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Abstract

This paper deals with air volume variation in a road cavity during the rolling
of a slick tyre leading to air-pumping. A numerical model was developed
based on Computational Fluid Dynamics (CFD), coupled with a function
representing the volume variation due to the tyre tread penetration inside the
cavity. A simplified method based on an equivalent piston-like movement of
the cavity bottom is derived from a tyre/road contact model and validated by
comparison with a membrane approach. This method was used to conduct a
parametric study to assess the influence of volume variation and rolling speed
on dynamic air pressures and associated signal energy levels. It was found
that the overpressure reached during the contact increases with the volume
variation of the cavity and with the rolling speed. The pressure signal energy
level emitted at the leading edge increases with the velocity but is negligibly
influenced by the volume variation. However, the signal energy level at the
trailing edge increases with the volume variation without being influenced by
the rolling speed. Furthermore, the speed exponent linking the signal energy
level with rolling speed was found to be less than 4 at the leading and trailing
edges which is consistent with previous work.
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1. Introduction

Environmental noise is a major issue affecting quality of life and health
of millions of people [1]. One of the most annoying nuisances in densely
populated areas is road traffic noise, which dominant contribution at steady
speed flows above 40 km/h is tyre/road noise [2]. Early studies on tyre/road
noise [3, 4] have revealed the existence of two main independent generating
mechanisms: radial vibrations of the tyre structure dominate at low and
medium frequency (below 1000 Hz) while air flow related mechanisms, often
called air-pumping, generate noise at high frequency (above 1000 Hz). These
generating mechanisms are fully described in [5] and can be accompanied
in certain configurations by stick/slip or stick/snap phenomena and pipe or
Helmholtz resonances. The resulting sources in the vicinity of the tyre are
amplified by horn effect [6, 7] before propagation at the road side.

Vibratory and aerodynamic sources lead to different speed exponent k
when considering the relationship between squared acoustic pressure and
rolling speed for both kinds of contribution. Most previous work [3, 8] led
to a value of k between 2 and 3 for vibratory mechanisms dominating at low
frequency and a value between 4 and 5 for aerodynamic mechanisms at high
frequency. However, a statistical analysis on a large tyre/road noise database
[9] showed a dominance of vibratory mechanisms over the entire range of
frequencies. Further analysis in [10] has highlighted the contribution of air-
flow related mechanisms in the generation of noise even in the low frequency
range. Thus the separation of both mechanisms remains unclear and further
investigation are needed, especially on air-pumping phenomena. Indeed a
recent literature review on tyre-road interaction noise [11] clearly shows the
gap between the number of studies on tyre vibrations and those on air-flow
related mechanisms. Therefore, this paper aims at further insight on air-
pumping in the case of a tyre rolling on a cylindrical cavity incorporated in
the road and its contribution to noise generation.

Air-pumping is often defined as the series of rapid air compressions and
releases at the interface between the tyre and the road during rolling. Two
kinds of phenomena have been investigated to explain the origin of air pres-
sure fluctuations. A first category of studies [12, 13, 14] have shown that the
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viscous boundary layer at the tyre and road surfaces contributes to the gen-
eration of pressure fluctuations. In a second category of studies, air-pumping
was attributed to air volume variation due to tyre tread deformation in the
contact patch, which may have different origins. It can be firstly favored by
deformation of grooves and cavities on the tread pattern, then by indentation
of road asperities and finally by rubber penetration in cavities incorporated
in the road surface.

On the one hand, the effect of tread patterns on noise emission has been
widely studied experimentally [15, 16] and analytically [17, 18, 19]. Further
numerical methods based on Computational Fluid Dynamics (CFD) have
been conducted in order to study tyre grooves effect on air-pumping. A
three-stage hybrid technique that combines CFD with Kirchhoff integral was
developed by Kim et al. [20] in order to calculate air flow properties and
acoustic pressure. The 3D model simulated the deformation of a tyre trans-
verse groove on a pavement based on a piston/sliding door/cavity model.
Fabrizi [21] investigated noise generation mechanisms of the pipe resonance
phenomenon with CFD (Fluent Large Eddy Simulation (LES) model) and
computational aeroacoustics (Ffwocs William-Hawking (FW-H) model). The
model represents a commercial tyre having a single longitudinal groove and
enveloped by an air flow with an inlet velocity. In the same context, Gautam
and Chandy [22] carried out numerical simulations of air-pumping in a 2D
tyre transverse groove. The groove deformation was taken into account by
two methods: the first one uses a piston-like motion of the bottom wall and
the second method is the deformation of the side walls of the groove that
gradually bulge inward and outward as the groove moves in and out of the
contact patch. A comparative study was conducted to examine the impact
of the deformation model on air-pumping and noise generation at the small
scale using LES turbulence model in Fluent. This approach was proceeded in
3D [23] for a cylinder with two transverse grooves in the circumferential di-
rection. Simulations of air-pumping were conducted with the LES and noise
estimated with FW-H models.

