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Abstract. We show that a one-dimensional aperiodic Delaunay set of
points A together with the Fourier transform of its autocorrelation mea-
sure (square modulus of its structure factor) at a wavevector k =27 /A,
can be associated with a generalized Meyer set under some assump-
tions: (a) that the internal space is toric, R/AZ, with a window, as-
sumed finite, equal to the set of affine lattices of period A which have a
non-empty intersection with A and rarefaction laws at infinity, a selec-
tion rule based on a congruence mode with respect to A; (b) a scaling
exponent function, having values in [0; 1], can be uniquely defined on
the window from rarefaction laws, which is related to the scaling prop-
erties of the intensity function; (c) the projection mappings are adapted
to the average lattice of A and are not orthogonal. The case of Bragg
peaks of the ThueMorse sequence spectrum is developed explicitly in
this context.



1. Introduction

The notion of a model set developed by Meyer [1,2] in the context of cut-and-project schemes
(CPSs), in the 1970s, has been applied successfully and extensively to the study of the structure
of quasicrystals for more than ten years. Its simplicity, which is expressed by the existence of
a suitable lattice in a periodization space, suitable windows in the internal space and its power
for refining structure models [3] make model sets new exciting tools for studying aperiodic
sets of points modelling aperiodic crystals and particularly quasicrystals.

However. the constructions of Meyer were more general. They were developed in the
context of locally compact Abelian groups, that is finite-dimensional Euclidean spaces B,
compact subgroups of the infinite torus T, discrete or finite groups, and so on (Rudin [12],
chapter 2) and for classes of Delaunay sets greater than the class of model sets; whereas the
applications to quasicrystals are only using Euclidean spaces and model sets. Here, we are
interested in the fundamental question of understanding when toric internal spaces appear
naturally in the study of general Delaunay point sets, for what purposes they may be used,
which characteristics possess windows. For this, we assume that these Delaunay point sets
still lie in a Euclidean space.

In the following, given a Delaunay set A, we claim that a toric internal space is important
for describing the behaviour of the diffracting intensity function of A and for describing its
scaling exponents. We show that these scaling exponents arise from the rarefaction laws, at
infinity, of distributions of points on affine lattices intersecting A when some assumptions are



satisfied. The diffracting intensity function of A is expressed by the Fourier transform of the
autocorrelation measure (which is the square modulus of its structure factor, normalized by
the number of diffracting sites). Delaunay sets A will lie on the positive real line for the sake
of simplicity.

Indeed, when aperiodic point sets are no longer quasiperiodic, the search for sets
supporting the components of the spectrum, Bragg. singular continuous and absolutely
continuous becomes more difficult. Model sets formed by normal cut-and-project schemes
with Euclidean spaces as physical space and intemal space. give only pure Bragg spectra [4].
Many other possibilities could of course occur, and the full generality of the theory calls for new
concepts to deal with scaling exponents associated with the singular continuous components
of the spectra.

Hof [4]hasdeveloped a mathematical model of diffraction theory adapted to any Delaunay
set in B". n = 1. He shows that knowledge of the autocorrelation measure of this set
is basic since it gives rise, by its Fourier transform, to the diffraction pattems of the set,
known to physicists. This Fourier transform is a positive measure (Bochner’s theorem). For
instance. it can be computed directly by hand in the case of interpenetrating G-clusters, where
G is a finite non-crystallographic symmetry point group and when G-clusters are arranged
quasiperiodically or not [5]. When arranged quasiperiodically in a suitable way. the system
of interpenetrating G-clusters is a quasicrystal [6], and this approach is another view of the
diffraction of the quasicrystal through the existence of the local clusters of atoms it contains.

Of importance for an arbitrary Delaunay set A is the localization and the search for Bragg
peaks and of peaks belonging to the singular continuous component of the spectrumof A. This
can be carried out by a suitable Fourier-Bohr analysis [7-9], up to some limit, by the average
unit cell approach [ 10, 11]. typical of finite systems. Here, we propose a different scheme. We
fix a certain wavevector k, thatis a perod A = 27 /k = 0 and want to understand the scaling
properties of the intensity at k. We consider all the affine lattices in [E of period & which have a
non-emply intersection with A and assume they are a finite number of them. This is expressed
by the finiteness of ©2; (section 2), thatis the fact that the window €2; has a Hausdorff measure
equal to zero (section 5). The second assumption is about rarefaction laws at infinity. Let
v+ AZ any affine lattice intersecting A. If g denotes the number of adjacent cells of this lattice
counted from the origin, we assume that the number of points of (v + AZ) N A within these ¢
cells is given by, when g goes to infinity,

A@) g™ + Ax(g) g + As(q) g + - -+ (0

where the A;(g)’s are bounded, 1 = a,(v) > dy > d3 = --- = (. We assume a little more,
that the A;(g)’s are all constant. We write A;(g) = 8;“‘("" in section 2. Of course, all the
A;(g)’s and the dy’s depend on v. Such an expression is called a rarefaction law of the affine
lattice v + AZ at infinity. Under these two assumptions, the v’s are attributed a dominant
coefficient a; (v) and are classified by lexicographical order (section 3) in |—A/2: +1/2]. We
claim that all v’s having the maximal value of «; (v) intervene in the diffraction process when
some combinations of exponentials do not cancel (theorem 1). The scaling exponent of the
diffracting intensity is then directly 2e; (v) — 1. When some combinations of exponentials
cancel, the scaling exponent becomes one of thed;’s, j = 2 (theorem 2). For this reason, we
call d; the (fractal) levels of the scaling exponent function. The intemal space, toric, is E/AZ
and the window is the finite formal external sum of affine lattices of given period A which
intersect A, represented by the v's (section 5).

