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The signal demodulation techniques 
Yassine Amirat1 and Mohamed Benbouzid2

Condition monitoring of electrical machines is a broad scientific area, the ultimate

purpose of which is to ensure the safe, reliable and continuous operation of electrical

machines. Hence, the task of fault detection is still an art, because induction machines

are widely used in variable speed drives and in renewable energy conversion systems.

A deep knowledge about all the phenomena involved during the occurrence of a failure

constitutes an essential background for the development of any failure detection and

diagnosis system. For the failure detection problem, it is important to know if a failure

exists or not in the electric machine via the processing of available measurements. This

chapter provides then an approach based on a electric machine current data collection

and attempts to highlight the use of demodulation techniques for failure detection for

stationary and nonstationary cases.

2.1 Introduction

Electrical machines have become unavoidable device in industrial and domestic

applications, for producing mechanical power in drive trains or transforming it into

electrical power in generation systems. So, it is to be expected that electrical machines

are related to huge financial variables as well as safety and reliability. Despite electri-

cal machines are robust devices, they remain subject to faults and downtime, hence,

affecting their reliability performances. According to the defected component and the

type of the electrical machine, faults can be classified in three categories:

● Stator-related fault: It includes electrical failures affecting the stator winding such

as short circuits, inter-turn short circuits and open circuits [1].
● Rotor-related fault: It includes electrical failures affecting the rotor winding,

commutators/slip rings/brushes failures for all rotor-wounded machines, and bro-

ken rotor bars and end rings for squirrel-cage machines, and permanent magnet

demagnetization or cracks for permanent magnet motors.
● Mechanical-related fault: It includes bearing failures, rotor eccentricity and shaft

misalignment.
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The safety and reliability of electrical machines are related directly to these faults,

hence affecting the operation and maintenance cost. So, new challenges arise par-

ticularly with regard to maintenance. In this context, cost-effective, predictive and

proactive maintenance assume more importance. Condition monitoring systems

(CMS) provide then an early indication of component incipient failure, allowing

the operator to plan system repair prior to complete failure. Hence, CMS will be an

important tool for lifting uptime and maximizing productivity, when cost-effective

availability targets must be reached.

For this purpose, many techniques and tools are developed for condition monitor-

ing of electrical machines in order to prolong their life span as reviewed in [2]. Some

of the technologies used for monitoring include existing and pre-installed sensors,

such as speed sensor, torque sensor, vibrations, temperature and flux density sen-

sor. These sensors are managed together in different architectures and coupled with

algorithms to allow an efficient monitoring of the system condition. A plethora of

electrical machines faults and diagnostic methods are presented in the literature. The

most favorable is the motor current signature analysis (MCSA) which is the analysis

of the stator current harmonics index [3,4]. Most define the MSCA as the monitoring

and spectra analysis of the stator current at steady state. Despite the method’s origins,

the name is very generic and should include the analysis of the stator current spectra

under transient operation also. Anyway, this method has become favorable due to its

unique characteristics such as remote monitoring [5], low implementation costs and

equipment, and continuous and online monitoring capability. The advantage of signa-

ture analysis of the motor electrical quantities is that it is a noninvasive technique as

those quantities are easily accessible during operation [6]. Moreover, stator currents

are generally available for other purposes such as control and protection, avoiding the

use of extra sensors [7]. Hence, most of the recent researches on induction machine

faults detection have been focused on electrical monitoring with emphasis on current

analysis [8,9].

Industrial survey on condition monitoring of induction motors show important

features of failure rate and index the major faults of electrical machines can broadly

be classified by the following [2,10]:

● Static and/or dynamic air-gap irregularities
● Broken rotor bar or cracked rotor end-rings
● Stator faults (opening or shorting of one coil or more of a stator phase winding)
● Abnormal connection of the stator windings
● Bent shaft (akin to dynamic eccentricity) which can result in a rub between the

rotor and stator, causing serious damage to stator core and windings
● Bearing and gearbox failures.

The most common faults are bearing faults, stator faults, rotor faults and eccentricity

or any combination of these faults. When analyzed statistically, about 40% of the

faults correspond to bearing faults, 30–40% to stator faults, 10% to rotors faults,

while remaining 10% belong to a variety of other faults. Frequencies induced by

each fault depend on the particular characteristic data of the motor (like synchronous

speed, slip frequency and pole-pass frequency) as well as operating conditions.
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Moreover, in many industries context, bearing failures have been a persistent

problem which accounts for a significant proportion of all failures in electrical

machines; for example, bearing failure of electric drive or rotating electric generation

system is the most common failure mode associated with a long downtime. Bearing

failure is typically caused by improper lubrication, and occasionally manufacturing

faults in the bearing components, and also some misalignment in the drive train, which

gives rise to abnormal loading and accelerates bearing wear. A plethora of research

works [11,12] states that due to the construction of rolling-element bearings, a defect

generates precisely identifiable signature on vibration, and the generated frequencies

present an effective route for monitoring progressive bearing degradation. On the other

hand, experience and industrial feedback have demonstrated that vibration monitoring

has made out its efficiency; and it is highly suitable for rolling-element bearings—

however it represents an issue when requiring a good vibration baseline [13]. If no

baseline is available, no history has been built up, making the detection of the specific

frequencies impossible when the background noise has risen [12].

To overcome this issue, many alternatives have emerged in electric machines by

analyzing the stator-side electrical quantities. These alternatives are known as MCSA,

including the use of electrical current [13,14], or the instantaneous power factor [15].