On the other hand, little research has been performed on the effect of
air volume variation due to rubber indentation by road asperities or its pen-
etration in road cavities during rolling. Road asperities were analytically
modeled by Ronneberger [24] to simulate rubber indentation during rolling.
It was shown that air-pumping originates from the tread deformation during
its impact with the road surface, which forces air to be expelled or sucked
into the outside/inside of the cavities. In some way, the effect of rubber pen-
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etration in a road cavity on air-pumping was indirectly investigated by the
experiment of Hamet et al. [25]. In this work, a slick tyre was rolling on a
cylindrical cavity incorporated in the road. An overpressure at the bottom of
the cavity was observed during its obturation by the tyre, followed by a pres-
sure drop at the opening and a Helmholtz-like resonance. This phenomenon
was qualitatively reproduced by Conte and Jean [13] with CFD simulations
only considering the viscous boundary layer effect. However, neglecting vol-
ume variation due to rubber penetration led to an underestimation of the
overpressure in comparison with experimental results.

This paper aims at filling this gap and at highlighting the influence of vol-
ume variation due to tyre tread penetration into the cavity on air-pumping.
Volume variation is modeled by a simplified piston-like motion of the cavity
bottom which is firstly introduced in the paper. The piston approach is then
validated by comparison with a membrane method that represents the tyre
tread penetration at the top of the cavity. Due to technical difficulties in
implementing the membrane approach in 3D, the CFD model is here im-
plemented in 2D, but the piston approach could be generalized in 3D for
more complex geometries. Subsequently, a parametric study is performed to
evaluate the influence of volume variation and rolling speed on air pressure
fluctuations at the tyre/road interface. Finally, the impact of volume varia-
tion on the pressure signal energy level is assessed at the leading and trailing
edges.

2. Piston method

The volume variation caused by the tyre tread penetration inside the road
cavity during rolling is modeled by a simplified piston method. This approach
is schematized in Figure 1. During the passage over the contact zone, the
penetration of rubber in the cavity leads to a volume decrease (Figure 1 (a))
which can be equivalently described by a piston-like vertical displacement of
the cavity bottom (Figure 1 (b)). It is thus considered that the cavity bottom
moves vertically upward as the cavity closes. The maximum displacement is
reached when the cavity is completely closed. Then the cavity bottom moves
down symmetrically when the cavity opens.

The diagram in Figure 3 summarizes the whole procedure of the piston
method. The first step is to use a contact model to get the overall geometry
of the deformed tyre and the local penetration zm(x, t) of the tyre tread
inside of the cavity (see Figure 1 (a)). The second step is to calculate the
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Figure 1: Volume variation of the cavity due to penetration of the tyre tread (a) and
equivalent piston-like displacement of the cavity bottom (b)

volume variation of the cavity at each time step, leading to the equivalent
displacement of the cavity bottom zpiston(t) (see Figure 1 (b)). The last step
is to perform a CFD calculation into the Fluent solver where the overall
geometry of the deformed tyre and the piston model have been introduced.

For the sake of physical validation, the piston method has already been
investigated by the authors in [26] and compared with the experimental re-
sults of Hamet et al. [25]. Contrary to the case without volume variation
previously studied in [13], the piston method in 3D has led to a fairly good
agreement with the pressure signal measured at the bottom of the cavity
in [25], not only in shape but also in amplitude (Figure 2). However, on
the one hand, it has to be noticed that the piston displacement was ap-
proximated by an arbitrary Tukey window function similar in shape to the
pressure signal. On the other hand, the volume variation and the associated
maximum displacement were estimated from the classical thermodynamic
Laplace’s law, by comparison between the measured pressure and the pres-
sure calculated without volume variation. Having regard to the efficiency of
the piston method, it would be interesting to directly calculate the actual
volume variation instead of estimating it. Hence the purpose of the present
paper that uses a contact model for calculating the tyre tread penetration in
the road cavity prior using the piston method in the CFD calculation.
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Figure 2: a) Calculated pressure at the bottom of the cavity from a 3D model with and
without volume variation [26] and b) Pressure signal measured by Hamet et al. [25]

The CFD numerical resolution of the problem enables the calculation
of the flow properties such as air dynamic pressure at each time step. In
this paper, the idea would be to check if the calculated air pressure (at
the bottom of the cavity for example) obtained with this simplified piston
method is close to that calculated by directly introducing the penetration
of the tyre tread (noted as the membrane method). In the following, the
theoretical background and hypotheses of the three above mentioned steps
are presented.

Contact model

Calculation of volume
variation in the cavity

CFD model

Piston model

Tyre tread penetra-
tion into the cavity

Deformed tyre
geometry

Equivalent dis-
placement of the
cavity bottom

Dynamic Mesh

Figure 3: Principle of calculating the dynamic air pressure at the bottom of the cavity
using the CFD model with volume variation (piston movement)

2.1. Contact model
In this part, a theoretical description of the contact model is presented.

This model is used to calculate the overall deformed shape of the tyre as
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well as its local deformation represented by the penetration of the tyre tread
(membrane) inside the cavity. The road surface is considered as perfectly
rigid and flat. For the sake of validation, the tyre structure is here simplified
and modeled by an elastic half-space, but a more complex approach (e.g.
FEM) would be possible. The contact problem is considered as a succession
of static prints without friction and is described in Cartesian coordinates
(x, y, z).