The structure factor of A gives the Fourier transform of its autocorrelation measure. We
allow a suitable Lebesgue decomposition of it according to the levels of the scaling intensity
function (section 3) to show that the fractal scaling exponents of the intensity which appear by



this method are correlated to the fractal rates of occupancy atinfinity of these affine lattices that
intersect A, that is their rarefaction laws at infinity. The case of the Thue-Morse quasicrystal
is presented in this context for certain values of A. We know that the Thue-Morse sequence is
not a model set since its spectrum has a non-trivial singular continuous component [22, 23]. It
is a Meyer set, a harmonious set (sections 4 and 5). Here, we investigate Bragg peaks by the
present method, leaving singular continuous peaks for another contribution [21, 25]. Figures
showing the scaling behaviour of the diffracting intensity of the Thue-Morse sequence are
reported in Wolny et al [13].

The present contribution reports (in section 5) a discussion of the axiomatics of the cut-
and-project scheme in order to include, for an arbitrary Delaunay set satisfying the above
assumptions, a toric intemal space, scaling exponents associated with elements of windows,
when windows are finite, scaling properties for the diffracting intensity. We show that the
removal of one axiom is required for such a generalization of the CPS to allow more general
spectra than only pure Bragg spectra. It enables one to specify the geometrical origin of the
scaling exponents of the diffracting intensity. We examplify some results about the Thue-
Morse in this context.

2. Definitions

In the following, we will consider a sequence of points, as an image of a function f, satisfying
the following assumptions:

(H). f is a strictly increasing function defined on M taking values in E*, with f(0) = 0. The

set{f(n)/n € N} is denoted A or A . It represents an infinite sequence of points on the real
line, satisfying the crystallographic hypothesis (Delaunay):

(DI) (A is uniformly discrete). 3r = 0 such that, for all n € [, ecach interval
|—r+ f(n);+r+ f(n)[ contains only the point f(n) of the sequence,
(D2) (A is relatively dense). 3R > 0 such that Vx = 0, 3n € M such that |x — f(n)| < R.
Let & = 0 areal number, and
Q; ={ue |—A/2; +4/2]/3n € N, f(n) = u+ ph for a certain integer p = p(n)}
the set of values of the sequence A = { f(n)} modulo ZX. Denote
Q = NE™ Q =, NE".
For each e € |—A/2: +4 /2], we set
My(u)={neNEBp el —pr+ f(n) =u}.

By definition, all the sets [, (i) are empty when u € |—X/2; +4/2]\ ©;, and non-empty when
u € 8.

Lemma 1. The following union is disjoint:

M= LI B (10). (2)

ue2)



This lemma gives a partitioning of the set M with respect to the affine lattices u + LZ, of period
A. which have a non-empty intersection with A.

Some of these lattices are strongly occupied by the points of A and others very few. In
order to understand their role in the diffraction process of A ;. we introduce their asymptotic
rates of occupancy at infinity and fractional exponents. This will specify canonically the
dominant terms ‘A,(g)g“""" of their rarefaction laws at infinity.

Forany A > 0, ¢ € N, N an integer = 1 and v € |—X/2: +1 /2], we call

PFi(g) ={n e N/ f(n) € [0;: gr]} (3)
and
GHng)=#¥ne[0:N —1]|ne N (v)nPF(qg)}. )

We denote by #W or by Card(W) the number of elements of an arbitrary finite set W.
When A, g, v are fixed, the sequence N — 4, y ,(v) is stationary: the first value of N when
this sequence reaches the plateau allows one to calculate g from f. We have

fIN=1)<gh < f(N) 5)
and g = [ f(N)/A]. the greatest integer less than f(N) /A We denote by
4y q(v) = \,ll_l}l_ 8in.q(v) = #(E (v) NFi(g)). (6)

For pairs g, N such that equation (5) is valid. we have 8, y ,(v) = 4§, ,(v). For each
v € ;. we now consider the sets of exponents

[ﬁe[() 1)/ timinf = "(” 0] 7

[ & ":U) < +ocl. (8)

Since M (v) # #. the first set of exponents is not empty: it contains at least § = 0. We call

and

A(u)_wp[,ﬁe [0: ll/llmmf *;( v) 0]. ©)

Similarly, the second set of exponents above is not empty since it contains § = 1: this comes
from the fact that #(M; (v) N F,(g)) < g. Let us denote

4 ]
@ (v) = mr[y € [0: 1]/ lim sup a(®) < +oc|. (10)
q7

g—>ac
Proposition 1. For all v € Q;, we have
O<a,(v)<a,(v) £ 1. (11)
Proof. If @,(v) = O orif @, (v) = 1, the proposition is proved. Assume &, (v) > 0 and
0 <@ (v) <ea,(v) < 1. Then there exist two real numbers £, 7 such that
@) < <p < o).

