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Abstract—This paper makes a contribution to the problem of
incremental class learning, the principle of which is to sequen-
tially introduce batches of samples annotated with new classes
during the learning phase. The main objective is to reduce the
drop in classification performance on old classes, a phenomenon
commonly called catastrophic forgetting. We propose in this
paper a new method which exploits the availability of a large
quantity of non-annotated images in addition to the annotated
batches. These images are used to regularize the classifier and
give the feature space a more stable structure. We demonstrate
on two image data sets, MNIST and STL-10, that our approach
is able to improve the global performance of classifiers learned
using an incremental learning protocol, even with annotated
batches of small size.

I. INTRODUCTION

The development of human perception and interpretation
of the environment is acquired from a continuous process.
Knowledge and skills are progressively accumulated, updated
and stored throughout an individual’s lifetime, and allow
human perceptual system to be globally effective on large
domains. The research field of Continual Learning (CL) aims
to build models that imitate such behavior.

Deep Neural Network (DNN) learning is the dominant
technique used to develop contemporary artificial perceptual
systems. It relies on a supervised learning paradigm that
assumes the availability of large annotated datasets sampling
the expected outcomes of a known task and that can be
exploited in a global optimization phase. Once training is done,
the system and the task it is expected to solve are kept fixed.

Increasing the capacity of a DNN with new data appears
to be difficult. Unless the network is completely retrained
from a new set merging all data, the introduction of new
samples tends to erase the previously acquired knowledge.
This well known phenomenon is referred to as Catastrophic
Forgetting in the literature [7], [9]. CL solutions focus on
implementing strategies able to alleviate the forgetting and
optimize a trade-off on the stability-plasticity dilemma [18],
i.e. the DNN should have enough flexibility to be able to
expand its knowledge (plasticity) while being conservative
enough to prevent any forgetting (stability).

CL problems are now often divided into three scenarios
[11], [21]: class-incremental learning, task-incremental learn-
ing and domain-incremental learning. This work addresses the
class-incremental scenario. In this setting, the model has to
learn how to solve the classification problem from a series of
data with the following three goals [19]:
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Fig. 1. Semi-supervised incremental learning: the model is fed a data stream
containing both labeled and unlabeled samples. The class-incremental learning
uses supervised training on annotated samples. The dedicated classification
head is able to allocate new outputs when encountering the label of an unseen
class for the first time (red pipeline). Meanwhile, all data provided to the
model are forwarded to the unsupervised head. It uses a non-incremental
pretext task (reconstruction, self-supervision...) to learn visual features without
requiring annotations (blue pipeline).

1) learn classes encountered at different times during clas-
sifier lifetime;

2) provide competitive classification performance on all
classes seen so far;

3) reduce memory footprint and computation cost.

The recent performance increase of computer vision func-
tions mostly results from the possibility of jointly exploiting
very deep – and also wide – neural architectures with large
datasets. Somehow, performance is obtained thanks to plas-
ticity. In CL, however, each batch of new data that comes
to increase the classifier scope has a limited amount of
samples, and implies that the most expressive and powerful
networks, that have millions of parameters in computer vision
applications, will be difficult to learn reliably.

One classical strategy to alleviate the lack of data is to
consider a semi-supervised learning scheme with the idea
of introducing some degree of regularization, at either the
representation or classification levels, using an extra source of
non annotated data. More precisely, we propose a new setting
where the system can see a large diversity of images without
any annotation and is given a few labels each time a new class
is to be learned. The classifier has to optimize simultaneously



the main supervised task and a pretext task as an unsupervised
constraint, the former being incremental. The present work
examines how a Semi-Supervised Incremental Learning (SSIL)
baseline has some benefit to continual learning.

Our contribution is two-fold: (i) we define a baseline for
class-incremental learning based on the availability of a large
amount of cheap non-annotated data. The system is expected
to use those alongside the incremental data stream in order
to improve the learning of visual representation; (ii) we in-
vestigate how semi-supervised incremental learning provides a
way to expand the plasticity with a larger DNN while ensuring
enough data to regularize its stability, even on problems with
very few annotated data.

The paper is organized the following way. Section II
presents the work related to the development of a semi-
supervised class incremental approach. The model used is
described in section III and its evaluation in sections IV and V.