Under these assumptions, the Boussinesq’s theory [27] applies and the re-
lationship between the normal displacement uz and the pressure distribution
fz at the surface of the half-space is given by :

∀M ∈ Σ(t), uz(M, t) =

∫
Σc(t)

G(M,S)fz(S, t)dS (1)

where Σ is the whole surface of the half-space, Σc is the contact area and
G(M,S) is the influence function of Boussinesq expressed as follows:

G(M,S) =
1

πE∗r
(2)

with r =
√

(xM − xS)2 + (yM − yS)2 the distance separating the two points
M and S in the (x, y) plane and E∗ = E/(1 − ν2), where E is the Young’s
modulus and ν the Poisson’s ratio of the elastic material.

The contact between the tyre and the road is sketched in Figure 4, where
δ is the overall displacement at the wheel center, z0

r describes the undeformed
surface of the road and z0

t the undeformed surface of the tyre. The unilateral
contact conditions are expressed by : ∀M ∈ Σ̄c(t), h(M, t) > 0 and fz(M, t) = 0 Separation

∀M ∈ Σc(t), h(M, t) = 0 and fz(M, t) > 0 Contact
(3)

where Σ̄c represents the set of points that do not belong to the contact area
at time t and the so-called gap function h describes the distance between the
deformed tyre surface and the road surface:

h(M, t) = uz(M, t)− z0
r (M, t) + δ(t) + z0

t (M, t). (4)

The resultant total load Fz satisfies the equilibrium equation:

Fz(t) =

∫
Σc(t)

fz(S, t)dS (5)
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Figure 4: Geometric description of the contact at the pneumatic / road interface

and the deformed shape of the tyre surface zt is given by:

zt(M, t) = z0
t (M, t) + uz(M, t) + δ(t) (6)

2.2. Calculation of air volume variation in the cavity
In order to calculate the air volume variation in the cavity, this latter

of diameter d and of depth L0 is introduced into the geometry of the road
surface z0

r by the following relation:

z0
r (x, y, t) =

 −L0 if
√

(x− xc(t))2 + (y − yc(t))2 < d/2

0 if
√

(x− xc(t))2 + (y − yc(t))2 ≥ d/2
(7)

where xc(t) and yc(t) are the positions of the cavity center according to x
and y given as follows:  xc(t) = vt+ xc(0)

yc(t) = 0
(8)

with v the rolling speed. The rolling of the tyre on the cavity is obtained
by changing the position of the cavity center xc with respect to the center
of the tyre. A succession of static contacts is thus obtained, representing the
deformed tread penetrating into the cavity.
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Defining the set C(t) by:

C(t) = {M(x, y) \
√

(x− xc(t))2 + (y − yc(t))2 ≤ d/2}, (9)

then the membrane displacement zm(M, t) is defined by:

∀t,∀(x, y) ∈ C(t) \ zt(M, t) ≤ 0, zm(M, t) = zt(M, t) (10)

where zt(M, t) is the deformed surface of the tyre given by Eq.(6).
Since the CFD simulations of the membrane penetration considered in

this paper will be in 2D, zm(M, t) is noted as zm(x, t) corresponding to the
penetration of the membrane into the cavity along the x axis (with y = 0)
at time t. The set of points zm(x, t) is then stored for each cavity position
in order to be coupled with the CFD model when applying the membrane
method (see section 3.2). Time t is obtained from the distance D traveled
by the cavity by the simple relation t = D/v.

Then, for the simplified piston method, the membrane displacement zm(M, t)
is used to calculate the equivalent volume of the tread penetrating into the
cavity:

vp(t) =

∫
Σc(t)

zm(M, t)dM (11)

In 2D, the equivalent surface penetrating into the cavity is given by:

sp(t) =

∫
Σc(t)

zm(x, t)dx (12)

In 3D, it is assumed that the volume of penetration into the cavity vp(t)
is equivalent to a cylindrical volume swept by the piston movement of the
cavity bottom. The equivalent displacement of the cavity bottom zpiston(t) is
thus calculated as follows:

zpiston(t) =
4vp(t)

πd2
(13)

In 2D, the surface of penetration into the cavity sp(t) is equivalent to a
rectangular surface swept by the piston movement of the cavity bottom.
The equivalent displacement of the cavity bottom zpiston(t) is calculated as
follows by:

zpiston(t) =
sp(t)

d
(14)
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The membrane displacement zm(x, t) and the equivalent piston displace-
ment zpiston(t) are then used in the CFD model in order to calculate the
air dynamic pressure variation resulting from the air volume variation of the
cavity during rolling with respect to the dynamic pressure induced by viscous
boundary layer effect only. The theoretical description of the CFD model is
given in the following.

2.3. CFD model
Solving fluid dynamics problem requires the calculation of various flow

properties such as velocity, density, pressure and temperature as functions of
space and time. Although the tyre rolling process implies low Mach number,
the fluid is considered compressible to enable capturing of generated acous-
tic waves. The equations that govern the fluid motion are the Navier-Stokes
equations and its derivatives. These are nonlinear partial differential equa-
tions corresponding to conservation laws for mass, momentum and energy.