For steady-state operations, current spectral estimation based on fast Fourier trans-

form (FFT) and its extension, the short-time Fourier transform (STFT), have been

widely employed, such as FFT-based bispectrum/bicoherence [9]. Due to frequency

limitation of these techniques [16], high resolution technique: MUSIC (MUltiple SIg-

nal Classification) [17] and ESPRIT (Estimation of Signal Parameters via Rotational

Invariance Techniques) [18,19] were afterwards investigated. However, these tech-

niques have several drawbacks since they are difficult to interpret and it is difficult

to extract variation features in time domain for nonstationary signals. To overcome

this problem and under nonstationary behavior, procedures based on time-frequency

representations (spectrogram, quadratic Wigner-Ville, etc.) [20–22] or time-scale

analysis (wavelet) have been proposed in the literature of the electric machines com-

munity [23–25]. There are also parametric methods based on parameter estimation

of a known model [16]. Nevertheless, these methods are formulated through integral

transforms and analytic signal representations [26], so their accuracy depends on data

length, stationarity and model accuracy.

Most of electric machine faults lead to current modulation (amplitude and/or

phase) [27]. This is the particular case of bearing faults [28]. Indeed, a bearing fault

is assumed to produce an air-gap eccentricity [21], and consequently, an unbalanced

magnetic pull. Hence, this gives rise to torque oscillations, which lead to amplitude

and/or phase modulation of the stator current [13,21,29].

So, for failure detection, a possible approach relies on the use of amplitude

demodulation techniques; in other words, the fault detection relies on the extraction of

the instantaneous amplitude (IA) and/or the instantaneous frequency (IF). Therefore,

it is sufficient to demodulate the current for bearing faults detection. However, the

demodulation techniques depend on the type and the dimension of the signal. In this

chapter, we try to highlight the use of demodulation techniques for mono-dimensional

and multidimensional signals and for mono-component and multicomponent signals.
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2.2 Brief status on demodulation techniques as a fault detector

As mentioned, the investigation of demodulation techniques as a failure detection

relies on the extraction of the IA and/or IF of the electrical quantities, and in most

cases, the machine current is taken as a transducer of the fault. For demodulation, let

us consider the complex (analytic signal) representation of such signals is given by

x(t) = a(t)ejφ(t) (2.1)

where a(t) and φ(t) are the IA and instantaneous phase, respectively. Signals with

more complicated structure can be represented by a combination of signals of this type.

A survey allowed to establish a road map for different demodulation techniques [30]

and the choice of the demodulation technique depends on the type of the signal.

2.2.1 Mono-component and multicomponent signals

A mono-component signal is described in the time-frequency domain by one single

“crest or ridge,” corresponding to an elongated region of energy concentration [31,32].

Furthermore, interpreting the crest as a graph of IF versus time, the IF of a mono-

component signal is a single-valued function of time. Consequently, such a mono-

component signal can be expressed approximately as

z(t) = a(t) cos(φ(t)) (2.2)

where

● a(t), known as the IA, is real and positive;
● φ(t) is known as the instantaneous phase.

It will be noted that in the electrical community z(t) has an analytic associate of

the form given by

z(t) = a(t)ejφ(t). (2.3)

A multicomponent signal may be described as the sum of two or more mono-

component signals such that

z(t) =
∞

∑

n=1

ai(t) cos(φ(t)) (2.4)
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Figure 2.1 Evolution of the IF for both mono-component and

multicomponent signals
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The model described by (2.4) allows the extraction and separation of components

from a given multicomponent signal using (t, f ) filtering methods [33]. Figure 2.1

shows the evolution of the IF of a mono-component signal and multicomponent signal

with two and three components.

2.2.2 Demodulation techniques

Most of electric machine faults lead to current modulation (amplitude and/or

phase) [27]. This is the particular case of bearing faults [28]. So, for failure detection,

a possible approach relies on the use of amplitude demodulation techniques; in other

words, the fault detection relies on the extraction of the IA and IF.

2.2.2.1 Mono-dimensional techniques

As depicted in Figure 2.2, mono-dimensional techniques include synchronous

demodulation, Hilbert transform (HT) and Teager–Kaiser energy operator (TKEO).

A mono-dimensional signal can be modeled in discrete form by

x(n) = a(n) · cos(�(n)) (2.5)

where n = 0, . . . , N − 1 is the sample index, with N being the number of samples. In

(2.5), frequency ω is equal to 2π f /Fe (where f and Fe are the supply and sampling

frequency, respectively) and amplitude a(n) is related to the fault. In this context, the

Stator current
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• Hilbert transform,
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Figure 2.2 Road map to choose the demodulation technique
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best path to extract feature extraction is the use of amplitude demodulation techniques.

The signal x(n) can be expressed in term of its IA and instantaneous phase as follows:

x(n) = a(n) · cos(�(n)) (2.6)

The signal x(n) can be expressed in terms of two components: real component y1

and imaginary component y2 such as

y1(n) = a(n) · cos(�(n)) y2(n) = a(n) · sin(�(n)) (2.7)

and x(n) can be expressed by it is analytic signal representation as

x(n) = y1(n) + jy2(n) (2.8)

2.2.2.2 Multidimensional techniques

In electrical systems, a multidimensional signal refers to a multiphase systems;

particularly in triphase systems, signals can be modeled in discrete form by

x0,1,2(n) = a0,1,2(n) · cos(�0,1,2(n)) (2.9)

For instance, we assume a three-phase system that does not contain any harmonics,

but in a noisy environment. The three-phase quantities can therefore be expressed by

system (2.10):

⎧

⎨

⎩

x0(t) = a0 cos(ωt + α0)

x1(t) = a1 cos(ωt + α1)

x2(t) = a2 cos(ωt + α2)

(2.10)

where a0, a1 and a2 are the three magnitudes, and ω is the angular frequencies, and

α0, α1 and α2 are the three initial phase angles of the corresponding phase.