II. RELATED WORK

A. Class-incremental learning

Class-incremental learning relies on various strategies to
alleviate the catastrophic forgetting. While the core idea is to
preserve the previously acquired knowledge of a DNN when
training on new data, different approaches are explored in the
literature.

Rehearsal / replay consists in replaying old data to the
model at each new training step. One way is to select some
samples from the incoming data stream and store them inside
an episodic memory [4], [19], [22], [26]. Rehearsal is currently
the most successful strategy to counter forgetting. However,
the performance is generally dependent of the memory budget
allocated to the system. A way to compete with batch learning
is to store all the examples seen but it is contradictory with the
memory restriction aimed for. Some variants learn generative
models to replace the memory [20], [23]. The data replayed
is then made of artificial samples from the generator.

Regularization is a strategy consisting in implementing
a protectionist policy on learned knowledge. Usually, the
regularization is directly applied on the output layer using
knowledge distillation [16], [19], [26]: the previous state of
the model is used as a teacher for the new model in order
to maintain the discrimination between old classes when
optimizing new outputs. Other methods add the regularization
on every weights of the model [1], [12], [24]. It controls the
amount of knowledge accumulated in each node, preventing
to further update parts of the DNN with stored knowledge and
favoring the use of unused nodes.

B. Unsupervised Representation learning

Unsupervised representation learning [3] focus on learning
the most adapted feature space for a designated task when
annotated data are unavailable. The aim is to build an update
criterion for the DNN from raw images only without any an-
notation. Unsupervised task is commonly referred to as pretext
task. In computer vision, tasks such as image reconstruction
or in-painting can be used to train a DNN in an unsupervised

fashion. An extension of the unsupervised learning is self-
supervised learning [13] where the pretext task is supervised
with artificially generated labels. Unsupervised learning is
mainly used to support a main supervised task when too few
annotated data is available. This is to ensure the DNN build
enough understanding of visual information in order to learn
the main task [2].

The access to both annotated and non-annotated data can
be used in a multi-task baseline: the semi-supervised learning
[17]. The main supervised task and the pretext task are
optimized in parallel during the same training process.

The interest for unsupervised representation learning in the
incremental setting since the main hypothesis is only very
limited parts of the dataset are available at each time step.
Recent works show how unlabeled data can be used for
incremental knowledge distillation [15], [25].

III. METHOD

A. Overview

At the heart of our method is a one-against-all classifier
whose number of output labels, before training, is much
greater than the number of possible classes. Class increment
is solved by iteratively maintaining a set of labels assigned
to already seen classes, increasing its size each time a new
class is to be predicted by the classifier. The assignment of a
new class to a label is initially obtained by choosing the best
average responding predicted label from the list of unassigned
labels, given the current classifier state and the new available
samples, and then used as the true label to predict for the new
class in a subsequent learning phase. At the end of the whole
training phase, the unassigned labels can be ignored and the
classifier is left with as many active output labels as classes.

Used this way, this elementary class incremental learning
mechanism cannot prevent forgetting, unless stabilizing con-
straints are introduced. This improvement constitutes the key
contribution of the paper.

Its principle is to introduce a clustering of the feature space
obtained in an unsupervised way from the source of non
annotated data. It consists in learning the clustering allowing
the best reconstruction by means of an auto-encoder with the
objective of giving some initial prior structure to the space of
representation before label assignment to the new classes.

The key idea is that at the beginning of the training process,
when the neural network has not seen any class, only a
clustering is available. Then, when the first class arrives,
the cluster that is closest to the new annotated data, in the
representation space, is chosen to represent this class. The
cluster thus plays a dual role: that of being the center of
a cluster useful for the reconstruction in the auto-encoder,
and that of being a class prototype used for classification.
The unsupervised clustering task acts as a regularizer for the
classifier.

From a technical point of view, an input sample is encoded
by a ’one hot’ vector which represents its cluster number, and,
if this cluster has been assigned to a class, a class number.
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Fig. 2. Backpropagation steps on the Adversarial Auto-encoder. The reconstruction and regularization phases are applied for all seen data. The classification
loss is back-propagated only when encountering a label.