The conservation of mass is expressed as follows:

∂ρ

∂t
+ div (ρV) = 0 (15)

where ρ is the density and V is the velocity of a fluid particle.
The conservation of momentum is written as:

∂(ρV)

∂t
+ div (ρV ⊗V) = div τ − grad p+ ρg (16)

where p and τ represent respectively the thermodynamic pressure and the
viscous terms of the stress tensor arising from the fluid motion, while g de-
notes body accelerations (e.g. gravity or inertial accelerations). Here air is
considered as a Newtonian fluid entailing a linear and isotropic relation be-
tween viscous stresses and strain rate. Assuming Stokes hypothesis (volume
viscosity is neglected), τ can be expressed as:

τ = µ
(
gradVT + gradV

)
− 2

3
µ(divV)I (17)

where µ is the fluid dynamic viscosity and I is the unit tensor.
The conservation of energy is expressed assuming airflow without radia-

tion as:

∂(ρE)

∂t
+ div (ρEV) = −grad pV + div (τ⊗V) + ρ g⊗V − divq (18)
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where E is the total energy per unit mass and q the thermal flux proportional
to temperature gradient according to Fourier’s law of thermal conduction.

The ideal gas law connecting pressure, density and temperature T is
added for closing the system of equations and writes

p = ρ
R

M
T (19)

where R and M are the ideal gas constant and molar mass.
Given typical rolling speed and tyre size, air flow is assumed to be tur-

bulent. However the dynamics of turbulent eddies is not studied here since
its effect on air-pumping is considered negligible with respect to the average
flow. Turbulent noise sources are not evaluated given the low speed con-
sidered. A statistical URANS (Unsteady Reynolds Average Navier-Stokes)
approach is used to model the turbulent components and solve the average
flow. The RANS model used to determine the unknowns introduced by the
average of the Navier-Stokes equations is selected on the basis of its valid-
ity for solving the flow in the boundary layers which is a key point for the
problem considered. Thus, air-pumping mechanism is directly captured by
air dynamic pressure fluctuations.

The 2D model chosen for the numerical simulation is based on the work of
Conte [13] dealing with a slick tyre rolling on a cylindrical cavity. Its general
concept is represented in Figure 5.The origin of the reference frame and the
calculation domain is chosen at the center of the wheel. The tyre rotates
with an angular velocity ω while the cavity and the road are in translational
motion with a velocity v along the x-axis.

It is shown in [13] by comparing 3D and 2D simulation results that in 3D
(with a finite width tyre) the airflow has a rather low influence on the pres-
sure fluctuations while in 2D (meaning an infinite width tyre) it produces a
strong pressure difference between the leading edge and trailing edge leading
to strongly biased results. Thus, direct air flow on the wheel is not consid-
ered in this case. It is only generated by the surface displacement and the
development of corresponding boundary layers due to air viscosity. Unsteady
conditions are generated by the translational motion and deformation of the
cylindrical cavity according to previous section.

Non-Reflective Boundary Conditions (NRBC) are imposed at the domain
boundaries to control spurious wave reflections. General NRBCs are derived
by first recasting the Euler equations in an orthogonal coordinate system
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Figure 5: General concept of the CFD model of a rolling tyre on a cylindrical cavity

(x1,x2,x3) such that one of the coordinates, x1, is normal to the boundary.
The characteristic analysis is then used to modify terms corresponding to
waves propagating in the x1 normal direction. When doing so, a system of
equations can be written to describe the wave propagation [28] and avoid
reflection at limits of the domain.

3. Numerical implementation and validation of the piston method

For the sake of numerical implementation and validation of the piston
method, the experimental configuration described in Hamet et al.[25] is con-
sidered. It consists of a slick tyre of diameter 631.4 mm rolling at 80 km/h
(22.2 m s−1) on a pavement with an incorporated cylindrical cavity of diame-
ter d = 15 mm and depth L0 = 30 mm. The solving methods of the contact
model and the CFD model are explained in the following leading respectively
to the calculation of cavity volume variation and air dynamic pressure at each
time step.

3.1. Numerical implementation of the contact model
The tyre is modeled by an elastic half-space of Young’s modulus E = 6

MPa and Poisson’s ratio ν = 0.5. The imposed normal load is Fz = 4700 N.
The length of the contact patch along the rolling direction is 9 cm.
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The contact problem is solved by the classical direct iterative method [29],
the so-called Matrix Inversion Method (MIM). The numerical procedure is
based on a prediction/correction algorithm fully detailed in [30], with an
imposed normal load Fz.

The surface of the half-space is divided into n identical rectangular ele-
ments of dimensions hx along x-axis and hy along y-axis and centered around
points Mi (i ∈ [1, n]) of coordinates (xi, yi) (Figure 6).

O

xz 

y

h
y
 

h
x
 

x
j
 

y
j
 

x
i
 

y
i
 

Figure 6: Discretization of the surface of the half-space [30]

Solving the contact problem leads to the calculation of the overall geom-
etry of the deformed tyre as well as the local deformation of the tyre tread
(penetration) into the cavity. The overall tyre deformed geometry is first
used in a CFD model to create the fluid domain around the tyre. Then, the
tread penetration into the cavity is used to deduce its volume variation (cf.
Figure 3). Procedures for obtaining the two types of tyre deformation are
explained in the following.