The three-phase system can be expressed in a compact form as follows [34]:

xm[k] = am cos(kω0 + αm) (2.11)

where ω0 = 2π
f0
Fs

corresponds to the fundamental angular frequency, m = 0, 1 or 2

corresponds to the phase index for the three-phase electrical system, f0 is the funda-

mental frequency, Fs is the sampling frequency, x0[k], x1[k] and x2[k] are the electric

signal of each phase, and aa, ab, ac, αa, αb and αc are, respectively, the amplitudes and

initial phases of each fundamental component of the three-phase system. Hence, the

most common path to demodulate a multidimensional signal is the use the transfor-

mation of the three-phase quantities modeled by (2.11) to the corresponding complex

phasor. The complex phasor for three-phase system can be expressed as follows:

xm = xα + jxβ (2.12)

where xα and xβ are the direct and quadrature components obtained by the use of

(abc) to (αβ) transform. For multidimensional signal, the case of three-phase system,

the three-phase transformations such as Concordia transform (CT) [35,36] and Park

vector approach [37–39] have been indexed as a demodulation techniques.
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2.3 Synchronous demodulation

Synchronous demodulation is an amplitude and phase demodulation technique.

Figure 2.3 illustrates the principle of this demodulation technique, and it shows that

the analyzed signal is multiplied with two reference signals F1 and F2.

Let a signal:

i(t) = a(t) cos(2π fpt + ϕ) (2.13)

By multiplying the signal i(t) by a carrier with pulsation ωp:

F1(t) = i(t) cos(2π fpt) (2.14)

F2(t) = i(t) sin(2π fpt) (2.15)

Using the trigonometric properties, we obtain:

F1(t) = (a(t)/2)(cos(4π fpt + ϕ) + cos(ϕ)) (2.16)

F2(t) = (a(t)/2)(sin(4π fpt + ϕ) + cos(ϕ)) (2.17)

To simplify the mathematical analysis, we use the frequency-domain representation

of F2 and F2; this yields to

F1( f ) = (a( f )/2)

(
1

2
(δ( f − 2fp) + δ( f + 2fp)) · ejf ϕ + cos(ϕ)δ( f )

)

(2.18)

F1( f ) = cos(ϕ)

2
a( f ) + e jf ϕ

4
(a( f − 2fp) + a( f + 2fp)) (2.19)

In the same way, it can be shown that

F2( f ) = (a( f )/2)

(
1

2
(δ( f − 2fp) + δ( f + 2fp)) · e jf ϕ + cos(ϕ)δ( f )

)

(2.20)

then

F2( f ) = sin(ϕ)

2
a( f ) + j · e jf ϕ

4
(a( f + 2fp) − a( f − 2fp)) (2.21)

Filtering

Filtering

i(t)

Y1(t)

Y2(t)

cos(2πfpt)

sin(2πfpt)

Figure 2.3 Synchronous demodulation principle
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Under the assumption that the spectrum of a( f ) is frequency-bounded [−fmax, fmax]

with fmax < fp, it is possible to extract a( f ) with a low-pass filter of cutoff frequency

fp. Assuming that the low-pass filter is ideal (brickwall filter), the post-filter signals

denoted by F
(pf )

1 ( f ) and F
(pf )

2 ( f ) can then be expressed as follows:

F
(pf )

1 ( f ) = cos(ϕ)

2
a( f ) (2.22)

F
(pf )

2 ( f ) = sin(ϕ)

2
a( f ) (2.23)

F
(pf )

2 ( f ) = sin(ϕ)

2
a( f ) (2.24)

z(t) =
(

y
(pf )

1 (t)
)2

+
(

y
(pf )

2 (t)
)2

(2.25)

z(t) = (a(t))2 ·
(

(
cos(ϕ)

2

)2

+
(

sin(ϕ)

2

)2
)

(2.26)

z(t) = (a(t))2

4
(2.27)

By this method, we can extract the IA of the signal. Except that, this approach has

several drawbacks. First of all, its application requires to know exactly the frequency

fp. In particular, a poor knowledge of fp deteriorates considerably the estimation of the

IA. Second, this technique requires the selection and calibration of a low-pass filter

as well as the choice of a filter structure and a perfectly adapted cutoff frequency.

Synchronous demodulation has been applied for fault detection in electrical

machines running at constant speeds. However, for machines rotating at variable

speeds, synchronous demodulation requires a good knowledge of the law of evolution

of the IF.

2.4 Hilbert transform

In order to estimate the IF and IA of a signal, a standard approach is to use the HT.