In the following paragraphs, we present successively the
definition of the problem and the notations; then we present
in detail, and from a more formal point of view, the model
and the associated algorithms.

B. Problem definition and notations

Class-Incremental (CI) assumes that the data live under
the form of a stream of subsets X = {X1, X2, . . . , Xj , . . .}
where each subset Xj = {xj1, ..., xjnj

} contains nj images
from the same class yj (one class per subset). In contrast
with Task-Incremental (TI) learning, task boundaries (subset
of possible classes) are not known and therefore not provided
as input to the model. CI is hence more challenging than TI
since, fundamentally, CI is a single task being incremented
indefinitely.

Standard CI protocols suppose that only few classes (i.e.
few subsets) are present at each incremental session. Once
a class is submitted in a session, it will never be submitted
again. For practical reason and without loss of generality, we
define a constant incremental step s which is the number of
classes submitted at each session. Therefore, at the beginning
session i, the modelMi−1 has already seen (i−1)×s classes.
Let Ti = {X(i−1)s+1, ..., Xis} be the subsets available at
session i. The goal of an incremental session is to update the
model to a new state Mi achieving competitive performance
on the new classes from Ti while retaining knowledge from
the Mi−1 model to maintain a global prediction capacity
on all previously seen classes. The classifier is subsequently
evaluated on test examples that can belong to all classes,
including those present in the very first sessions.

Our framework also supposes that we have access to a
stream of unlabeled images denoted by U . These images are
related to the task domain but are not taken from the training
set of the classification task. The whole dataset U is supposed
to be available at each training step in each session i but only
a random subset Ui is used from U for unsupervised learning.

C. Architecture and losses

The core of our method is illustrated Figure 1. It consists of
a network hosting an encoder that provides a representation

feature space from which two tasks are performed: the in-
cremental classification and a reconstruction of unlabeled and
labeled images that acts as a regularizer.

From the so-obtained feature space, two distinct represen-
tations are computed using Fully Connected (FC) layers. The
first one is a discrete latent class variable y encoding the clus-
ter/class number under the form of a one-hot representation.
The second is a continuous latent variable z, representing the
style of the image, the style being any information which is
not related to the classification task. While the classification
is done using only the information contained in y (the class
number when the cluster has been assigned to a class), the
reconstruction uses both y and z.

The reconstruction step relies on a learning mechanism very
close to the semi-supervised Adversarial Auto-Encoder (AAE)
[17].

Adversarial auto-encoders, like most auto-encoders, aim at
learning a low-dimension latent representation of input data
through reconstruction objective. The specificity of an AAE is
to impose a prior on the latent variables using an adversarial
regularization.

In our case, the two latent variables are the style z which is
assumed to follow a Gaussian distribution p(z) = N (0, I),
and the class/cluster representation y, a vector of size C,
that is expected to encode the true class number as a one-
hot categorical vector p(y) = Cat(y). C is a hyper-parameter
allocating the maximal number of possible classes/clusters.

The latent variables are regularized using adversarial train-
ing with two discriminators Dy and Dz . Dy ensures that y
follows a categorical distribution and does not contain any
style information while Dz enforces the continuous Gaussian
prior on the style encoding z.

Training the AAE is a three step process: reconstruction,
regularization and semi-supervision as illustrated in figure 2.
Let ΘQ,ΘR,Θy and Θz be the parameters of each correspond-
ing components of the AAE: the encoder Q, the decoder R, the
adversarial discriminators Dy and Dz . We denote S = Sl∪Su

to be a batch of images with both labeled (Sl) and unlabeled
(Su) samples. For all x ∈ S, we write ŷ, ẑ = Q(x) the latent



variables encoded by Q and x̂ = R(ŷ, ẑ) the reconstruction
obtained from the latent variables.

Reconstruction: the encoder and the decoder are optimized
with a squared error loss on pixels. For any image x:

Lrec(ΘQ,ΘR, x) =
∑
x∈S
||x− x̂||22 (1)

Regularization: we first train the discriminators to discrim-
inate between the actual priors and the outputs of Q. Both
style and categorical discriminators use the same optimization
process. Below, we write the generic adversarial loss for any
discriminator D with parameter ΘD. True samples are denoted
S, fake samples, sampled from the Gaussian prior are noted
Z:

Ladv(ΘQ,ΘD, S, Z) = −
∑
x∈S

log(1− d(x))−
∑
x∈Z

log(d(x))

(2)
with d(x) the output of D given an input x, a score between
0 (fake) and 1 (true).