We have @,(v) > f — f = 0, hence liminf, . [8,,(v)/¢"#] = 0. Let us denote
by L this liminf. It is strictly positive and there exists a subscquunu, {gi/i € N} such

that m, . oo [8, 4 (v)/g" ") = L. Therefore, lim; . c[8, () /g"] = lim, ., Lg”



and tends to infinity. However. @;(v) < S and hence Iim,_.+.x[8;hqt(u)/q""| <
limsup, .. [8; 4(v)/g"] < +0c. A contradiction. 0

We will be mainly interested in rarefaction laws with the highest possible well defined
fractal exponents in the dominant terms.

Definition 1. For all v € Q;, we define an average sublattice in v of period ), denoted by
v+ZX, ofthe sequence A = { f(n)}, as an affine lattice of period ) which contains v and such
that

a,(v) =a,(v) =L

Definition 2. We say that A satisfies assumption (F; ) when, (a) forallv € Q;, a, (v) =&, (v),
and when (b) for all v € ;, lim inf, . [8;_,(v)/g%""] and lim SUp, . [85 4(v) /g™ "] are
strictly positive, exist and are equal. In this case, we denote

a,(v) =a,(v) =a,(v) (12)

and

8}..(;(”) = lim Bh.q(v)

81 (1) = liminf sup ——.
g g—oe g

o quA(l')

(13)

In particular, when
a(v) =1

we call this common limit 8, (v). Itis by definition the average number of points of the sequence
A = {f(n)} per cell of the average sublattice v+ Z.

The notation of equation (13) is such that the quantity (e; (v)) is a superscript and not an
exponent. When a; (v) = 1. the occupancy of the lattice v+ ZA is faidy regular. In this case,
we always have §, (v) € [0: 1]. The occupancy is fractional.

When @, (v) =@, (v) = 1 and 4, (v) = 1, it means that we have exactly one point of the
sequence, on average, congruent to v, per cell of the average sublattice v+ ZA. This does not
mean that we have a full occupancy of the lattice v + Zi. Owing to the assumption (H-D2),
the number of successive cells of the lattice v+ ZX receiving no points of the sequence at all
cannot be arbitrarily large.

Definition 3. A sequence A = { f(n)} such that ; is finite and, for all v € €;,
a;(v) <1
is called singular in .

The terminology is reminiscent of the fact that a Bragg peak cannot exist at k = 27 /A
when this condition is fulfilled, as will be shown below.

Conversely, for sequences of points that are subsets of lattices, we have the following
result.

Proposition 2. If A = { f(n)} is asubset of Z2r NN, r = 0, except a finite number of elements
eventually, then

(a) if b =2r, then Q; = {0}. The lattice Z2r is the average sublattice in v = 0 of period 2r
of the sequence { f (n)}, with §,(0) = 1,

(b) if h is such that 1. /2r > O can be written as t fw € (J, witht, w € N\ {0}, ged(t, w) = 1,
then 2, is the set of wesidues of 0,1 x2r,2 x 2r, ..., (t — 1) x 2r € |—A/2:+A/2]
modulo Zh, and, for all v € Q;, a, (v) = @, (v) = 1, with §,(v) = 1/w,



(c) if & is such that A/2r & (), then Q; is the uniformly dense set of residues of Z2r in
|=A/2: +A /2] modulo Z) and &, (v) = @, (v) = O forall v e Q,.

From case (b), we see that each time A is an integral multiple of 2r, then w = 1,1i.e. each
lattice v + ZA is an average sublattice in v, for all v € ;. Such collections of points are
singular for any A which are incommensurate with the period 2r, from (c).

Corollary. For any Delaunay sequence A = {f(n)}, if r, denotes the maximal bound of r
such that the intervals |—r + f(n): +r + f(n)[, n € N, are mutually disjoint, then the sequence
A = {f(n)} is such that for any . < 2r, and any v € |—1/2; +1 /2], we have §;(v) € [0; 1]
if it exists.

The value 1 cannot be reached in this case. siles being too dispersed on each affine lattice
v+ZAveEQ;.

3. Fourier transform decomposition by sublattices

Let & = 0 and assume that €2, is finite. Let & = 27 /A be the comresponding wavevector and
N = 1 be an integer. We will make a Lebesgue-type decomposition of the structure factor
of the set A, gathering diffracting sites by sublattices, setting 1 to each site as the individual
scattering factor. Recall (Hof [4]) that the square modulus of the structure factor is the Fourier
transform of the autocorrelation measure of A, normalized by the number of diffracting sites
and not per unit volume. The difference between the two normalizations lies in the point
density of A, which is assumed to be a constant. In the following, we will assume that A has
an average lattice, that is, that there exists ¥ = 0 such that limy ... f(N)/N exists and is
equal o . This means roughly that A behaves as xZ. The density is then x ~'. The structure
factor and the diffracting intensity will arise from a Lebesgue-type decomposition of the sum
YN L1 We have, from lemma 1,

n=0

N—1 N—1
Z lcik/(n) — Z Z cik/(n) . (14)
n=0 uefd, n={)

€N, (u)

Since kA = 27, and that f(n) — p(n)A = u foracertain v € 2, and a certain (unique) integer
p(n) associated with n, it equals

N—1 N—1

— Z: Z cikl/[n)—p[n)}\l — Z Z ciku
ueQy n=t) ueldy n=0
neMi(u) €M)
= ) e x Card(N, () N [0; N — 1]).

ue2,

Let us now assume that A is such that A satisfies the assumption (F;) with well defined
rarefaction laws (equations (1), (12), (13)) forall v € ;. Then, from equations (4), (5). (13),
for all large enough integer N, with g = [ f(N) /4]