The HT is a linear operator for which analytic signals can be derived if the Bedrosian

theorem is verified from the signal x(n). It is defined as the convolution (*) of the

signal with the function 1/t [40]. If ˆx(t) is the HT of a signal x(t), the analytic signal

introduced by [41] is given by the following equation:

z(t) = x(t) + j ˆx(t) (2.28)

and ˆx(t) is expressed by

ˆx(t) = x(t) ∗ 1

π t
(2.29)
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For its discrete formulation, let us consider a discrete signal x(n). The discrete HT

(DHT) of x(n) is given by the following [42]:

H [x(n)] = F
−1{F {x(n)} · u(n)} (2.30)

where F {·} and F {·} correspond to the FFT and inverse FFT (IFFT), respectively,

and where u(n) is defined as

u(n) =

⎧

⎨

⎩

1, n = 0, N

2

2, n = 1, 2, . . . , N

2
− 1

0, n = N

2
− 1, . . . , N − 1

(2.31)

Let us define the analytic signal of x(n), denoted z(n), as

zk (n) = xk (n) + jH [xk (n)] (2.32)

Using signal model (2.5), the amplitude envelope can be estimated by [42]:

|a(n)| ≈ |z(n)| =
√

xk (n)2 + H [xk (n)]2 (2.33)

and the instantaneous phase φ(n) can be estimated by

φ(n) = Arg(z(n)) (2.34)

2.5 Teager–Kaiser energy operator

The TKEO is an IA and IF demodulation technique for mono-component signal, and

it estimates IA and IF without using the analytical signal z(n). The estimation of IA

and IF with TEO technique is based on the continuous energy separation algorithm,

given by the following [43]:

|a(t)| ≈ ψ[x(t)]
√

ψ[ ˙x(t)]

(2.35)

f (t) ≈ 1

2π

√

ψ[ ˙x(t)]

ψ[x(t)]
(2.36)

with ψ is the so-called TKEO:

ψ = [ ˙x(t)]2 − x(t) ¨x(t)

where x(t) is the analyzed signal and ˙x(t) and ¨x(t) are its first and second derivatives,

respectively.

It will be noted that, for discrete signals, the TKEO offers excellent time reso-

lution because only three samples are required for the energy computation at each

time instant, hence the result is highly depending on the sampling frequency. So,

for discrete signals, the TKEO technique is performed by using the discrete-time
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energy separation algorithm developed in [44] and well known as (DESA-2). In this

algorithm, the estimated IA and IF are given using the following equations:

|a(n)| ≈ 2ψ(x(n))
√

ψ(x(n + 1) − x(n − 1))
(2.37)

f (n) ≈ 1

2π
arcos

(

1 − ψ(x(n) − x(n − 1))

2ψ(x(n))

)

(2.38)

where the TKEO can be approximated by time differences as follows:

ψ = [x(n)]2 − x(n + 1)x(n − 1)

2.6 Concordia transform

The CT converts the three-phase current to Park’s space vector components iα(n) and

iβ(n), as depicted by Figure 2.4.

The Park components are given by

[

iα(n)

iβ(n)

]

=
[

2

3
− 1

3
− 1

3

0 1√
3

− 1√
3

]
⎡

⎣

i0(n)

i1(n)

i2(n)

⎤

⎦ (2.39)

Several fault detectors based on CT have been proposed in literature [35–37,

45–47]. Recently, it has been shown that CT can be viewed as a demodulation tech-

nique for balanced system [35]. Indeed, under the assumption that the system is

balanced, the Park components can be expressed as

iα(n) = a(n) cos(ωn)

iβ(n) = a(n) sin(ωn)

Then, the amplitude can be estimated by

|a(n)| =
√

i2
α(n) + i2

β(n) (2.40)

c

a

b 0

ic

ia iβ

iα

β

α

ib

i0

Figure 2.4 CT principle
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It will be noted that for balanced system, the component i0 is null. Therefore, CT can

be considered as a low-complexity demodulating technique if the system is balanced.

However if the system is unbalanced, and there is no assertion that during bearing

fault the three-phase system remains balanced, (2.40) is no longer valid and depends

on three modulating signals ia(n), ib(n) and ic(n), and the corresponding space phasor

in its extended form is computed according to (2.41):

�i(n) = iα(n)�uα + iβ(n)�uβ + i0(n)�u0 (2.41)

where iα , iβ and i0 are the components according to axis, respectively, and are the

corresponding unit vectors, and the IA can be estimated by

|i(n)| =
√

(iα(n))2 + (iβ(n))2 + (i0(n))2 (2.42)

2.7 Fault detector

Several detectors based on the IA have been proposed in the literature [36,45,48–51].

However, most of these approaches use unnecessary and complicated classifiers, such

as artificial neural networks, fuzzy logic and support vector machine, and most of them

assume that a training database is available. This can be very difficult to obtain for

many industrial applications. Indeed, it has been mentioned in a number of previously

published papers that one of the main difficulties in real-word testing of developed

condition monitoring technique is the lack of collaboration needed with industrial

operators and manufacturers due to data confidentiality, particularly when failures

are present [52], and can be difficult to obtain [53]. For this purpose, a statistical

feature-based detector is proposed; it does not require any training sequence. The

detector is based on the variance of |a(n)| or |ak (n)|, and the two basic parameters are

the mean value µ and the standard deviation σ [54].

2.7.1 Fault detector based on HT and TKEO demodulation

After applying HT or TKEO independently on the three currents, we propose to

exploit the information given by the three extracted envelopes. To avoid the edge

effect problem of HT and TKEO, each envelope is truncated by removing α samples

at the beginning and at the end of |ak (n)|. The proposed criterion, σ 2
H (i.e. σ 2

TKEO), is

then equal to

σ 2
H = 1

3(N − 2α)

(
2

∑

k=0

N−α−1
∑

n=α

(|ak (n)| − µk )2

)

(2.43)

where µk is the average of |ak (n)|, i.e.