Then, we optimize the encoder Q to fool the discriminators,
by minimizing the following loss:

Ladv(ΘQ,ΘD, S) = −
∑
x∈S

log(d(x)) (3)

Semi-supervision: in this phase, only Sl is considered. We
use a cross-entropy loss to update ΘQ:

Lclf(ΘQ, Sl) = −
∑

(x,y)∈Sl

C∑
c=1

δy=c log(ŷ) (4)

D. Learning the model

To train the AAE architecture described in the previous
section, we apply a succession of batch training on small
subsets coming from the data streams. Since we are supposed
to have no prior on the number of classes, we initialize C, the
number of clusters available for categorical latent variable,
at a high value (much larger than the potential number of
classes). We will see in the experiments that it can be any
large number and does not have any impact on performance.
At each new session, the new samples, having new labels,
are forwarded through the encoder once. The cluster with the
highest response, among those unassigned so far, is assigned
to the new class label.

Regarding the classification task, some components of y
are assigned to the seen categories. The predicted class is,
therefore, the component of y with the strongest output. The
classification loss is hence the loss given Eq. (4). Our method
also uses rehearsal to better prevent catastrophic forgetting.
We denote by K the hyper-parameter representing the memory
budget allocated to the rehearsal. Let B be the memory buffer
storing old samples, we have |B| ≤ K. The memory buffer
update is done randomly, i.e. a few samples are randomly
sampled from X and stored such that B contains a balanced
number of samples per class.

For each session i, we train Mi−1 on Ti and Ui with the
three aforementioned optimization phases (Algorithm 2). One

epoch means one pass through the whole subset Xi. The com-
plete continual process with data and memory management is
detailed in Algorithm 1.

Algorithm 1 CLASS INCREMENTAL
Input: X , U , p(z), p(y), s, K

Initialization :
1: i = 0
2: M0(ΘQ,ΘR,Θy,Θz) Initialize model
3: B = {} Initialize buffer with memory budget K
4: while unseen classes from X do
5: i← i+ 1
6: ASSIGN CLUSTER(Mi−1, Ti)
7: Receive labeled subset Di with s new classes from T
8: Sample Ui from U
9: Train the model:

Mi ← TRAINING SESSION(Mi−1,B, Ti, Ui)
10: Store K

si samples per class with random selection.
B ← UPDATE MEMORY(B, Ti,K)

11: end while

Algorithm 2 TRAINING SESSION
Input: Mi−1(ΘQ,ΘR,Θy,Θz), B, Ti, Ui, p(z), p(y)

Initialisation :
1: Ti ← B ∪ Ti Update labeled dataset with buffer
2: Ui ← Ti ∪ Ui Merge both labeled and unlabeled for

reconstruction task
3: Generate true samples Zi ∼ p(z)
4: Generate true samples Yi ∼ p(y)
5: for each epoch do
6: Current parameters: ΘQ,ΘR,Θy,Θz

7: Optimize the reconstruction process:
Θ∗Q,Θ

∗
R ← Lrec(ΘQ,ΘR, Ui)

8: Train both discriminators:
Θ∗y ← Ladv(Θ∗Q,Θy, Ui, Yi)
Θ∗z ← Ladv(Θ∗Q,Θz, Ui, Zi)

9: Regularize the encoder:
Θ∗Q ← Ladv(Θ∗Q,Θ

∗
y, Ui) + Ladv(Θ∗Q,Θ

∗
z, Ui)

10: Supervised classification:
Θ∗Q ← Lclf(Θ

∗
Q, Ti)

11: Update parameters:
ΘQ,ΘR,Θy,Θz ← Θ∗Q,Θ

∗
R,Θ

∗
y,Θ

∗
z

12: end for
13: return Mi(ΘQ,ΘR,Θy,Θz)

E. Justification of the proposed method

There are three justifications of our approach. First, training
our model is simple and straightforward. Second, the two-
component latent space allows the disentanglement of class
information from style, with adapted regularization on both.
The regularization with the categorical prior allows to cluster
the samples regardless of their annotation status. Thus, the
model is able to organize its feature space with unlabeled data,
anticipating the potential apparition of labels corresponding



to those instances later on. Finally, the DNN is no longer
optimized on the incremental task alone but on a pretext task as
well, task which is consistent throughout its lifetime. Thus, the
pretext task provides a natural regularization since the model
weights must maintain their ability to perform the auxiliary
task.