On the one hand, the resolution of the contact is performed on a rigid
and smooth surface in order to obtain the overall geometry of the deformed
tyre. The spatial resolution of the mesh according to x and y is fixed at
hx = hy = 3 mm for tyre contact calculation on the smooth surface. Figure
7 shows the complete deformed tyre geometry, to be used in the CFD model.

On the other hand, the contact is performed on a flat surface with the
incorporated cylindrical cavity in order to calculate the penetration of the
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Figure 7: Deformed tyre obtained by the tyre/road contact model

tread in the cavity during the passage of the tyre. In this case the mesh
resolution is fixed to hx = hy = 1 mm. Figure 8a gives the contact pressure
distribution when the wheel center is aligned with the cavity center and
Figure 8b shows the corresponding penetrating of the tread in the cavity.
Examples on the tyre tread penetration obtained for different locations of
the cavity center relative to the wheel center are shown in Figure 9.

Figure 10 shows the displacement of the cavity bottom zpiston(t) as a func-
tion of time equivalent to the above calculated tread penetration according
to Eq.(14). The maximum equivalent displacement of the piston is 0.61 mm.
The related maximum surface variation is about 2% and corresponds to the
moment where the cavity is centered in the contact zone.

3.2. CFD method of resolution
The CFD model is implemented in the ANSYS Fluent code based on

Finite Volume Method (FVM). Sliding and dynamic mesh fonctionalities
[28] are used to handle the translational motion and rubber penetration in
the cavity.

Figure 11 shows the 2D mesh of the CFD model. The fluid domain around
the tyre is formed by a half-disc of 2.5 m radius divided into sub-domains
according to their physical importance with respect to the flow. The most
critical zones are located in front of and behind the contact zone and are
finely meshed. The mesh is coarser when getting away from this area. The
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wheel center (cavity of diameter 15 mm and depth 30 mm; rolling speed of 80 km/h)
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Figure 10: Equivalent displacement of the bottom of the cavity as a function of time
(cavity of 15 mm in diameter and 30 mm deep; rolling speed 80 km/h)

fluid domain around the tyre is meshed according to the same principle and
cell types as [13]. It is divided into six domains meshed from the coarsest to
the finest near the contact zone.

Figure 11: Mesh of the fluid domain adopted in the Fluent model

However, the smallest domain near the contact zone as well as the cavity
are meshed differently in comparison with [13]: the spatial resolution ac-
cording to x is fixed to 1 mm in order to fit with the mesh adopted in the
contact model. The cavity of 15 mm in diameter is then meshed following 15
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divisions according to x, by face mapping formed of quadrangular cells. The
smallest domain of 10 mm in width is divided into 10 divisions (the mesh
can be seen in Figure 12).

The air temperature at the outer boundary is fixed at 300 K (27 ◦C).
The translation velocity of the cavity and the road v is 22.2 m s−1 leading

to an angular velocity of the tyre ω of 72.1 rad s−1. Flow regime is determined
by the Reynolds number Re defined as follows:

Re =
ρlV

µ
(20)

where ρ, l, V , and µ are respectively the density, the characteristic linear
dimension, the velocity and the dynamic viscosity. For the above conditions,
these parameters are as follows: ρ=1.176 kg m−3, l=1 m, V= 22.2 m s−1 and
µ= 1.7894 x 10−5 kg m−1 s−1 resulting in a Reynolds number value Re =
1.46 x 106 higher than the turbulent regime limit (Re > 5 x 105).

The URANS models are the most appropriate to solve this type of flow. In
fact, the flow is turbulent and controlled by the boundary layer phenomenon.
An "improved" near-wall treatment is therefore necessary to resolve the flow
in the inner zone of the boundary layer. In this study, the URANS k − w
SST turbulence model was considered as the most appropriate. This latter
applies the k −w model close to the wall and the k − ε model for cells away
from the wall. The k − w model stands on the following equations:

∂(ρk)

∂t
+
∂(ρVjk)

∂xj
= ρτij

∂Vi
∂xj
− β∗ρkω +

∂

∂xj

[(
µ+ σ∗ρk

ω

)
∂k

∂xj

]
(21)

∂(ρω)

∂t
+
∂(ρVjω)

∂xj
= α

ω

k
ρτij

∂Vi
∂xj
−βρω2+σd

ρ

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[(
µ+ σ

ρk

ω

)
∂ω

∂xj

]
(22)

where k is the specific turbulence kinetic energy, ω is the specific dissipation
rate and β∗, σ∗, α, β, σd and σ are various closure coefficients whose values
are given in [31]. The k − ε model stands on the following equations:

∂(ρk)

∂t
+
∂(ρkVi)

∂xi
=

∂

∂xj

[
µt
σk

∂k

∂xj

]
+ 2µtEijEij − ρε (23)

∂(ρε)

∂t
+
∂(ρεVi)

∂xi
=

∂

∂xj

[
µt
σε

∂ε

∂xj

]
+ C1ε

ε

k
2µtEijEij − C2ερ

ε2

k
(24)
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where µt is the eddy viscosity, Eij are the components of the deformation
rate, ε is the dissipation rate and σk, σε, C1ε and C2ε are various closure
coefficients whose values are given in [32].