µk = 1

(N − 2α)

N−α−1
∑

n=α

|ak (n)| (2.44)

In (2.43), the average is used to make the criteria σ 2
H , σ 2

TKEO and σ 2
C equivalent

for balanced system. Indeed if ak (n) = a(n) for all k = {0, 1, 3} and if the edge
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effects problems are neglected, then it can be shown that σ 2
H = σ 2

C = σ 2
TKEO with

α = 0. This property no longer holds for unbalanced system. For healthy unbal-

anced system, envelopes ak (n) are different but they are all constant. It follows that

|a0(n)| = µ0, |a1(n)| = µ1 and |a2(n)| = µ2 and so σ 2
H = 0. Therefore, we propose a

simple hypothesis test to detect a fault under unbalanced condition:

● If σ 2
H < γH , the machine is healthy.

● If σ 2
H > γH , the machine is faulty.

Here γH is a threshold which can be set subjectively. One should remark that this

second hypothesis test is more powerful since it can be employed for balanced and

unbalanced systems. In this section, the result of several simulations is presented to

compare the performance of the proposed fault detectors. For each simulation, the

amplitude envelope is estimated through CT, HT and TKEO. Then, depending of the

demodulation technique, criteria σ 2
C , σ 2

H or σ 2
TKEO are computed to reveal the presence

of a fault. The simulation has been performed for healthy and faulty machine.

2.7.2 Fault detector after CT demodulation

After applying CT, envelope |a(n)| is extracted with (2.40). Then, we propose to

compute the variance of |a(n)| to detect a fault. This statistic criterion, denoted σ 2
C , is

given by

σ 2
C = 1

N

N−1
∑

n=0

(|a(n)| − µ)2 (2.45)

where µ is the average of |a(n)|, i.e.

µ = 1

N

N−1
∑

n=0

|a(n)| (2.46)

The variance σ 2
C measures the deviation of the amplitude around its mean µ. This

criterion can be used to detect amplitude modulation for balanced system. Indeed, if

no fault is present, |a(n)| is constant and so |a(n)| = µ. Using (2.63), it follows that

σ 2
C = 0. On the contrary, for healthy machine |a(n)| �= µ, which also implies σ 2

C > 0.

Therefore, we can propose a simple hypothesis test to detect a fault under balanced

assumption:

● If σ 2
C < γC , the machine is healthy.

● If σ 2
C > γC , the machine is faulty.

Here γC is a threshold which can be set subjectively. For unbalanced system, one

should note that this simple hypothesis test is no longer valid since σ 2
C is not necessarily

equal to 0 for healthy machine.

2.7.3 Synthetic signals

Several simulations are presented to compare the performance of the proposed fault

detectors. For each simulation, the amplitude envelope is estimated through CT, HT

and TKEO. Then, depending on the demodulation technique, criteria σ 2
C , σ 2

H or σ 2
TKEO
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are computed to reveal the presence of a fault. The simulation have been performed

for healthy and faulty machine.

For this purpose, several simulations have been performed with amplitude

modulated (AM) synthetic signals which are defined as follows [21]:

ik (n) = (1 + β sin(ω2n + ψk ))
︸ ︷︷ ︸

ak (n)

· cos(ωn + φk ) (2.47)

where β is a fault index which is equal to 0 for healthy machines and greater than

0 for faulty ones. The parameters ψk and γk are calibrated depending on the bal-

anced assumption. If the system is balanced, ψk = ψ (k = 0, 1, 2), where ψk depends

on k for unbalanced system. Simulations have been run with a sampling frequency

Fe = 10 kHz during 1 s with ω = 0.1534 rad/s (supply frequency f = 50 Hz) and

ω2 = 0.0307 rad/s (f2 = 10 Hz). After HT demodulation, α = 10 samples have been

removed at the beginning and at the end of |ak (n)| to avoid edge effect problems. The

fault index has been set to β = 0.2 to simulate faulty machine (see Figure 2.5 for time

representation of i0(n)).

2.7.3.1 Balanced system (ψ = 0)

For balanced system, the amplitude envelopes are the same for the three currents.

Figures 2.6 and 2.7 display |a(n)| and |a0(n)| extracted with CT, HT and TKEO,

respectively, for a healthy and faulty cases. One can notice that the three demodulation

techniques lead to the same envelope. Table 2.1 shows the values of the fault detector

criteria σ 2
C , σ 2

H and σ 2
TKEO for faulty and healthy machine. The three criteria lead

to similar results, indeed σ 2
C = σ 2

H = σ 2
TKEO = 0 for healthy machine (i.e. β = 0)
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Figure 2.5 Time representation of the current i0(n) for a faulty machine (β = 0.2)
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Table 2.1 Fault detector for healthy and faulty machines

System Demodulation Fault detector

Healthy case Faulty case

Balanced and CT σ 2
C = 0.000 σ 2

C = 0.020

stationary HT σ 2
H = 0.000 σ 2

H = 0.020

TKEO σ 2
TKEO = 0.000 σ 2

TKEO = 0.018

Unbalanced and CT σ 2
C = 0.000 σ 2

C = 0.005

stationary HT σ 2
H = 0.000 σ 2

H = 0.020

TKEO σ 2
TKEO = 0.000 σ 2

TKEO = 0.018

Unbalanced and CT σ 2
C = 0.000 σ 2

C = 0.005

nonstationary HT σ 2
H = 0.001 σ 2

H = 0.021

TKEO σ 2
TKEO = 0.000 σ 2

TKEO = 0.017

and σ 2
C = σ 2

H = σ 2
TKEO = 0.020 for faulty ones (i.e. β = 0.2). Therefore, a fault can

be easily detected in this context by setting the threshold of the fault detector to

γC = γH = γTKEO = 0.010. From a practical point of view, one should note that CT

demodulation must be preferred for balanced system since it has a lower complexity

than HT and TKEO and does not suffer from edge-effect problems.