~ Z ciku(aim[u))(“)qm(u) + Ag(ll)l]dﬂ“)-{' Aj(u)qdy[u) +- ) (15)

uel2y



(Here the d;’s and the A ;s are constant, depend upon 1 € €2, and are indexed by u only.)
Since A is a Delaunay set, imy o[ f(N)/A]/(f(N)/A) = | and since we have assumed it
has a density x ~! expressed by lim y_ ..o N/f(N). then

~ Z: ciku [5;UA("))(ll) (%N)m (a) + As(u) (%N)dﬂ“) + As(0) (;N)d‘[“) .. ] (16)
ue

We are interested in the dominant terms. We now classify the elements u € Q; by
lexicographical order in the following way: if v and w are any two elements of €;, we say
that v > w if o;(v) > a;(w), or, when o;(v) = a;(w), v < w. Therefore, there exists a
stationary sequence of integers ng = 1, ny, ... such that

Upg=1 = U2 3= oo 3= Uy > Uy > Uy gl = om0 3= Upye | = Uny > Unpl > -

with
1 2 op(u=1) = ax(2) = - =ap(vy, 1) > o (vy) = o vy ) = -+
s =0 (V1) = o (U) =@ (Uppey) = -
and
Up < Uy < s < Uy
Upp < Ul <00 << Upy—)

corresponding to the jumps of the scaling exponent function a; on £2;. This scqut.nu. is finite
since £2; is assumed to be finite. With the convention, for any integer i = 0, Zn =0, we
obtain

+o¢ | =1 (@ (v K\ @ (vng)
~ Z[ Z Jikv; 5 AL ( j) (X) ] (N)uAil'u,)
)

=0 | j=m
£ el (As(u)( )d’(")+A3(u) (%N)d‘(“)+-~). (17

uEQ

(a) The case when min, cq, o; (1) > max,cq, d (u): let us denote by

e —1
ik, olan(va ) KO\ @aty,)

the /th coefficient. The index [ is called the level index of the scaling exponent. The level [ is
constituted by ny,) —ny elements inthe window ;. Denote by /,,,, the total number of levels.
If ¢, (0) # 0, the intensity 7, (k) produced by N diffracting sites is scaled with N as

x>|2

. In(k) kS l..x., (@ (n)) L Sl B 2
R vrry=t IZ 8w (3)” | =IO (18)

The scaling exponent 2a; (vy ) — 1 < 1 is the bestone among all the possibilities. It may occur
that ¢; (0) = 0 together with a certain number of the first coefficients, hence diminishing the
scaling exponent of the diffracting intensity.

Definition 4. Under the above assumptions, we say that the spectrum of A has a Bragg peak
at k when 2a;(vy) — 1 = 1 and a singular continuous peak at k when 20, (vy) — 1 € |—1: 1[.



Theorem 1. If there exists 1 < h < I, such that, foralll =0.1,... . h —1
ah)y=0 and cth)y #0 (19)

then

lex(h)>. (20)

oo =1 N
. In(k) RO ik g () K\ @altay)
Jim e =| 2 et (1) =

| i=m |

Corollary. Under the above assumptions, the scaling exponent of the diffracting intensity, as
a function of N, is given by
2al(l'nn) - L (21)

In particular, a Bragg peak at k can be obtained if and only if the scaling exponent is 1, that
is if and only if

a, (v, ) =1. thatisfor h=0. no=1 and c;(0)#0. (22)
In this case, the intensity of the Bragg peak at k = 7:7/ A, per diffracting site, is
. In(k) K ek
v; — 2 >
Jim 252 = () |Z wﬂ| O @)

By the one-to-one mapping between |—X/2;+A/2] and R/AZ, we transport the
lexicographical classification of the elements v of €, and scaling exponents a; (v) to the
torus. The set £2; becomes a finite subset of the torus [R/AZ (the internal space), viewed as a
window. A scaling exponent function «; is then defined on the window which provides the
scaling behaviour of the diffracting intensity. The levels are attached to the one-dimensional
lattices v+ AZ, that intersect A, and have rarefaction laws whose dominant scaling exponents
are the same.

(b) The case when min, cq o) (1) < max,cq, d2(u): denote by /.. the smallest positive
integer such that, for allm = [, + 1, for allu € ;. d, (1) < min, o a; (). It may occur
that the secondary terms A (1) g% of rarefaction laws becomes prominent in the scaling
behaviour of the diffracting intensity just because all the above exponential sums ¢; (1), which
come from the primary terms, cancel or because the lexicographical order has to take into
account the levels arising from the secondary exponents d,, (1) indexed by 1 < m < [,,,.. We
prolongate the sequence iy to include all these values of exponents and denote, gathering the
coefficients,

nei—1 b
— wikv; p o0y ﬁ) !
all) FZ,” ¢ B,(UJ)()‘

(ets (vn,))

with B;(v;) = 4, (vj)or A,(vg)orthe sumof both, forsome!, p < L..;andb; = a;(v,,)
or dy(v,), for some /. p < I,.. Similarly as in theorem 1 above, we have, with this new
definition of the coefficients ¢, (/).

Theorem 2. If there exists | < h < I, such that, foralll =0,1,... . h—1

a()y=0 and o (h) #0 24)
then
im0 = e @

Itis clear thatin this case, with secondary terms and exponents, we cannot obtain Bragg peaks.