IV. EXPERIMENTAL SETTINGS

A. Datasets

We experimentally validated our method on two datasets,
namely MNIST and STL10, used in a class incremental
setting.

a) MNIST digits: [14] is a popular classification task
with 60,000 training images from 10 classes. For class incre-
mental, MNIST is split into several subset containing s classes
each introduced as in [24]. The annotated data stream consists
of subsets being provided consecutively to the DNN before
being discarded.

Non-annotated data comes from EMNIST [6], a dataset
built upon the same source as MNIST with the same 32× 32
grayscale format. EMNIST contains 814,255 handwritten char-
acters of both digits [0-9] and letters [A-Z]. In this work,
we use 3 different splits of EMNIST: EMNIST-full (complete
dataset with unbalanced classes), EMNIST-digits (280,000
digits, 10 balanced classes) and EMNIST-letters (145,600
letters balanced across 26 classes).

b) STL-10 [5]: it’s a more realistic dataset for unsuper-
vised feature learning evaluation. STL-10 has two subsets: the
first has 5,000 annotated images from 10 different classes, the
second contains 100,000 unlabeled images sampled from a
larger set of classes. All images are from IMAGENET and
re-scaled to 96× 96× 3.

Like Split-MNIST, we divide the annotated set of STL10
into disjoints subsets of s classes. We directly use the 100,000
other images as our non-annotated stream from which we
randomly sample data at each session.

B. Network architectures and experimental settings

For the experiments with the MNIST dataset, we use a
simple convolutional network (ConvNet) as the encoder Q,
with 4 convolutional layers and one fully-connected (FC)
layer producing features of dimension 256. Those features are
fed into two FC layers, one producing the style code (z) of
dimension 8 and one for the categorical clusters (y), one hot
encoded. Number of clusters available in y is initialized to
C = 50.

For the experiments with the STL-10 dataset, the encoder
is a modified ResNet18 [10]: the number of neurons in each
layer has been divided by 2 for computational constraints. This
reduction should have limited impact on the performance since
ResNet18 is originally designed to work with higher resolution
images (224×224×3) from ImageNet. Style latent space has
64 dimensions and C = 120.

For both datasets, the discriminators are MLP with 2
layers of 3,000 hidden units similar to the one used in the
original AAE paper. In our experiments, we found out that

the architecture of the decoder had less impact on the overall
performance. We opted for simple convolutional decoders with
transpose convolution for upsampling. The size of the decoder
is adapted to have about the same number of parameters as
the encoder.

V. EXPERIMENTS

A. Class-incremental learning performance

The class incremental is evaluated with s = 2, which means
5 consecutive sessions for both datasets. Since the aim of
our contribution is to illustrate how SSIL provides an adapted
framework when few labeled data are available, we only use
2,000 annotated data from MNIST (200 per class), instead of
the full 60,000. No restriction is imposed on the amount of
unlabeled data available.

We compare our solution to other competitive methods from
the literature: LwF [16], DMC [25], iCaRL [19] and WA [26].
All of them are regularized and use Knowledge Distillation
(KD). iCaRL and WA combine KD with a rehearsal routine
using a memory buffer. Aside from those methods, we also
evaluate the performance of Fine-Tuning, i.e. training a DNN
on the class-incremental task with no solution to alleviate the
catastrophic forgetting by simply fine tuning the network to
the novel classes, and Naive Rehearsal which is fine-tuning
with a memory buffer replaying old data. The Oracle perfor-
mance is obtained using Naive Rehearsal with an unlimited
buffer size (all samples seen before are stored). Since those
methods are conceived for fully supervised, the whole 60,000
labels are used when training on MNIST. In comparison, and
as mentioned above, our method uses only 2,000 labeleled
images.