The resolution of the problem is based on the PISO (Pressure-Implicit
with Splitting of Operators) scheme. The pressure-based solver is used to
solve the problem in two steps: first a stationary flow is considered for which
no motion is assigned to the cavity. The solution obtained from the stationary
simulation is used as initial condition for the unsteady problem. In a second
step, the unsteady simulation is launched where the cavity moves with a
translational velocity equal to the rolling speed v=22.2 m s−1.

The Dynamic Mesh (DM) technique is activated in order to take into
account the volume variation of the cavity. The calculated membrane pene-
tration zm(x, t) or the equivalent piston displacement zpiston(t) are assigned
to the cavity by User Defined Functions (UDFs).

Besides the Sliding Interface (SI) fonctionality handling cavity transla-
tional motion, Fluent processes the Moving Deforming Mesh (MDM) or Dy-
namic Mesh (DM) in order to handle the topological changes of the domain
during the simulation. Among the DM methods reported in [28], the smooth-
ing technique is the most suitable for modeling the membrane and piston dis-
placements. Smoothing enables to move the boundary and the inner nodes
to absorb the movement of the moving domain without changing the number
of nodes and their connectivity.

For the membrane method, the dynamic mesh is attributed to the upper
face of the cavity assimilated to tyre tread surface when the cavity is travelling
the contact area . For the piston method, it is attributed to the bottom of
the cavity.

Fluent’s User Defined Function (UDF) option is used to describe the
movement prescribed to the moving surfaces (upper or lower face of the cavity
depending on the method). For the membrane method, a function assigns
at each time step and to each of the cavity upper wall nodes, a displacement
corresponding to zm(xi, t) by modifying its vertical position zi(t) according
to the following equation:

zi(t) = z0 + zm(xi, t) (25)

where z0 is the vertical position of the road and zm(xi, t) is obtained by the
contact model.

Similarly, for the piston method, the UDF assigns to each of the cavity
lower wall nodes, a displacement corresponding to zpiston(t) by modifying its
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vertical position zi(t) according to the following equation:

zi(t) = z0 − L0 + zpiston(t) (26)

where z0 is the vertical position of the road, L0 is the cavity depth (L0 = 0.03
m) and zpiston(t) is obtained by the contact model.

Figure 12 shows examples for the introduction of the volume variation by
applying the dynamic mesh using both methods according to Eq.(25) and
Eq.(26). Figure 12a illustrates the tyre tread penetration into the cavity
according to the set of points zm(x, t). For the same moment of calculation,
this penetration is equivalent to the cavity bottom displacement equal to
zpiston(t) (Figure 12b).

zm(x , t)

a) b)
zpiston(t)

Figure 12: a) penetration of the tread into the cavity at the center of contact (membrane
method); b) equivalent displacement of the cavity bottom (piston method)
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3.3. Comparison of membrane and piston methods
The comparison between the membrane and the piston methods is based

on the dynamic pressure p calculated at the bottom of the cavity during
the tyre passage. Figure 13 shows the calculated dynamic air pressure at
the cavity bottom taking into account the cavity volume variation caused
by the tread penetration during the contact by the two tested methods: the
membrane method (in solid green line) and the piston method (in dashed
red line). The result without volume variation is also given (dotted blue
curve) as a reference case. The latter shows a three-phase process: first a
gradual air pressure increase in the cavity as the tyre approaches, then a
constant over-pressure stage during the full cavity closure (with more or less
pronounced cavity resonance), finally a pressure release with an Helmholtz
resonance and pressure oscillations when the tyre leaves the cavity. These air
compression and expansion with possible associated resonances characterize
the air-pumping phenomenon at the tyre/road interface.

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Time (s)

-1000

-500

0

500

1000

1500

2000

2500

3000

P
re

ss
ur

e 
(P

a)

without volume variation
volume variation: membrane method
volume variation :piston method

Figure 13: Variation of the dynamic air pressure at the bottom of the cavity due to volume
variation modeled by membrane and piston methods and comparison with the case without
volume variation (d=15 mm, L0=30 mm, v=80 km/h)

First it can be observed that, in contrast to the reference case, the results
with volume variation show an overpressure during the cavity closure with
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a curved shape very similar to that of the volume variation drawn Figure
10. In that respect, once the cavity closed, the pressure variation is directly
related to the volume variation and consequently to the contact model used
for evaluating the tyre rubber penetration.

On the other hand, the curves obtained with volume variation by both
implemented methods are very close to each other. The difference between
the methods can be quantified by defining the error ε:

ε =

[∫ Ts
0

[p(t)− p∗(t)]2dt∫ Ts
0

[p∗(t)]2dt

] 1
2

(27)

where Ts is the duration of the signal and p(t) and p∗(t) are the calculated
air pressure obtained respectively by the piston method and the membrane
method at the same time t. ε is found equal to 3% when comparing all the
signal points and equal to 0.2% when only comparing the maximum reached
pressure. It can be deduced that the simplified piston method is equivalent
to the membrane method in the case of a closed cylindrical cavity.

