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Abstract

While being an essential component
of spoken language, fillers (e.g. “um”
or “uh”) often remain overlooked in
Spoken Language Understanding (SLU)
tasks. We explore the possibility of
representing them with deep contex-
tualised embeddings, showing improve-
ments on modelling spoken language
and two downstream tasks — predict-
ing a speaker’s stance and expressed
confidence.

1 Introduction

Disfluencies are interruptions in the regular
flow of speech, such as pausing silently, repeat-
ing words, or interrupting oneself to correct
something said previously (Fraundorf et al.,
2018). They commonly occur in spoken lan-
guage, as spoken language is rarely fluent.
Fillers are a type of disfluency that can be
a sound (“um” or “uh”) filling a pause in an
utterance or conversation.

Recent work has shown that contextualised
embeddings pre-trained on large written cor-
pora can be fine-tuned on smaller spoken lan-
guage corpora to learn structures of spoken
language (Tran et al., 2019). However, for
NLP tasks, fillers and all disfluencies are typi-
cally removed in pre-processing, as NLP mod-
els achieve highest accuracy on syntactically
correct utterances. This contradicts linguistic
studies, which show that fillers are an essen-
tial and informative part of spoken language
(Clark and Fox Tree, 2002; Yoshida and Lick-
ley, 2010; Brennan and Williams, 1995; Corley
et al., 2007; Stolcke and Shriberg, 1996).

∗Equal contribution

So far, the information carried by fillers
has only been studied using hand crafted fea-
tures, for example in Le Grezause (2017); Saini
(2017); Dinkar et al. (2020). Besides, Barriere
et al. (2017) show that pre-trained word em-
beddings such as Word2vec (Mikolov et al.,
2013), have poor representation of spontaneous
speech words such as “uh”, as they are trained
on written text and do not carry the same
meaning as when used in speech. We address
the matter of representing fillers with deep con-
textualised word representations (Devlin et al.,
2019), and investigate their usefulness in NLP
tasks for spoken language, without handcraft-
ing features.

Hence, the present work is motivated by the
following observations: (1) Fillers play an im-
portant role in spoken language. For example,
a speaker can use fillers to inform the listener
about the linguistic structure of their utter-
ance, such as in their (difficulties of) selection
of appropriate vocabulary while informing the
listener about a pause in their upcoming speech
stream (Clark and Fox Tree, 2002). (2) Fillers
and prosodic cues have also been linked to
a speaker’s Feeling of Knowing (FOK) or ex-
pressed confidence, that is, a speaker’s certainty
or commitment to a statement (Smith and
Clark, 1993). Brennan and Williams (1995) ob-
served that fillers and prosodic cues contribute
to the listener’s perception of the speaker’s ex-
pressed confidence in their utterance, which
they refer to as the Feeling of Another’s Know-
ing (FOAK), also observed by (Wollermann
et al., 2013). (3) Recent work has shown that
fillers have been successful in stance prediction
(stance referring to the subjective spoken atti-
tude towards something) (Le Grezause, 2017).

Aim of this work: We want to verify
that these observations are still valid when



we represent fillers in an automatic and effi-
cient way. Hence, our contributions are as
follows: (1) Fillers contain useful information
that can be leveraged by deep contextualised
embeddings to better model spoken language
and thus should not be removed. In addition,
we study which filler representation strategies
are best suited to our task of Spoken Language
Modelling (SLM) and investigate the learnt
positional distribution of fillers. (2) We show
that in a spontaneous speech corpus of spoken
monologues, fillers are a discriminative feature
in predicting the perception of expressed con-
fidence of the speaker, and perception of a
speaker’s stance (which we measure by senti-
ment).

2 Models and Data description

2.1 Model Description

For our work, we consider the two fillers “uh”
and “um” (see subsection 2.2). To obtain
contextualised word embeddings for fillers, we
use bidirectional encoder representations from
transformers (BERT) (Devlin et al., 2019), as
it has achieved SOTA performance on sev-
eral NLP benchmarks and are better than
Word2Vec for word sense disambiguation by
integrating context (Bartunov et al., 2015).

2.1.1 Spoken Language Modelling

For SLM, we use the masked language mod-
elling objective (MLM). It consists of mask-
ing some words of the input tokens at ran-
dom, and then predicting these masked tokens.
The MLM objective is classically used to pre-
train and then fine-tune BERT. Here, we use
this MLM objective to fine-tune a pretrained
BERT on a spoken language corpus (see sub-
section 2.2). Each experiment requires a token
representation strategy Ti and a pre-processing
strategy PSi (additional details are given in
the algorithm 1 in Supplementary).