To ensure fairness in our evaluation, all methods were re-
implemented using the same model as the encoder used in our
AAE (ConvNet and ResNet18). When rehearsal is involved,
we impose the memory budget K = 400 and K = 500
respectively for MNIST and STL-10. Accuracy after each
session is measured on the validation set using only seen
classes. Final accuracy (after the 5-th session) and average
accuracy over all the sessions are measured on the test set.

Table I gives the performances of all the methods we
have just mentioned. Our method outperforms all previous
methods, on both dataset. Even on MNIST where our model
was fed only 2,000 labels through its lifetime (about 3% of the
labels seen by other methods), our method gets overall better
performance. Repeating the experiment with various splits of
EMNIST as unlabeled data stream U gives consistent results.
Even when unlabeled data are made of instances of classes
never learned, i.e. handwritten letters, the model still reaches
state-of-the-art accuracy, showing that our AAE profit from
additional data despite them being not directly related to the
main task. Still, the best model is the one seeing only digits
in U , hinting that if the model is able to specialize its features
on a distribution similar to the main task, continual learning
inherently benefits from it.

On STL-10, our model gets significantly better results
compared to previous methods. However, it is important to



TABLE I
COMPARISON OF LATEST AND AVERAGE ACCURACY OF DIFFERENT

CLASS-INCREMENTAL LEARNING METHODS ON MNIST AND STL-10

Method MNIST STL-10

Latest (%) Average (%) Latest (%) Average (%)

Oracle 99.4 99.7 67.2 73.5

Fine-Tuning 19.8 44.9 16.2 38.3
LwF [16] 71.3 85.2 17.9 42.5
DMC [25] 81.1 87.4
Naive Rehearsal 93.7 97.6 43.8 62.0
iCaRL [19] 95.3 97.9 42.6 63.0
WA [26] 96.0 98.3 47.3 63.5

Oursa 96.9 98.5 57.3 72.0
Oursb (EMNIST-digits) 98.1 99.0
Oursb (EMNIST-letters) 95.9 98.5

a Our standard baseline on MNIST uses EMNIST-full as unlabeled data stream.
b Additional results on MNIST benchmark when using EMNIST-digits and EMNIST-
letters as unlabeled data stream instead of the whole EMNIST.

TABLE II
LATEST ACCURACY OBTAINED FOR VARIOUS CHOICE OF C , THE
HYPER-PARAMETER CONTROLLING THE NUMBER OF CLUSTERS

AVAILABLE IN THE AAE. EXPERIMENTS ON MNIST WITH
EMNIST-FULL.

C 10 15 50 100 200

% 96.9 97.4 96.9 96.9 96.6

note that the STL-10 dataset is built for unsupervised learning
evaluation. This means that the classification problem con-
sidering only the few labeled images is challenging. This
explains the low performance of previous methods (even for
the oracle) while ours successfully exploits the vast amount
of non-annotated data available inside STL-10.

Table II gives the performance of our methods on MNIST
with EMNIST-full as unlabeled data stream, for different
values of C, the number of clusters. We can see that as long
as this number is large enough, the performance is good, even
if there is a very slight decrease when the number of clusters
is very large compared to the number of classes

B. Self-supervision to learn representations ahead of the con-
tinual learning

In order to provide a fairer ground of comparison, since
our method uses unlabeled data and not the other methods,
we add a pre-training step using self-supervised learning to
all the methods. We have chosen the RotNet algorithm [8] for
this purpose. The images are randomly rotated (0◦, 90◦, 180◦

and 270◦) and the self-supervision uses the rotation angles as
labels, the task being to predict the rotation angle. This task
showed good results as self-supervised learning to prepare the
model to a classification task [13]. In practice, for this task,
we train the Resnet18 on the unlabeled set of STL-10.

We used the self-supervised Resnet18 weights as initial-
ization of the DNN inside all the rehearsal-based methods,
including our AAE encoder. This way, we ensure that all
the models have both seen the unlabeled and the labeled

images of STL-10. Figure 3 shows the accuracy measured at
each session on seen classes. Average accuracy is provided in
parenthesis inside the legend of the figure. The impact of the
self-supervised pre-training is clear, all the models stepped up
and are now above the ones from the previous experiment.
Our method continues to outperform the others.