Thereby, this approach has proven to be efficient and representative of the
air changing volume in the closed cavity: the air pressure fluctuations at the
tyre/road interface calculated by the piston method are equivalent to those
calculated by directly implementing the membrane displacement. Thus, the
piston technique can be adopted to model the closed cavity volume variation
during the rolling of the tyre and will be used in the following to study
parameters influencing air-pumping.

4. Results

In this part, a parametric study is performed using the 2D piston method
in order to evaluate the effect of volume variation and rolling speed on the
dynamic air pressure at the cavity bottom. The pressure signal is also studied
at the leading and trailing edges, respectively at 7cm forward and at 7cm
behind the contact zone, in order to assess the pressure signals energy levels
emitted at these locations. Simulations are also performed without volume
variation.

The rolling speed is varied between 60 and 100 km/h with a step of
10 km/h and vref= 80 km/h is chosen as reference speed. The maximum
volume variation (surface variation in this case) of the cavity obtained from
the contact model is ∆S/S = 2 %. The time step used for the simulations
is now ∆t = 2.5x10−6 s.
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4.1. Cavity grid dependency study
The influence of the mesh grid in the cavity on the calculation of the

dynamic air pressure at the cavity bottom was first checked. Several squared
meshes of the cavity have been tested according to Table 1, where ∆x and
∆y are the spatial resolutions of the cavity mesh according to x and y re-
spectively. The finest mesh (∆x=∆y=0.1mm) is considered as the reference
case and is about the size of the fluid domain nearest to the contact patch.
The configuration (∆x=1mm; ∆y=2mm) used for the comparison with the
membrane method is also included in the study. The calculated pressure for
the various meshes is presented in Figure 14. The error ε is quantified in
Table 1 using Eq.(27) with p∗(t) the pressure obtained in the reference case.
It is shown that the difference compared to the finest mesh is low (ε ≤ 2.5 %)
and the results are close for (∆x=∆y <1mm) or (∆x=1mm;∆y=2mm). This
allows to conduct the following parametric study using the configuration of
Section 3.2, i.e. (∆x=1mm; ∆y=2mm), for which ε=2.5%.

∆x(mm) 0.1 0.25 0.5 1 2.5 3 5 1
∆y(mm) 0.1 0.25 0.5 1 2.5 3 5 2
d/∆x 150 60 30 15 6 5 3 15
L0/∆y 300 120 60 30 12 10 6 15
ε(%) — 1.4 2.3 4.6 7.2 8.4 9.0 2.5

Table 1: Cavity grid dependency study of the piston calculations and calculated error ε
with respect to the finest mesh

4.2. Influence of volume variation
Figure 15 shows the temporal variation of the dynamic air pressures at

the bottom of the cavity and at the leading edge and the trailing edge, with
and without volume variation. It can be deduced that the volume variation
of the cavity during contact has a significant impact on the air pressures
at the contact interface. With regard to the pressure at the bottom of the
cavity, the decrease in volume leads to an increase in the maximum pressure
and in the amplitude and frequency of the pressure oscillations when the
cavity opens. Likewise, the amplitude and frequency of pressure oscillations
at the trailing edge increase with decreasing cavity volume. With regard to
the pressure at the leading edge, there is a decrease in the amplitude of the
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Figure 14: Dynamic air pressure at the cavity bottom for different mesh resolutions ∆x

and ∆y of the cavity grid (d= 15 mm, L0=30 mm, v=80 km/h)
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pressure wave peak released at the total closure of the cavity but an increase
in amplitude at its closure.

On the other hand, the plateau phase of the signal without volume change
is replaced, in the signal with volume variation, by a pressure peak similar
to the shape of the volume variation obtained by the contact model and
coupled in the CFD model (refer to Figure 10). The pressure signal without
volume variation has in fact a plateau phase with a cavity resonance when
it is completely closed. Considering Figures 15b and 15c, it is worth noting
that a similar behaviour was found by Eisenblaetter [16] at the leading and
trailing edges of a rotating tyre equipped with a cylindrical cavity similar to
the road cavity considered in the present paper. The signal at the leading
edge is characterized by a sharp peak just before the full closure of the cavity,
while at the trailing edge the signal consists of damped oscillations, namely
Helmholtz resonance occurring when the cavity opens.

4.3. Speed influence on the maximum average pressure at the cavity bottom
The temporal variation of the pressure at the cavity bottom at the dif-

ferent rolling speeds is given in Figure 16a for the cases without volume
variation and in Figure 16b for the cases with volume variation. In both
cases, the maximum pressure reached at the bottom of the cavity during the
contact increases with the rolling speed.

4.4. Speed influence on the pressure signal energy level
The transient signals at the leading and trailing edges are used to assess

the corresponding pressure signal energy level N emitted in front of and
behind the contact zone according to the following relation:

N = 10 log10

∫ tf

ti

p2(t)dt (28)

where p is the pressure and [ti, tf ] is the time integration interval.
For the leading edge, ti and tf are chosen where the difference between

the signals with and without volume variation is the most important (Figure
17a). An offset is to be noticed in the pressure signal. The integration time
is chosen constant among all tested rolling speeds. It corresponds to the one
identified for the lowest rolling speed (60 km/h).