2.7.3.2 Unbalanced system (ψ0 = 0, ψ1 = 2π/3, ψ2 = −2π/3)

Let us simulate a system which is unbalanced under faulty condition. Figure 2.8

displays amplitude a(n) and the envelope |a0(n)| extracted with CT, HT and TKEO

respectively, for a faulty machine. As expected, CT is not able to demodulate the

signals. Table 2.1 presents the values of the fault detector criterion σ 2
C , σ 2

H and σ 2
TKEO

under healthy and faulty conditions. In our simulations, criterion σ 2
H leads to the

same values for balanced and unbalanced system whereas the value of σ 2
H decreases

under unbalanced condition. One can notice that the difference between healthy and

faulty case is larger for σ 2
H . For fault detection, an hypothesis-test threshold equal to

γC = 0.0025 for σ 2
C and γH = γTKEO = 0.010 for σ 2

H and σ 2
TKEO lead to correct results

in this context.

2.7.3.3 Unbalanced system (ψ0 = 0, ψ1 = 2π/3, ψ2 = −2π/3)
under nonstationary supply frequency

To simulate nonstationary environment, supply frequency f is assumed to vary linearly

between 10 and 50 Hz, i.e.

ω(n) = 2π

Fe

(
40

2N
n + 10

)

(2.48)

Figure 2.9 displays amplitude |a(n)| and the envelope |a0(n)| extracted with

CT, HT and TKEO, respectively, for a faulty machine under nonstationary supply
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frequency. As edge-effect problem occurs for HT (see Figure 2.9), α samples have

been removed at the beginning and at the end of |ak (n)|. Table 2.1 presents the values

of the fault detector criterion σ 2
C , σ 2

H and σ 2
TKEO. One should note that the values σ 2

C ,

σ 2
H and σ 2

TKEO do not depend on the stationary assumption in our context. Therefore,

fault detectors based on amplitude demodulation seem to be well-suited for nonsta-

tionary scenario. In particular, these detectors do not need to employ complicated

time-frequency representations (like spectrogram and Wigner–Ville) that suffer from

artifact or poor resolution.

2.8 EMD method

Besides, in typical electric machines, stator current components are the supply

fundamental, harmonics, additional components due to slot harmonics, saturation

harmonics, other components from unknown sources such as environmental noise

and design imperfection, and eventually effect introduced by bearing faults. In typical

electric machines, the stator current is a multicomponets signal and can be expressed

by a temporal model as

x(t) =
M

∑

k=1

ak (t) sin(φk (t)) (2.49)

with ak (t) = ak (1 + mka sin(2π fkat + ϕka)) and φk (t) = 2π fk t + mkp sin(2π fkpt +
ϕkp). Here mka and mkp are the AM index, and the PM index, respectively, that

can be introduced by a fault as an AM/PM effect. This work considers only the

AM effect. Therefore, mkp = 0 and φk (t) = 2π fk t, where fk = kf0 with f0 is the

fundamental frequency and k is the harmonic order. Hence, for fault detection, a

possible approach relies on the use of amplitude demodulation techniques to extract

fault-related features. In this multicomponent signal context, the empirical mode

decomposition (EMD) is considered. The EMD is an emerging signal processing

algorithm for signal demodulation. It has been first introduced in [55], and has since

become an established tool for the analysis of nonstationary and nonlinear data [56].

This approach has focused considerable attention and has been widely used for rotat-

ing machinery fault diagnosis [22,54,57,58]. It is an adaptive time-frequency data

analysis method for nonlinear and nonstationary signals [55], and behaves like an

adaptive filter bank [59]. Compared to FFT or wavelets that decompose a signal into

a series of sine functions or scaled mother wavelet, the EMD decomposes the multi-

component signal into a series of mono-components signal, known as intrinsic mode

function denoted IMFs, and based on the local characteristic time-scale of the signal.

This decomposition can be described as follows:

● Identification of all extrema of the logged current;
● Interpolation between minima (respectively maxima) ending up with some

envelope emin(n) (respectively emax(n));
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● Computation of the mean:

R(n) = emin(n) + emax(n)

2
(2.50)

● Extraction of the detail:

dm(n) = i(n) − R(n) (2.51)

● Iteration on the residue R(n)

In practice, this algorithm has to be refined by a sifting process until the detail

dm can be considered as IMF [55]. To illustrate the EMD concept, let us assume the

synthesized signal xsyn(t) given by

xsyn(t) = a1 sin(ω1t) + a2 sin(ω2t), (2.52)

where a1 and a2 are the amplitudes of the first and the second component respectively,

while ω1 and ω2 are pulsations of those components. By decomposing xsyn(t) through

the EMD algorithm, the result is depicted in Figure 2.10. It appears clearly that the two

components are presented by the first and second IMFs. Unfortunately, real signals
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Figure 2.10 EMD for uncorrupted synthetic signal
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are not immunized from noises, and in order to have a look on the behavior of the

EMD on the added noise signal, let us consider that signal is corrupted by an added

white Gaussian noise (AWGN), then xsyn(t) can be expressed by

xsyn(t) = a1 sin(ω1t) + a2 sin(ω2t) + AWGN, (2.53)

The corresponding local time oscillations or IMFs and residue are depicted in

Figure 2.11.