4. Thue-Morse sequence

One starts with the alphabet {a. b}. Theset {a, b}* endowed with the operation of concatenation
is the set of all finite words on this alphabet [7]. It is a free monoid generated by {a, b}. We
now define the structural map (substitution rule) ¢ on {a, b} by {(a) = ab and ¢ (b) = ba. By
extension, this map operates on {a., b}*. We consider the infinite word X . iterated from a by
¢ to the right, by iterating ¢. In order to generate a Delaunay set on the positive real line, we
consider that we have two segments @ and b, with a, b = 0 two real numbers, a = b, with the
origin of the segment a set at zero and the extremity of the segment a at @ (same notation);
we form X.. (same notation) to the right of the segment a by iterating ¢ and concatenating
segments, up to infinity. The points f(n) will be the extremities and origins of the segments
a and b in the infinite sequence of segments Xoo. Set A = {f(n) | n € N}. We keep the same
notations for the letters @ and b and, respectively, the corresponding segments. Letn € R
Instead of using the substitution rule ¢ for describing the infinite word X, we use an algebraic
description of the successive points of the Delaunay set A. X . or A is called the Thue-Morse
sequence (built from @). The nth-tile 1, of the Thue-Morse sequence (for instance, [7]) is
given by

ty = ;—(a +b)+ %(a — b)(—l)sll")
where §»(n) is the sum of the 2-digits in the binary expansion of n. In other terms, if

2
n =a(,+a|2l +ay2” -1-0323 + oo

Sin)=ay+a,+a+az+---
cach sum being obviously finite. By convention, to = a. thatis (—1)%® = +1,
The aperiodic sequence f(n). n € M, is given by
f(0)=0

f(") = Z T
O<m<n—1

Lemma 2. Forall n = 1, we have

n—1
f)=in@+b)+3a—b) Y (=™
m=0)
with

n—1

D (=D e (—1,0.+1).

m={)

Proof. If n is even, the first coefficient aq in its binary expansion is equal to (. Therefore,
going from n o n+ 1 leads o just adding 1 to S;(n) to find Sa(n + 1). We have:

e if S3(n)is even, then S>(n +1) is odd,
e if S3(n)is odd. then Sy (n + 1) is even.



In other terms, if n is even:

(-1 )S; [n)(_l)S;[nH) = —1.

Now, we prove inductively that, for any n € 2,

n—l
Y (=pSm=o.

m=l)

If n = 2, the result is true. Assume the result forn = 2 even. We have

n—1
z(_l)S;[nt) =0

m={)
and

n+l n—1

Z(_I)S;[m) — Z(_I)S_n(m) +(_l).9;(n) + (_])S;(n'rl) — (_I)S;(n)_{__ (_I)Sglni-l)

m={) m=0

O

but the sum of these two quantities is zero. Hence, the result.

Proposition 3. With . = a + b, we have Q; = {v) = —b, vy = 0, vy = +b}, o, (—b)
o, (0) =a;(+b) = 1, 8;(—b) = 8,(+b) = 3. 8,(0) = Lng=l.ny =d=ny =ny = ---
Card(£2;) + 1.

Proof. Since, for cach n € 2, we have

n—1
z(_l)S:[m) -0

m={)

then a; (0) = 1, 4,(0) = 1. Now denote
A" ={ne2N| (-1)%m" =_1}
A* ={ne2N| (—)%" =41}

We have 2 = A4~ U A" as a disjoint union. The injective application ¢ : x — 2x +2
defined on 2N sends A~ to A" and A" to A™. Therefore, for the distribution of points
f(n), with n € 1+ 2N, on the sublattices +b + LZ, we have a;(—b) = a;(+b) = 1 and
8, (—b) = §,(+b) = ;— Hence. ny = 1 with the other values n ; equal to 4, for j = 1. |

Corollary 1. The intensity per diffracting site of the Thue-Morse sequence, at the wavevector
= 2x f(a + b), is given by

lil-}»cos(z”b)iz.
4 a+b

Proof. From theorem 1, we have x = %(a + b). Hence.

2
lim Int)) _ (la+b)/2 |Letint-briaeh) , g 4
N—+oe N a+b :

dirr (+b)/ (a+h) |2

¢

1 —

hence the result. |



The rarefaction laws at infinity of the affine lattices v + (a + b)Z, with v € Q. are
reduced to their dominant terms ‘* x g' or 1 x g'* with scaling exponents all equal to 1.
The Thue-Morse sequence satisfies the assumption ( F,) of definition 2 for A = a + b. The
dominant scaling exponent does not change when we now consider the rarefaction laws of
affine lattices w + %Z. where m is an arbitrary positive integer. Itremains equal to 1. These
rarefaction laws (calculation of the coefficient 8,45/ (w)) can be easily deduced from the
previous ones by grouping sites according to the new periodicity (a +b)/m.