For the trailing edge, ti corresponds to the cavity opening start time and
tf corresponds to the oscillations end time (Figure 17b). Despite an offset
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smaller than at the leading edge, a constant integration time is chosen that
corresponds to that identified for 60 km/h again.

Energy levels at the leading edge and at the trailing edge during the
passage of the tyre over the cylindrical cavity are calculated as a function
of the rolling speed and compared to the case without volume variation in
Figure 18.

Volume variation has a greater effect on the energy level at the trailing
edge than on the leading edge. In fact, energy level at the trailing edge
increases with volume variation. However, this latter influences the dynamic
air pressure at the leading edge without having a significant effect on the
related energy level.

On the other side, energy level at the leading edge increases with in-
creasing speed with and without considering the volume variation. However,
rolling speed has no influence on the energy level at the trailing edge when
considering the cavity volume variation. When this latter is not considered,
energy level at the trailing edge increases with increasing speed.

Speed exponent k characterizing the linear relationship between signal
energy and rolling speed raised to power k satisfies the following equation
between energy level and logarithm of rolling speed:

N(v) = 10log10(v/vref)
k +N(vref ) (29)

A linear regression is used to determine k and N(vref ) values. Figure
18 illustrates the correlation between N and v according to Eq.(29). Table
2 summarizes the values of k and N(vref ) thus found for the energy levels
emitted at the leading and trailing edges for cases with and without volume
variation, as well as the correlation coefficient of determination R2.

k N(vref ) R2

∆S/S = 0% (leading edge) 3.45 14.13 0.99
∆S/S = 2% (leading edge) 2.87 14.07 0.99
∆S/S = 0% (trailing edge) 1.34 18.19 0.86
∆S/S = 2% (trailing edge) 0.13 22.9 0.23

Table 2: Calculated speed coefficient k, reference energy level N(vref ) and coefficient of
determination R2.

R2 is close to 1 for the leading edge (with and without volume variation)
as well as for the trailing edge without volume variation, indicating a good
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prediction quality of the linear regression. However, since the rolling speed
has no effect on the energy level emitted at the trailing edge in the case with
volume variation, R2 is very low. Comparing with literature, the results
at the leading and trailing edges for both cases, with and without volume
variation, are in agreement with [9] where k appears lower than 4. It is also
worth noting that in Conte’s PhD [33] the speed exponent k of the signal
energy was 3 at the leading edge and 2 at the trailing edge, which is close
to the results of Table 2 for the case without volume variation (∆S/S =0
%). Even though a tyre cavity instead of a road cavity was considered in
Eisenblaetter’s work [16], and the calculations in the present paper are in
2D, it is interesting to compare the speed dependency of the signals in both
cases. In [16], at the leading edge the peak amplitudes was found to be
proportional to the square of the velocity, i.e. a speed exponent of k = 4
was found contrary to k = 2.87 found in Table 2 for ∆S/S = 2%. However,
at the trailing edge no proportionality was found in [16] which agrees with
Table 2 where k = 0.13 for ∆S/S = 2%.

5. Conclusions

This paper highlights the influence of volume variation in a road cavity
on the dynamic air pressure at the tyre/road interface during rolling of a
slick tyre. This volume variation is due to the tyre tread penetration into
the cavity. The numerical method used is based on a contact model coupled
with a CFD model using the Fluent solver.

A simplified piston method was proposed to model the volume variation
by considering the piston-like motion of the cavity bottom. The latter moves
vertically upward as the cavity closes and then symmetrically down as it
opens. This technique was found equivalent to the direct tyre tread pen-
etration into the cavity calculated by the contact model. Furthermore, a
parametric study was conducted using the piston method in order to eval-
uate the influence of the volume variation and the rolling speed on the air
pressure at the bottom of the cavity, at the leading edge and at the trailing
edge. The pressure signal energy level emitted at these locations was also
assessed.

Volume variation increases the over-pressure at the bottom of the cav-
ity reached during its complete closure. The maximum pressure increases
with the increase of rolling speed in both cases (with and without volume
variation). Signal energy level at the leading edge is weakly influenced by
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volume variation, while at the rear it increases with volume variation. More-
over, signal energy level increases with the rolling speed at the leading edge
for both cases with and without volume variation, as well as for the trailing
edge without considering the volume variation. However, when the latter
is considered at the trailing edge, it has no influence on the related signal
energy level. The speed exponent linking energy level with the rolling speed
appeared to be lower than 4 at the front edge and the rear edge.

Considering the efficiency of the piston method, it would therefore be
interesting to perform CFD simulations in 3D in order to carry out com-
parisons with related measurements and to further highlight the influence
of volume variation on aerodynamic sources in more complex configurations.
Moreover, the cylindrical cavity could be replaced by a transverse groove
included in the road surface in order to deepen the influence of volume varia-
tion in such a configuration and to compare the results with the case without
volume variation [34]. Similarities with some previous works (e.g. [35, 36])
dealing with a deformed tyre groove rolling on a smooth surface could also
be investigated.
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