spheres be-
came quite stable above 5×105 mesh elements. Even apply-
ing the highest mesh resolution, there is a difference between
values predicted for the relative viscosity from the model and
those from the Einstein equation (1); further, such a differ-
ence increases with the volume fraction. In fact, the intrinsic
viscosity is defined for infinitely small volume fraction as
α = limφ→0 (η −η`)/(η` φ). Assuming a volume fraction
of 0.4 % in numerical simulation leads to slightly overesti-
mate the intrinsic viscosity, α0.4% ∼ 2.54, whereas using 0.1
% gives α0.1% ∼ 2.50.

Figure 2: Model predictions of the relative viscosity due to
spheres, after assuming a volume fraction of 0.1 % (A) and
0.4 % (B), as function of the number of mesh elements. Blue
lines indicate the value as estimated from the Einstein equa-
tion (1) for α = 2.5.
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APPLE CELLS

The application of numerical modeling to problems
involving real food particles constitutes a challenging task.
On one hand, the irregularly-shaped particles that we found
in real-world problems can exhibit very complex geometrical
features. Under such conditions, the construction of the com-
putational domain needs to include a realistic representation
of the particles of interest as provided by image acquisition
and post-processing. On the other hand, meshing algorithms
can forbid the construction of relatively coarse meshes for
detailed geometries. As noted above, higher is the resolution
in meshing the computational domain, larger is the computer
memory required and longer is the simulation time needed
for reaching a satisfactory solution.

Our numerical modeling approach was applied to three
apple cells (Leverrier et al., 2017). The volume occupied by
each apple cell was about 1.36, 3.40 and 1.27× 106 µm3,
respectively; the geometry of each cell was obtained using
confocal microscopy and three-dimensional reconstruction.
These apple cells were sampled from a moderately diluted
apple puree (0.47 g of insoluble solids per 100 ml of suspen-
sion; volume fraction of 0.43); the cells are expected do not
change their shape under fluid flow.

Three steps were conducted in order to consider those
apple cells in our numerical approach.

• Firstly, the volume associated with each cell was sub-
divided into a large number of tetrahedrons. This was
performed through the Simpleware software environ-
ment and its +FE Mesh Generation Module (version
2016.09-SP1; Synopsis, Inc., Mountain View, Califor-
nia). Looking for a detailed representation of the cells,
a relatively high meshing resolution was considered;
the resulting volume meshes are constituted by about
1.8, 3.7, and 2.3×106 tetrahedrons.

• Secondly, the file containing the volume mesh gener-
ated by Simpleware was imported into the COMSOL
environment, in which we created a 3D representation
of the apple cell considered. The results obtained can
be appreciated in Figure 3.

• Lastly, a cubic computational domain was built, whose
center coincides with the cell barycenter. The volume
fraction corresponding to the cell is assigned, hence
the cube volume becomes a multiple value of the cell
volume (say, 250 times higher for a volume fraction of
0.4 %).

The standard options of the COMSOL Multiphysics mesh
generator gave origin to great heterogeneity in the size of el-
ements. Hence, the subdivision of the computational domain
was customized in order to generate a large number of tetra-
hedrons with similar size. The shortest edge of mesh ele-
ments was set to be a sub-multiple of the side L of the liquid

cube representing the computational domain; and the ratio of
their longest edge to the shortest edge was set to be 4.

Figure 4 shows results reached for the apple cells after
assuming the volume fraction φ = 0.1 % and 0.4 %, taking
into account the three sets of flow boundary conditions. Sen-
sitivity tests were performed on the mesh resolution in solv-
ing the flow problem for the three apple cells in the case of
boundary conditions associated with A = 1. Quite stable re-
sults were obtained above 106 mesh elements; hereafter only
the results obtained with the finest mesh are discussed.

Table 1 translates model predictions of relative vis-
cosity into estimates of intrinsic viscosity. All the values are
higher than 2.5, associated with the Einstein equation (1).
This was expected as a consequence of the irregular, non-
spherical shape of particles under consideration. Essentially
the same estimates of intrinsic viscosity are obtained from
model simulations performed for φ = 0.1 % and 0.4 %. Ta-
ble 1 indicates that, for a given particle, the intrinsic viscosity
depends on the particle orientation with respect to the flow
boundary conditions. The relative standard deviation (or co-
efficient of variation) of α is smaller for one cell (#1) than
for the other two, without any apparent reason from the vi-
sual inspection of their 3D appearance. As shown in Figure
3, each apple cell exhibits a variety of geometrical features,
including convex and concave regions, as well as rugged and
smooth areas. It seems difficult to anticipate the influence
of the geometrical features exhibited by an apple cell on its
intrinsic viscosity.