Corollary 2. The spectrum of the Thue-Morse sequence contains a lattice of Bragg peaks at

integral multiples of k = 2m {(a + b) and the diffracting intensity per site at km, for m an
arbitrary positive integer, is given by

% 1+ cos(kmb)|*.
Proof. We just sketch the proof and refer to [21] for complete details. Let m be an arbitrary
positive integer and A, = (a + b)/m. We have

K m

)‘l" 2

and, with v € ;. for m odd, there exists an integer j such that

1 .
fim 3y q(v—32j —m+1)) —m lim 8 (V)
g+ q g—+oo q
for m even, there exists an integer j such that
5, (v—1@2j" = m)) Ey v
lim —< bl =m lim L()
g—+aC (l g+ [l

Therefore, going from ; to ;. leads to dividing all the coefficients 8, (v) by m. We have

1 2
+1+ cikm[<t~b)
2m i

lim In(km) om (=)

N—+ac

1 2| 1
=(sm) | —
(2 ) | 2m
hence the result. O

This result was also obtained by Kolar et af [18] for substitutional systems of length 2
formed with two tiles. In Gaehler and Klitzing [ 19]. the situation is more general. Other non-
trivial Bragg peaks are reported in [18], which can also be studied by the present Lebesgue
decomposition of the structure factor.

We will show in another contribution [21, 25] that the rarefaction laws of the affine lattices
of period (p/s)(a + b) which intersect the Thue-Morse sequence. where p and s are positive
integers, are given by p-rarefaction laws [24]. They are basically of the type

Ay (u)ql + Aalg, u)q"l“')
where Aix(g,u) is a bounded fractal (continuous nowhere-differentiable) function depending
upon log N/ log 4, where the da (1) ’s are all closely related to log p/(p — 1)log2. It happens
that ¢; (0) generally cancels for such values of periods. For instance, with X' = 3(@+ b). p =
3.s=1k"=27/}),

Qiushy = {—a —2b,—a — b, —a, —b. 0, +b, +a, +a + b, +a + 2b}
= (—(a +b) + Quup) U (RQusp) U (+(a + b) + Qu4p)



and the sum
2in =2b)/(3 drx(—a—b)/(3
c(0) = (l_’c im(—a—2b)/( (a+b))+ %c.n[ a—b)/ (3a+b))

+lc2i:r(—u);'(3(u+b)) + lclin[—b),"(3[¢1+b)) + 1 + lCZi:r[+~b),"(3(u+b))
6 6 3 6
2i /| 2i /) 2i WY/
+_(l)‘.:.m'[#-a),[3[a+b)) + jlc.l:!'[4>¢l<l~b),(3(a<hb)) + ?I’C'm (+a+2b)/(3(a+h)) —=0.

This cancels the contribution of the dominant terms, extinguishing the possible Bragg peak at
k'. There appears a singular continuous peak at k" of well defined exponent (dy exponents)
with a coefficient which looks like a constant but depends fractally of g. The scaling exponent
of the diffracting intensity is 2(log 3/ log4) — 1 in this case [21,25].

5. Generalized Meyer sets

We will slightly change the axiomatics of CPS in orderto keep at the same time the Thue-Morse
sequence on the real line and the relevant rarefaction laws of the affine lattices which intersect
A. This can be formulated within the context of Meyer sets, as generalized Meyer sets under
generalized cut-and-project schemes (generalized CPS), what will be explained below. First,
we recall basic facts of Meyer’s constructions with locally compact Abelian groups, following
Meyer [1], Moody [2] and Baake and Moody [14].

Definition 5 (Classical CPS: cut-and-project scheme). Let G and H be two locally compact
Abelian groups, and 7, : G x H — G, m : G x H — H the canonical projections. We say
that G produces H if there exists

(As) aclosed subgroup L of G x H satisfying:

(Aa) LisdiscreteinG x H

(Ab) L isrelatively dense in G x H [property H-(D2)].

(Ac) LN{0} x H ={0,0} where 0 denotes the neutral element of G, respectively H.
(Ad) ma(L)isdensein H.

The structure of locally compact Abelian groups is well known. A locally compact group
G contains an open (also closed) subset G| of the type B x K such that K is a compact in
the infinite torus T and that the quotient G /G | is a discrete group. In particular, K may be a
finite-dimensional torus (B / 7y forl =1 any integer. To the knowledge of one of the authors,
for all the applications concerning the crystallography and structure models of quasicrystals,
particularly icosahedral quasicrystals and decagonal quasicrystals, only the Euclidean part was
used up to now in cut-and-project schemes. Some recent results make use of p-adic internal
spaces [ 15] in the spirit of the previous works of Meyer [1] and Schreiber [16]. but they do not
seem Lo be used as such by experimentalists.
The normal CPS is a collection of mappings and Euclidean spaces
B & R™ xR > R”
U
L
where L < B"™ x B" is a lattice. m and 7, the orthogonal projection mappings onto
Im(m) := the physical space = B, and Im(7;) := the intemal space = B". L is assumed
such that with L the physical space produces the intemal space. 3 (L) is dense in [B" and |
is injective. Let T = m(L). The application

() =mo(m)



is well defined on T and has values in the intemal space. It is extended on the (J-span Y of
Y. In the context of structure models of quasicrystals, we normally choose lattices L which
are invarant under a finite symmetry group (the icosahedral group. cyclic groups, etc) and
one or several windows [2, 14] in the internal space B to select points of L. If W € B" isa
window, it satisfies the following assumptions:

W1. The window W < B" is compact.
W2. W = inu(W) # @

W3. The boundary d W of W has Lebesgue measure () and a model set is given by

A={xeTx* e W} cCR"™

Some properties of model sets are the following:

M1. A is aDelone set [property HJ: it is relatively dense and uniformly discrete.

M2. A is a Mever set: A is discrete and relatively dense and there exists a finite set F such
that A — A C A+ F. Actually the class of model sets is strictly included in the class of Meyer
sets.