The first observation is that the corresponding IMFs are shifted from the fourth

to fifth IMFs; this is due to the AWGN to the original signal, hence high-frequency

oscillations are introduced at the first, second and third IMFs. The second observation

is the occurrence of the second component into at least two consecutive IMFs. This

phenomenon is the mode mixing, as mentioned before. Consequently, it is difficult

to really understand what the EMD provides as IMFs, and are devoid of a physical

meaning [55]. Other drawbacks are indexed in literature, such as the ad hoc process

on which it is based [59], sensitivity to noise, and the fact that it suffers from mode

mixing. To overcome the mode-mixing problem, the Ensemble EMD (EEMD) was

introduced.
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Figure 2.11 EMD for corrupted synthetic signal by an AWGN
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2.9 Ensemble EMD principle

As mentioned next, the main drawbacks of the EMD are that it is based on an ad hoc

process [59], it is mathematically difficult to model, it is noise sensitive and it suffers

from mode mixing. Consequently, it is difficult to understand what the EMD provides

as IMFs that are devoid from a physical meaning [55]. To deal with this drawbacks, an

EEMD was proposed in [60,61], and has become a tool for the analysis of nonstation-

ary and nonlinear data [56] in a wide of range applications in signal processing [62]

and fault detection [22,57,58]. It is an improved EMD and is described as a noise-

assisted data analysis method. Indeed, it deals with several EMD decompositions of

the original signal corrupted by different artificial noises. The final EEMD is then

the average of each EMD and defines true IMFs as the mean of an ensemble of trials.

The EEMD algorithm is depicted in Figure 2.12 and its implementation is described

step by step in [54].

The EEMD reliability depends on the choice of the ensemble number denoted

by M and the add-noise amplitude a. These two parameters are linked by the

following [60]:

e = a√
M

(2.54)

where e is the standard deviation error, and it is defined as the discrepancy between

the input signal and the corresponding IMF.
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Figure 2.12 EEMD process for signal decomposition
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So, through EEMD algorithm, a signal x(t) can be expressed as a sum of k modes

or IMFs as follows:

x(t) =
k

∑

i=1

IMFi(t) + res(t) (2.55)

Figures 2.13 and 2.14 illustrate the decomposition of free-noise signal and corrupted

signal, respectively.

Let us consider the series x(n) (n = 1, . . . , N ) is the acquired stator current. Under

the multicomponent assumption, the sampled current x(n) can be decomposed as

x(n) =
j

∑

i=1

IMF i(n) + res(n) (2.56)

where IMF i(n) is the ith intrinsic mode function, res(n) is the residue and j the total

number of IMFs. In practice, IMFs are unknown and must be extracted from the
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Figure 2.13 EEMD for uncorrupted synthetic signal
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Figure 2.14 EEMD for corrupted synthetic signal by an AWGN

stator current x(n). However, at least one IMF is related or representative of the main

component. Consequently, x(n) can be expressed by

x(n) =
c−1
∑

i=1

IMF i(n) + IMFc(n) +
j

∑

i=c+1

IMF i(n) + res(n) (2.57)

where IMFc(n) is the closest IMF to the original signal x(n).

So, the main issue that rises is how to extract this IMF. To answer this question,

in [63–65], a mode decomposition-based notch filter was developed.

2.10 EEMD-based notch filter

As mentioned in previous subsection, the decomposition of signal x(t) through EEMD

leads to a sum of modes as expressed in (2.57); among these modes, at least one mode

is representative to the original signal, and this mode is the dominant mode denoted

by IMFd(n). Assuming that the occurrence of a fault introduces a new component

in the original signal, a specific mode denoted by IMFe is introduced in the mode

decomposition of this original signal.
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The aim of the notch filter is to cancel the dominant IMF, and the result denoted

by x(n)cEEMD
can therefore be used to detect bearing failure.

2.10.1 Statistical distance measurement

The statistical distance quantifies the distance between two statistical quantities, which

can be two random variables, or two probability distributions or samples. Various

approaches have been indexed in statistics literature and investigated in various fields,

particularly for fault detection and diagnostic [54,66]. The statistical tool known

as Pearson’s correlation is used to measure the distance, and to give a weight to

dependency between two temporal series x(n) and y(n) [67]. This dependency is

weighted by a coefficient denoted by r(x, y) and defined by (2.58); a value of this

coefficient close to −1 or 1 indicates that x(n) and y(n) are highly correlated positively

or negatively, respectively, while a value around 0 indicates that there is no dependency

between x(n) and y(n) [65].

r(x, y) =
∑

n [(x(n) − mx) ∗ (y(n) − my)]
√

∑

n (x(n) − mx)2 ·
√

∑

n (y(n) − my)2

(2.58)

where mx and my are the means of x and y, respectively.

2.10.2 Dominant-mode cancellation

The cancelation of the dominant IMF is illustrated in Figure 2.15.

The algorithm for the cancellation of the dominant IMF can be sketched as

consisting of three steps [65]:

● Step 1: The analyzed signal is decomposed into a set of IMFs through EEMD,
● Step 2: Pearson’s correlation coefficient is calculated using (2.58) as many times

as there are IMFs then rd ≈ 1 indexes the IMFd ,
● Step 3: Then, the indexed IMFd is removed from the analyzed signal x(n) and the

result denoted by x(n)dEEMD can therefore be used to detect bearing failure.

To measure the strength of the association between two variables using the Pearson’s

correlation, let us consider X (n) as line current and Y (n) as the IMF , so

X (n) = x(n) (2.59)

and

Yi(n) = IMF i(n) (2.60)

or

Yi(n) = Modei(n) (2.61)

where (i = 1, . . . , j) corresponds to the IMF rank and j is the total number of IMFs.