Like batch learning, a better initialization results in a better
incremental performance. There are multiple ways to pre-
train a DNN: using a model trained on another supervised
dataset like ImageNet or using unsupervised/self-supervised
learning like we did with RotNet. In fact, when the amount of
labeled data is as limited as in STL-10, using a deep model
like our modified Resnet18 (≈ 28M parameters) raises other
training issues inherent to few shot learning. This illustrate
our interest for representation learning in this incremental
learning work since both topics share some common issues.
In fact, we think that if our method works better than the
others in the experiment without pre-training, the reason is
because having more data (even without labels) allowed us
to optimize many more parameters, the reconstruction task
providing regularization.
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Fig. 3. Comparison of different rehearsal strategies initialized with a self-
supervised encoder. Legend gives the average accuracy for each method.

VI. CONCLUSION

In this article we have proposed a new approach to contin-
ual learning. The key idea is to structure the representation
space by training an adversarial auto-encoder to reconstruct
images as incremental learning takes place. This brings to the
network a regularization constraint that stabilizes the space of
representation over time. We have shown through experiments
on two image datasets the relevance of the proposed approach.
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[4] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Ala-
hari, “End-to-end incremental learning,” in Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XII, ser. Lecture Notes in Computer Science,
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., vol. 11216.
Springer, 2018, pp. 241–257.

[5] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS
2011, Fort Lauderdale, USA, April 11-13, 2011, ser. JMLR Proceedings,
G. J. Gordon, D. B. Dunson, and M. Dudı́k, Eds., vol. 15. JMLR.org,
2011, pp. 215–223.

[6] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: extending
MNIST to handwritten letters,” in 2017 International Joint Conference
on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19,
2017. IEEE, 2017, pp. 2921–2926.

[7] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in Cognitive Sciences, vol. 3, no. 4, pp. 128 – 135, 1999.

[8] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation
learning by predicting image rotations,” in 6th International Conference
on Learning Representations, ICLR, 2018.

[9] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
Empirical Investigation of Catastrophic Forgetting in Gradient-Based
Neural Networks,” arXiv:1312.6211 [cs, stat], Dec. 2013.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 770–778.

[11] Y.-C. Hsu, Y.-C. Liu, and Z. Kira, “Re-evaluating Continual Learn-
ing Scenarios: A Categorization and Case for Strong Baselines,”
arXiv:1810.12488 [cs], Oct. 2018.

[12] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp.
3521–3526, 2017.

[13] A. Kolesnikov, X. Zhai, and L. Beyer, “Revisiting self-supervised visual
representation learning,” in IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pp. 1920–1929.

[14] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[15] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic
forgetting with unlabeled data in the wild,” in 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019. IEEE, 2019, pp. 312–321.
[Online]. Available: https://doi.org/10.1109/ICCV.2019.00040

[16] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[17] A. Makhzani, J. Shlens, N. Jaitly, and I. J. Goodfellow, “Adversarial
autoencoders,” CoRR, vol. abs/1511.05644, 2015.

[18] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks, vol.
113, pp. 54–71, 2019.

[19] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[20] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” in Advances in Neural Information Processing Sys-
tems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, Eds., 2017, pp. 2990–2999.

[21] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual
learning,” arXiv:1904.07734 [cs, stat], Apr. 2019.

[22] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large
scale incremental learning,” in IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019. Computer Vision Foundation / IEEE, 2019, pp. 374–382.

[23] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, and Y. Fu,
“Incremental classifier learning with generative adversarial networks,”
CoRR, vol. abs/1802.00853, 2018.

[24] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, ser. Proceedings of Machine Learning Research, D. Precup and
Y. W. Teh, Eds., vol. 70. PMLR, 2017, pp. 3987–3995.

[25] J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. P. Heck, H. Zhang, and
C. J. Kuo, “Class-incremental learning via deep model consolidation,”
in IEEE Winter Conference on Applications of Computer Vision, WACV
2020, Snowmass Village, CO, USA, March 1-5, 2020. IEEE, 2020, pp.
1120–1129.

[26] B. Zhao, X. Xiao, G. Gan, B. Zhang, and S.-T. Xia, “Maintaining dis-
crimination and fairness in class incremental learning,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 208–13 217.