Ma3. A has a well defined point density d (Rogers [17]), i.c. the following limit:

#(A N B(0. R))

d= lim Vol(B(0. R))

exists, where B(0, R) is the ball centred at the origin of radius R > 0 in E™. Its volume is
TR T(3(m +2)).
M4. A has a well defined spectrum composed of Bragg peaks.

We now show that the toric part (E/Z) , with / = 1, inthe internal space, plays naturally a
part in the representation of the Thue-Morse sequence for frequencies A such that £2; is finite.

Lemma 3. The Thue-Morse sequence satisfies the properties MI-M3.
Proof. Clearly, M1 is satisfied for A. The fact that M2 is satisfied follows from lemma 2
with F := {0, £(a — b)/2. £(a — b), £3(a — b) /2} since. for any m > n = 0, we have
f(m)— f(n)— f(m—n) € F. Property M3 is satisfied since

Ay = ;—(a +b)Z
is the average lattice of A. There is one point of A per cell of A, and the point density  of

the Thue-Morse sequence is equal 1o 2/(a +b). O

Proposition 4. The Thue—-Morse sequence is harmonious.



Proof. This is a consequence of lemma 3 and theorem X in chapter II in Meyer [1]. O

We will analyse elsewhere characteristics of the Thue-Morse sequence, with the notions
of duality following this proposition.

Now, since it is well known that the Thue-Morse sequence has a spectrum which is not
only composed of Bragg peaks, but possesses a non-trivial singular continuous component
(for instance, Kolar et al [18]. Queffelec [8]. Kakutani [22], Mahler [23]), we should remove
some assumptions from the normal cut-and-project scheme in order to obtain more general
spectra than Bragg spectra, as given by M4. The Thue-Morse sequence is a Meyer set which
is not a model set. We know that there exists a model set which contains it strictly [2]; here,
we will not use another CPS to obtain it. On the contrary, we invoke a new scheme which
looks like the classical CPS. For this, we will only change the axiomatics of the CPS in a
minimal way, sticking to the formalism of the previous paragraphs. We will have to join to this
geometrical approach and framework the need to define simultaneously scaling exponents for
the diffracting intensity function, for the singular continuous component of the spectrum. We
have then to include the finite set of all lattices that intersect A in a non-emply way together
with their rarefaction laws, the period X being given.

We suggest the following scheme:

S1. Take H := /A Zthe one-dimensional torus, as the internal space and G := [ the physical
space.
S2. Let us denote by
T ;—(a+b)N — A
the bijective mapping from the average lattice A, N E" to A such that, foranyn € [,
fn) = rrA(%(a +b)n).
We have, for any integer n
Ima(3(a +b)n) — inta+b)| < 3(a — b)

and we denote by " its inverse mapping defined on the set of the elements { f(n)/n € N},
is valued in the average lattice A,,. Call 1 an element in |—A/2: +4/2[ and T its canonical

image in H.
Take
2.
L={(x,t)eGx HxeA,..wusuchthatu € Q. u = j'( rb)(modulo AZ)I.
a+

Lemmad. Lis discrete in G x H.

S3. Letus denote by 7, : R — [ any strictly increasing function satisfying
TN Aw = TTa-
We can take it to be continuous but there is no a priori reason o do so. Then we have a
new CPS consisting of a collection of spaces and mappings:
R RxRAZ = R/AZ
)
L.



Lemma 5. 7, o my is uniformly bounded with respect to 7\ in the sense that its restriction to
L satisfies

12 o mlLl = suplx o m () —m ()| < 3(a —b).

We see that (75 o)l = (s o )| is injective, and that the selection mode on the
closed subset L is not based on a projection mode buton a congruent mode through f and the
period ). which is such that €; is finite. The fact that the window €2, is finite is equivalent to
saying thatits Hausdorff dimension in the intemal space is zero. Clearly, L is closedin G x H,
and, since we have assumed that f(0) = 0, the properties (A.a), (A.b), (A.c) in definition 4
are satisfied. L is a priort not a subgroup in G x H and assumption (A.s) has no reason to be
satisfied. m (L) is discrete in H by construction. We have a (-)* operation as in the normal
CPS:

(V=mo((maom)|) 't A - H=R/Z

S4. We can now choose windows as in the normal CPS: if W is a window. W is a subset
of {w € B/Z|u € Q,}. Itis a compact set for which the boundary has Lebesgue measure 0
(properties W1 and W3 are satisfied). It is not the adherence of its interior, and property W2
is not satisfied.

The generalized Meyer sets we can form from the Thue-Morse sequence f° with respect
to the frequency A such that €2 is finite are given, similarly to the normal CPS, by

Ay = {.\' € AI.\" € W}

Of course, the property M4 is no longer valid and the spectrum displays more peaks than just
Bragg peaks. If the window is maximal, we obtain the full Thue—-Morse sequence as defined
algebraically by f. If the window is smaller and contains only some points inside the torus
[E/AZ, we obtain a subset of the Thue-Morse sequence and we have only to consider, for the
scaling exponent of the diffracting intensity of the reduced system of points to consider the
values of the levels for the elements which are selected by the window. We have seen that the
scaling exponents and the rarefaction laws (rates of occupancy at infinity) are attached to the
affine lattices v+ AZ € H = [E/AZ and can be classified according to a lexicographical order
and that the dominant scaling exponent is given by equation (21).