Then, the Pearson’s correlation coefficient ri is computed for each pair (X (n), Yi(n)); as

result, the score rd ≈ 1 indexes the dominant IMF denoted by IMFd . After determining
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Figure 2.15 Closest IMF subtraction principle [54]

the IMFd , it is canceled from the original signal x(n), and the remaining signal xc(n)

expressed by (2.62) can be investigated for bearing failure detection.

xcEEMD
(n) = x(n) − IMFd(n), (2.62)

The cancellation process is repeated until there is no correlation between the main

signal x(n) and the IMFs contained in xc(n).

2.10.3 Fault detector based on EEMD demodulation

As mentioned previously for CT, HT and TKEO, the variance of xc(n) is investigated

as a fault detector. This statistics criterion, denoted by σ 2, measures the deviation of

the amplitude around its mean µ. It is given by

σ 2 = 1

N

N−1
∑

n=0

(xc(n) − µ)2 (2.63)

where µ is the average of xc(n). To avoid the EEMD edge-effect problem, xc(n) is then

truncated by removing α samples at the beginning and at the end of xc(n). Hence, the
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proposed criterion σ 2 is expressed by the following [68]:

σ 2 = 1

(N − 2α)

(
N−α−1
∑

n=α

(xc(n) − µ)2

)

(2.64)

and

µ = 1

(N − 2α)

N−α−1
∑

n=α

xc(n) (2.65)

The hypothesis test to detect a fault can therefore be formulated as follows: If

σ 2 > γ , the machine is faulty, where γ is a threshold. For ideal acquisition conditions

γ = 0, but in real-world applications there is always an add noise to measurements,

then γ can be set subjectively.

2.10.4 Synthetic signals

In this validation step, simulations have been performed with AM synthetic signals.

According to (2.49), and since additional components could be considered as noise

in the context of bearing faults detection [69], the AM synthetic signal corrupted by

an additive noise δ is defined as

x(n) = (1 + β sin(ω2n + ψ))
︸ ︷︷ ︸

a(n)

· cos(ωn + φ) + δ(n). (2.66)

where n = 0, . . . , N − 1 is the sample index, N being the number of samples, and φ

is the phase parameter. In (2.66), frequency ω is equal to 2π f /Fe and ω2 is equal to

2π f2/Fe (where f , f2 and Fe are the supply, fault and sampling frequency, respectively)

and amplitude a(n) is related to the fault. It should be noted that the additive noise

δ(n) is supposed to be a zero mean and Gaussian noise process. This assumption is an

approximation of the electrical noise picked up in the wiring and signal conditioning

circuits [70], and it is widely considered in the measurement and electrical engineering

communities [71]. The modulation index β is the fault index, then β = 0 is for the

healthy case and β > 0 is for the faulty one. Simulations have been carried out with

a sampling frequency Fe = 10 kHz, a supply frequency f = 50 Hz and f2 = 100 Hz.

In order to simulate healthy and faulty cases, the modulation index has been set,

respectively, to β = 0.0 for healthy case, and β = 0.1, 0.15 and 0.2 for different

severity of the fault (Figure 2.16).

Figures 2.17 and 2.18 show the EEMD result of the synthetic signal x(n) for both

healthy and faulty cases, respectively.

It clearly shows that at least one IMF is close to the original signal. In order to

quantify the strength of the association between x(n) and each IMF, the Pearson’s

correlation coefficient ri is computed and results are depicted in Table 2.2. In this

case, IMF5 is the closest to the main signal. It is then subtracted, and the variance
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Figure 2.17 EEMD for modulated synthetic signal: β = 0
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Figure 2.18 EEMD for modulated synthetic signal: β = 0.2

Table 2.2 Coefficients of Pearson’s correlation of

synthetic signal for EEMD

IMF rank β = 0.0 β = 0.1 β = 0.15 β = 0.2

IMF1 0.1129 0.1182 0.1189 0.1193
IMF2 0.0873 0.1143 0.1324 0.1543
IMF3 0.0688 0.0811 0.1141 0.1387
IMF4 0.0598 0.0583 0.0284 0.0493
IMF5 0.9883 0.9820 0.9825 0.9771

of the remaining signal is computed and results for both algorithms are presented in

Table 2.2. It is clearly shown that the fault criterion σ 2 rises with the modulation index

β, as presented in Table 2.3. For healthy case (β = 0) and due to the added noise δ(n),

σ 2 is not equal to 0.
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Table 2.3 The variance (σ 2) of xc for EEMD

β = 0.0 β = 0.1 β = 0.15 β = 0.2

σ 2 = 0.0044 σ 2 = 0.0057 σ 2 = 0.0067 σ 2 = 0.0076

2.11 Summary and conclusion

In this chapter, we have proposed a review on fault detection based on demodulation

techniques. First, the motor currents are demodulated using CT, HT and TKEO. Then,

a hypothesis test based on the statistical variance of the demodulated envelope is per-

formed to discriminate between healthy and faulty machines. The results of several

simulations have shown that the mentioned methods perform well in stationary and

nonstationary scenarios. Furthermore, results have shown that, even if CT is compu-

tationally attractive compared to HT and TKEO, this low-complexity demodulation

technique can be inappropriate for the diagnosis of unbalanced system, and CT, HT

and TKEO are inappropriate for multicomponent signals. Second, for multicompo-

nent signals, the EMD-based notch filter is described; the core of this notch filter is

a data-driven strategy combined to a statistical tool. The filtering operation was car-

ried out following three steps: the first step concerns the decomposition of the phase

machine current into IMFs using EEMD, then at the second step the dominant mode

is subtracted from the original signal, and finally in the last step relays on the use of

a statistical feature as a fault detector. The results of several simulations have shown

that the proposed method performs well for amplitude-modulated signal regardless

of the mode rank.
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