The token representation strategies are
particularly important for our task, for BERT
to learn the distribution of fillers. The three
token representation strategies (T1, T2, T3), are
described as follows: In T1, no special treat-
ment is done to the fillers1, i.e BERT will use

1It is interesting to note that BERT provides embed-
ding for “uh” or “um” despite being trained on written
text (Wikipedia, BooksCorpus (Zhu et al., 2015), Word
Benchmark (Chelba et al., 2014).

its a priori knowledge of the fillers “uh” or
“um” to model the language. In T2, “uh” and
“um” are distinguished from other tokens by a
special filler tag, and are represented as two dif-
ferent tokens respectively; this strategy aims at
forcing BERT to learn a new embedding that
focuses both on the position and the context of
the fillers. In T3, both fillers are represented as
the same token, suggesting that they have the
same pragmatic meaning and are interchange-
able. A concrete example is given in Table 1.

Pre-processing strategies,
(PS1,PS2,PS3), are as follows: In PS1,
the sentences have all fillers removed, both
during training and inference. In PS2, the
sentences have the fillers kept during training,
but are removed at inference. In PS3, the
fillers are kept both during training and
inference. For each pre-processing and token
representation strategy, we optionally fine-tune
BERT using the same Masked Language
Model (MLM) objective as in the original
paper (Devlin et al., 2019). Note, if we do
not fine-tune, the training dataset (Dtrain)
is not used and therefore PS1 and PS2 are
equivalent. For language modelling we report
the perplexity (ppl) measure to evaluate the
quality of the model.

2.1.2 Confidence and Sentiment
Prediction

In both our confidence prediction and senti-
ment analysis task, our goal is to predict a
label of confidence/sentiment using our BERT
text representations that include fillers. For-
mally, our confidence/sentiment predictor is
obtained by adding a Multi-Layer Perceptron
(MLP) on top of a BERT, which has been op-
tionally fine-tuned using the MLM. The MLP
is trained by minimising the mean squared er-
ror (MSE) loss (additional details are given in
algorithm 2 in Supplementary). We keep the
same token representation and pre-processing
strategies from Section 2.1.1.

2.2 Data Description

We use the Persuasive Opinion Mining (POM)
dataset (Park et al., 2014), a dataset of 1000
English monologue videos. Speakers recorded
themselves giving a movie review, freely avail-
able on ExpoTV.com. The movies were rated
from 1 star (most negative) to 5 stars (most



Token. Output Tokenizer

Raw (umm) Things that (uhh) you usually wouldn’t find funny were in this movie.
T1 [‘umm’, ‘things’, ‘that’, ‘uh’, ‘you’, ‘usually’, ‘wouldn’, “’”, ‘t’, ‘find’, ‘funny’, ‘were’, ‘in’, ‘this’, ‘movie’, ‘.’]
T2 [‘[FILLERUMM ]’, ‘things’, ‘that’, ‘[FILLERUHH ]’, ‘you’, ‘usually’, ‘wouldn’, “’”, ‘t’, ‘find’, ‘funny’, ‘were’, ‘in’, ‘this’, ‘movie’, ‘.’]
T3 [‘[FILLER]’, ‘things’, ‘that’, ‘[FILLER]’, ‘you’, ‘usually’, ‘wouldn’, “’”, ‘t’, ‘find’, ‘funny’, ‘were’, ‘in’, ‘this’, ‘movie’, ‘.’]

Table 1: Filler representation using different token representation strategies

positive). Annotators were asked to label the
video for high-level attributes. For confidence,
annotators (3 per video) were asked “How con-
fident was the reviewer?”, and had to each give
a label respectively; from 1 (not confident) to
7 (very confident), after watching the entire
review. Similarly for sentiment, the annotators
were asked “How would you rate the sentiment
expressed by the reviewer towards this movie?”,
and were asked to give a label from 1 (strongly
negative) to 7 (strongly positive).