SUMMARY AND FUTURE WORK

• Results obtained for spheres demonstrated the reliabil-
ity of our approach for volume fractions below 0.4%.
Differences between model results and estimates from
the Einstein equation (1) remained below 2 % of the in-
trinsic viscosity value (2.54 instead 2.5 for φ = 0.4%).

• Model predictions of the intrinsic viscosity due to an
isolated apple cell are higher than for a sphere. Such
an increase depends on the cell shape as well as on its
orientation with respect to the extensional flow.

Results presented above were obtained after placing the
cube center at the particle barycenter. In fact, we should con-
sider the position at which the forces exerted by the fluid on
the particle exhibit null resultant. Such a steady-state posi-
tion of the particle could differ slightly from its barycenter.
Further, only three different orientations were considered in
obtaining the results shown above. Two conditions deserve
attention regarding the estimation of the intrinsic viscosity.
At low shear (Peclet number < 1), thermal agitation domi-
nates, and the particle orientation is random. Therefore the
intrinsic viscosity at low shear should be based on the aver-
aged value obtained from numerous orientations. Inversely,
at high shear (Peclet number > 100), thermal agitation be-
comes negligible; the particle orientation is expected to be in
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the direction corresponding to the lowest viscous dissipation,
say to the lowest intrinsic viscosity. The latter could also be
obtained by turning the particle until the torque vanishes. Fi-
nally, a larger set of apple cells should be considered in order
to obtain statistically significant values.

The determination of the intrinsic viscosity of apple
cells can be useful to estimate the volume fraction which is
occupied by solid particles in apple juices or apple purees.
Indeed, one could progressively dilute the apple-based food
product, searching conditions where the suspension viscosity
becomes a linear function of the concentration; then, know-
ing the viscosity of the continuous phase (e.g. the super-
natant after centrifugation), the volume fraction could be es-
timated from the measurement of the suspension viscosity.
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of Lille. After 20 years teaching and conducting research in
Brazil, he joined AgroParisTech in 2010, where he has work-
ing with numerical modeling applied to food engineering.

DENIS FLICK is Full Professor at AgroParisTech. He con-
ducts research in modeling and numerical simulation of cou-
pled phenomena in food processes (heat and mass transfer,
fluid flow and product deformation, product transformation),
with applications in food cold chain equipment, heat exchang-
ers, cooking and baking, dairy products, bread, and ice cream.
His teaching area includes transport phenomena, thermody-
namics, and numerical modeling.

CHRISTOPHE DOURSAT and GIANA ALMEIDA are Pro-
fessors, CASSANDRE LEVERRIER is Assistant Professor,
and GABRIELLE MOULIN is Assistant Engineer, all at Agro-
ParisTech.

EVEN OU contributed to this study in the scope of his re-
search internship at AgroParisTech.

6



Figure 3: The apple cells here considered, after 3D reconstruction by the COMSOL Multiphysics geometry builder. The second,
third, and fourth rows from the top exhibit the apple cells facing one of the cube outlets, when applying the flow boundary
conditions associated with A = 1, B = 1, and C = 1, respectively (see METHODS). Dimensions are expressed in meters.
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φ = 0.1 %

cell A = 1 B = 1 C = 1 average RSD

#1 4.47 4.25 4.53 4.42 0.03

#2 2.67 3.42 2.92 3.00 0.13

#3 3.75 3.24 2.92 3.31 0.13

φ = 0.4 %

cell A = 1 B = 1 C = 1 average RSD

#1 4.55 4.33 4.62 4.50 0.03

#2 2.70 3.46 2.95 3.04 0.13

#3 3.81 3.30 2.97 3.36 0.13

Table 1: Estimates of the intrinsic viscosity α , from the re-
sults displayed in Figure 4. RSD stands for relative standard
deviation (i.e. coefficient of variation).

Figure 4: Model predictions of the relative viscosity due to
the three apple cells as a function of the number of mesh el-
ements, by assuming a volume fraction of 0.1 % (A) and 0.4
% (B). Blue lines indicate values associated with the Einstein
equation (1) for α = 2.5. Black, gray, and open symbols in-
dicate results obtained after assuming the flow boundary con-
ditions associated with A = 1, B = 1, and C = 1, respectively.
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