S5. The question of whether there exists a substitute for (A.s), that is, an algebraic structure
on L can be partially overcome by recent results obtained by Gazeau and Miekisz [20] who
have proved that there exists a canonical symmetry group on the Thue-Morse quasicrystal.
By the (-)*-operation, this can be reported to the elements of the window, and globally on L.
However, the operations of this group have no reason to be stable by classes inside the toric
internal space. So, this operation is not well defined and cannot be used in this case.

Acknowledgments

Thanks are warmly expressed to Roland Bacher, Jean-Pierre Gazeau, Robert Moody and
Michael Baake for very helpful discussions, inspirations and valuable comments. We would
like to acknowledge the support of the Franco-Polish Polonium project 7083 that made this
cooperative work possible, and the valuable comments of the anonymous referces.



References

(1]
12]

13]

(4

5

(6]

[7

18]

9]
[10]

[11]

[12]
[13]

[14]

[25]

Meyer Y 1972 Algebraic Numbers and Harmonic Analysis (Amsterdam: North-Holland)

Moody R V 1997 Meyer sets and their duals The Mathematics of Long-Range Aperiodic Order ed R V Moody
(Dordrecht: Kluwer) pp 403-41

Haibach T, Cervellino A and Steurer W 1998 Maximum entropy methods and quasicrystal structures Proc. Int.
Conf. on Aperiodic Crystals APERIODIC '97 ed M de Boissieu, J-L Verger-Gaugry and R Curmat (Singapare:
World Scientific) pp 139-48

Hof A 1997 Diffraction by aperiodic structures The Mathematics of Long-Range Aperiodic Ordered RV Moody
(Dordrecht: Kluwer) pp 239-68

Verger-Gaugry J-L 1998 Interpenctrating decagonal clusters and quasicrystals. Fourer transform and
diffuse scattering. A mathematical approach Proc. Int. Conf. on Aperiadic Crystals APERIODIC '97 ed
M de Boissieu, J-L Verger-Gaugry and R Curmat (Singapore: World Scientific) pp 29-38

Cotfas N and Verger-Gaugry J-L. 1997 A mathematical construction of n-dimensional quasicrystals starting from
G-clusters J Phys. A: Math. Gen. 30 4283-91

Allouche J-P and Mendés France M 1995 Automata and automatic sequences, course 11 Bevond Quasicrystals
(Les Editions de Physique) ed F Axel and D Gratias (Berlin: Springer) pp 293-367

Queffelec M 1995 Spectral study of automatic and substitutive sequences, course 12 Bevond Quasicrystals (Les
Editions de Physique) ed F Axel and D Gratias (Berlin: Springer) pp 369-414

Bernuau G 1998 PhD Thesis Université Paris-Dauphine, France

Wolny J 1998 The reference lattice concept and its application to the analysis of diffraction patterns Phil. Mag
A 77395412

Wolny J 1998 Spatial fluctuations and their influence on singular diffraction patterns Proc Int. Conf. on
Quasicrystals, 1CQ6 ed T Fujiwar (Singapore: World Scientific) pp 164-7

Rudin W 1962 Fourier Analysis on Groups (New York: Wiley-Interscience) ch 2

Wolny J, Wnek A and Verger-Gaugry J-L 1999 Application of an average unit cell approach to diffraction
analysis of Thue-Morse sequence J. Phys. Condens. Master submitted

Baake M and Moody R V 1998 Multi-component model sets and invariant densities Proc. Int. Conf on Aperiodic
Crystals APERIODIC '97 ed M de Boissieu, J-L Verger-Gaugry and R Curmat (Singapore: World Scientific)
pp 9-20

Baake M, Moody R V and Schlottmann M 1998 Limit-(quasi- Jperiodic point sets as quasicrystals with p-adic
internal spaces [ Phys. A: Math. Gen. 31 5755-65

Schreiber J-P 1973 Approxi mations Diophantiennes et problemes additifs dans les groupes abéliens localement
compacts Bull. Soc. Math. France 101 297-332

Rogers C A 1964 Fucking and Covering (Cambridge: Cambridge University Press)

Kolar M, Tochum B and Raymond L 1993 Structure factor of 1d systems (superlattices) based on two-letter
substitution rules I. § (Bragg) peaks J. Phys. A Math. Gen. 26 7343-66

Gachler F and Klitzing R 1997 The diffraction pattern of self-similar tilings The Mathematics of Long-Range
Aperiodic Order (Nato Series) ed R V Moody (Dordrecht: Kluwer) pp 141-74

Gazeau J-P and Mickisz J 1998 A symmetry group of a Thue-Morse quasicrystal J. Phys. A: Marh. Gen. 31
LA435-40

Verger-Gaugry J-L, Wolny J and Patera J 1999 Mathematical quasicrystals with toric internal spaces, diffraction
and Thue-Morse sequence Institut Fourier Prepring 458

Kakutani S 1972 Strictly ergodic symbolic dynamical systems Proc. 6th Berkeley Symp. on Mathematical
Statistics and Probability vol 2 (Berkeley, CA: University of California) pp 319-26

Mahler K 1927 On the translation properties of a simple class of arithmetical functions J Math. Phys. 6 158-63

Dmota M and Skalba M 1995 Sign<hanges of the Thue—Morse fractal function and Dirichlet L-series
Manuseripta Math. 86 519-41

Verger-Gaugry J-L 1999 p-rarefaction and arithmetics of the Fourier transform of the autocormrelation measure
of the Thue-Morse sequence, Institute Fourier, in preparation