We choose this dataset for the following rea-
sons: (1) The corpus has been manually tran-
scribed with fillers “uh” and “um”, where ≈ 4%
of the speech consists of fillers (for compari-
son, the Switchboard (Godfrey et al., 1992)
dataset of human-human dialogues, consists
of ≈ 1.6% of fillers (Shriberg, 2001)). Sen-
tence markers have been manually transcribed,
with the practice of the filler being annotated
sentence-initially, if the filler occurs between
sentences. (2) The dataset consists of mono-
logues, where the speaker is conscious of an
unseen listener, but dialogue-related disfluen-
cies (such as backchannels) are not present,
allowing us to concentrate on fillers of the nar-
ratives of the speaker (Swerts, 1998). (3) Only
reviews with a 1-2 star or a 5 star rating were
chosen for annotation, to clearly demarcate
sentiment/stance polarity. (4) FOAK, which
we measure by the given label of confidence,
has been annotated with high inter-annotator
agreement (Krippendorff’s alpha = 0.73).

Details can be found in the supplementary
material and in Park et al. (2014). Confidence
labels are obtained by taking the root mean
square (RMS) value of the labels given by the
3 annotators2. Sentiment labels are calculated
by taking the mean of the 3 labels, which were

2Though the inter-annotator agreement for confi-
dence is high, we choose RMS as a way to handle
disagreement between annotators. For example, anno-
tation labels {3, 5, 7} would result in mean value of 5,
not highlighting that one annotator found the reviewer
particularly confident. The RMS value however (≈ 5.3),
slightly enhances the high confidence label.

obtained from Zadeh (2018a)3.

3 Experiments and Analysis

3.1 Information contained by fillers
can be leveraged to model spoken
language.

Language Modelling with fillers. We
compare the perplexity of the LM with differ-
ent pre-processing strategies with a fixed token
representation T1. Results are reported in Ta-
ble 2(a). We compare PS1,PS2 PS3 with or
without fine-tuning and observe that adding
fillers, both during training and inference, leads
to a model with lower perplexity and a perplex-
ity reduction of at least 10%. Hence, fillers
contain information that can be leveraged by
BERT.

As shown, the fine-tuning procedure reduces
the perplexity of the language model. Even
without fine-tuning, we observe that PS3 out-
performs PS1/PS2, as the perplexity reduces
when adding fillers. This suggests that BERT
has a priori knowledge of spoken language, in
terms of fillers.

Hence, fillers can be leveraged to reduce un-
certainty of BERT for SLM. This is not an
expected result, as intuitively, one might think
that the perplexity would reduce when fillers
are excluded from both training and inference,
due to the fact that the utterance is shorter
and “simplified”. The fact that PS3 outper-
forms the other pre-processing methods also
suggests that the MLM procedure is an effec-
tive way to learn this information.

Best Token representation: We observe
that T1 outperforms the other representations
in a fine-tuning setting, as shown in Table 2(b).
Given the restricted size of our data and the
dimension of the BERT embeddings (768), it
is better to keep the existing representations
(with T1), than adding and learning new repre-
sentations from scratch.

3A toolkit for multimodal analysis. Please refer
to the Usage and the Supported Datasets sections,
which include instructions to download the data.



Fine. Setting Token. Ppl Setting Token. Ppl Fine. Model FOAK Sent

w/o
PS1 T1 22 PS3 T1 4.6

w/o
PS1 1.47 1.98

PS2 T1 22 PS2 1.45 1.75
PS3 T1 20 PS3 T2 4.7

PS3 1.30 1.44

w
PS1 T1 5.5

w
PS1 1.32 1.39

PS2 T1 5.6 PS3 T3 4.7
PS2 1.31 1.40

PS3 T1 4.6 PS3 1.24 1.22
(a) (b) (c)

Table 2: From left to right, the (a) LM Task, (b) Best token representation, (c) MSE of Confidence
(FOAK) and the Sentiment (Sent) prediction task. Wilcoxon test (10 runs with different seeds)
has been performed. Highlighted results exhibit significant differences (p-value < 0.005). Data
split is fixed according to Zadeh (2018b) and results are given on the test set (see supplementary
materials for for additional details).

Interestingly, T2 and T3 perform the same.
This can be explained by “um” and “uh” being
only distinguished in duration (Clark and Fox
Tree, 2002), the hypothesis being that “uh”
is used for a shorter pause in speech; which
cannot not be reflected in text. Given these
results, we fix T1 as the token representation
strategy for the rest of the experiments.

Learnt Positional distribution of
fillers: We additionally test whether our
model has learnt information about the
placement of fillers. We use fine-tuned BERT
on Dtrain with fillers to see where the model
estimates the most probable position of the
fillers (which we call LMfillers) to be. Given
a sentence S of length L, we insert after
word j the mask token (‘[MASK]’) to obtain
the corrupted sentence S̃4. We compute the
probability of the appearance of a filler in
position j + 1 according to the LM, which
corresponds to P ([MASK] = filler|S̃), as
illustrated by Figure 1. Formally, we plot
the average of the probability of the masked
word to be a filler given its position in the
sentence, as shown in Figure 2. We observe
that the fine-tuned BERT on Dtrain with fillers
(LMfillers) predicts with high probability
fillers occurring at the first position in the
sentence (please refer to Table 5 supplementary
for example sentences). This is consistent with
the actual distribution of fillers in the dataset,
as can be seen in Figure 2. The fine-tuned
BERT on Dtrain without fillers (LMnofillers)
predicts a constant low probability. Given the
available segmentation of sentence boundaries

4For clarity we abuse the notation and remove de-
pendence in j.

(fine-grained discourse annotations are not
available), it is interesting to note that our
model was able to capture similar positional
distribution of fillers that are reported in
Swerts (1998); Shriberg (2001); Swerts and
Geluykens (1994); Yoshida and Lickley (2010).

In this section we show that although BERT
uses contextualised word embeddings, the infor-
mation contained in fillers can be leveraged to
achieve a better modelling of spoken language.

Figure 1: Predicting the probability of a filler,
where 1. Raw input, 2. Pre-processed text
with the filler removed, and 3. Illustrates the
[MASK] procedure for predicting the probabil-
ity of a filler at position 5.

3.2 Fillers are a discriminative feature
for FOAK and stance prediction.

We observe the impact that fillers have on two
downstream tasks, a novel FOAK prediction
task, and a ubiquitous sentiment analysis task.
Psycholinguistic studies have observed the link
between fillers and expressed confidence (Smith
and Clark, 1993; Brennan and Williams, 1995;
Wollermann et al., 2013). Previous research on
the link between fillers and their relation to a
speaker’s expressed confidence has been con-
fined to a narrow range of QA tasks (Schrank
and Schuppler, 2015). Fillers have also been
linked to stance prediction (Le Grezause, 2017),
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Figure 2: Predicting the position of fillers.
Fillers Distrib. stands for the actual filler
distribution in the dataset. Random stands
for the random predictor which predicts
P ([MASK] = filler|S̃) = 2

|V| where |V| is the
size of the vocabulary, and 2 represents both
fillers.

which we measure using sentiment. We show
that in a spontaneous speech corpus of spoken
monologues, fillers can play a role in predicting
both the perception of the speaker’s expressed
confidence and speaker’s stance.

In Table 2(c) we observe that both with
and without fine-tuning the PS3 decreases the
MSE compared to PS1 and PS2. PS1 and PS2
have similar MSE because fillers are not added
during the inference phase. We observe that
PS2 leads to higher MSE, possibly because
of the discrepancy created between Dlabelled

train

and Dlabelled
test . This shows that fillers can be

a discriminative feature in both FOAK and
stance (Le Grezause, 2017) prediction, apart
from overt lexical cues 5.

Does the addition of fillers always im-
prove the results for downstream spo-
ken language tasks? In the subsection 3.1,
we show that by including fillers , the MLM
achieves a lower perplexity. An assumption
one could make based on the work by Radford
et al. (2019), is that with this model, the re-
sults for any further downstream task would be
improved by the presence of fillers. However,
we observe that to predict the persuasiveness
of the speaker (using the high level attribute of
persuasiveness annotated in the dataset (Park
et al., 2014)), following the same procedure as

5by overt lexical cues, we mean words that explicitly
express uncertainty/confidence, such as maybe, I’m
unsure or sentiment, amazing, disgusting)

outlined in subsubsection 2.1.2, that fillers, in
fact, are not a discriminative feature.

4 Conclusion

When working with deep contextualised rep-
resentations of transcribed spoken language,
we showed that retaining fillers can improve
results, both when modelling language and on
a downstream task (FOAK and stance predic-
tion). Besides, we propose and compare various
token representation and pre-processing strate-
gies in order to integrate fillers. We plan to
extend these results by studying the mixing of
such textual filler-oriented representations with
acoustic representations, and further investi-
gate the representation of fillers learnt during
pre-training.
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Supplementary

Model

Detailed algorithms: In algorithm 1 and
algorithm 2, we provide additional details of
the procedure used for the language modelling
task and confidence prediction task. For stance
prediction, the procedure is the same as for
confidence.

Algorithm 1: Spoken Language Mod-
elling

Input : PSi, Ti, Pret. BERT LM
Output : (LM, P erplexity)

1 (Dtrain,Ddev,Dtest)← (train, dev, test
set) according to (PSi,Ti)

2 if Do Finetuning then
3 LM← LM(Dtrain) using (MLM).
4 end
5 Evaluate: Perplexity ← LM on Dtest

Algorithm 2: Confidence prediction

Input :PSi, Ti, LM from algorithm 1
Output : (CONFp,MSE)

1 (Dlabelled
train ,Dlabelled

dev ,Dlabelled
test )← (train,

dev, test set) according to (PSi,Ti)
2 CONFp ← LM+ MLP

3 CONFp ← CONFp(Dlabelled
train ) using

(MSE).
4 Evaluate: MSE ← CONFp on Dtest

Example of token representation
strategies: Our token representation strate-
gies are built on the tokenizer introduced by
Devlin et al. (2019) and used the Sentence
Piece algorithm (Kudo and Richardson, 2018).
An example is given in Table 3.

Dataset: Additional details

We highlight relevant information about the
dataset in Table 4. The count of each “uh” and
“um” filler is roughly the same. After discarding
some videos due to missing labels, only 100 of
them do not contain fillers. We use the original
standard training, testing and validation folds
provided in the CMU-Multimodal SDK (Zadeh,
2018b).

The process of transcription of fillers is de-
scribed in (Park et al., 2014). The transcrip-
tions were carried out via Amazon Mechanical

Turk, using 18 native English speaking workers
based in the United States. These workers were
from the same pool of workers used to anno-
tate the videos for high level attributes. Each
transcription was then reviewed and edited by
in-house experienced transcribers for accuracy.

In Table 5 we give example sentences ex-
tracted from the POM dataset. In these exam-
ples, we can observe that the fillers are com-
monly located sentence-initially. Note, the cor-
pus annotates “uh” and “um” as “uhh” and
“umm” respectively, reflected in our examples
taken from the dataset.

Hyper-parameters for our experiments

All the hyper-parameters have been optimised
on the validation set based on the mini-
mum of the training loss (MSE for confi-
dence/sentiment prediction and perplexity for
LM) accuracy computed on the last tag of the
sequence. We used Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 10−5,
which is updated using a polynomial decay.
The gradient norm is clipped to 5.0, weight de-
cay is set to 10−6, and dropout (LeCun et al.,
2015) is set to 0.2. Models have been imple-
mented in PyTorch and trained on a v100 using
the same procedure as in (Colombo et al., 2019,
2020; Witon et al., 2018).



Token. Output Tokenizer

Raw (umm) It’s an interesting movie to say the least.
T1 [‘umm’, ‘it’, “’”, ‘s’, ‘an’, ‘interesting’, ‘movie’, ‘to’, ‘say’, ‘the’, ‘least’, ‘.’]
T2 [‘[FILLERUMM ]’, ‘it’, “’”, ‘s’, ‘an’, ‘interesting’, ‘movie’, ‘to’, ‘say’, ‘the’, ‘least’, ‘.’]
T3 [‘[FILLER]’, ‘it’, “’”, ‘s’, ‘an’, ‘interesting’, ‘movie’, ‘to’, ‘say’, ‘the’, ‘least’, ‘.’]

Table 3: Additional example of the different token representation strategies

Description Value

Videos that contain fillers 792

Total um fillers in the corpus 4969

Total uh fillers in the corpus 4967

Total fillers in the corpus 9936

Number of tokens in the corpus 230462

% of tokens that are fillers 4.31

Average length (in tokens) of a video 255.9

Table 4: Details about the POM dataset

Samples

(umm) the title actually translates to The Brotherhood of War.
(umm) The movie itself is a lot like Saving Private Ryan and Band of Brothers.

(uhh) Morgan Freeman is great in this movie, and (uhh) so is Tim Robbins.
(umm) You’ll only like it if you’re into kid of strange, bizarre humor.

It’s just (uhh) pretty obvious stuff you know.
But (umm) a lot of the movie didn’t really make sense.

(umm) It’s really funny, there there’s (stutter) some really funny parts in it.
(umm) But, I recommend watching this movie it’s really good.

(umm) The acting is only so-so.
And so (umm) I wouldn’t really recommend it.

(umm) Yeah, but that’s it.

Table 5: Some samples from the dataset. As
can be seen, many of the fillers occur sentence-
initially.


