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Effects of slippage on the dewetting of a droplet

We investigate the dewetting of a droplet on a smooth horizontal solid surface using the boundary element method. Specifically, we solve for the axisymmetric Stokes flow with i) the Navier-slip boundary condition at the solid/liquid boundary, and ii) a timeindependent microscopic contact angle at the contact line. The profile evolution is computed for different slip lengths and equilibrium contact angles. When decreasing the slip length, the typical non-sphericity first increases, reaches a maximum at a characteristic slip length bm , and then decreases. Regarding different equilibrium contact angles, two universal rescalings are proposed to describe the behavior for slip lengths larger or smaller than bm . Around bm , the early time evolution of the profiles at the rim can be described by similarity solutions. The results are explained in terms of the structure of the flow field governed by different dissipation channels: viscous elongational flows for large slip lengths, friction at the substrate for intermediate slip lengths, and viscous shear flows for small slip lengths. Following the changes between these dominant dissipation mechanisms, our study indicates a crossover to the quasistatic regime when the slip length is small compared to the droplet size. We also provide a phase diagram of the rescaled slip length and the equilibrium angle to demonstrate the appearance, or not, of a global transient bump.

Introduction

A classical problem of dynamic wetting is the spreading of a droplet when it is placed in contact with a smooth and chemically homogeneous substrate [START_REF] Chen | Experiments on a spreading drop and its contact angle on a solid[END_REF][START_REF] Bonn | Wetting and spreading[END_REF]). For complete wetting, with a vanishing equilibrium contact angle, the spreading process follows the well-known Tanner's law [START_REF] Voinov | Hydrodynamics of wetting [english translation[END_REF][START_REF] Tanner | The spreading of silicone oil drops on horizontal surfaces[END_REF]) stating that the contact line radius R grows in time t as a power law R ∼ t 1/10 . This asymptotically valid relation is derived with the assumption that the droplet maintains a spherical-cap shaped profile during spreading, except in the vicinity of the moving contact line, where the interface is deformed strongly due to viscous effects. The general assumptions of a quasistatic macroscopic interface profile and a quasi-steady viscous flow in the region close to the contact line have been central guidelines in studies of dynamic wetting problems [START_REF] Bonn | Wetting and spreading[END_REF][START_REF] Snoeijer | Moving contact lines: Scales, regimes, and dynamical transitions[END_REF][START_REF] Sui | Numerical Simulations of Flows with Moving Contact Lines[END_REF]. Examples include industrial applications such as oil recovery [START_REF] Sahimi | Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing[END_REF], immersion lithography [START_REF] Winkels | Receding contact lines: From sliding drops to immersion lithography[END_REF]) and coating [START_REF] Weinstein | Coating flows[END_REF], as well as natural phenomena [START_REF] Bonn | Wetting and spreading[END_REF]) such as liquid droplets sliding on the surface of a leaf. The basis of these assumptions lies in the wide separation of length scales between the extension of the interface and a microscopic length. As specifically discussed here, this microscopic length scale may be the slip length. In the cases where a no-slip condition is assumed for the solid/liquid boundary, other microscopic length scales in specific models have been proposed to relax the singularity of infinite viscous dissipation [START_REF] Huh | Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[END_REF]) at the contact line as reviewed in [START_REF] Bonn | Wetting and spreading[END_REF]; [START_REF] Snoeijer | Moving contact lines: Scales, regimes, and dynamical transitions[END_REF]; [START_REF] Sui | Numerical Simulations of Flows with Moving Contact Lines[END_REF].

In the context of hydrodynamics, slippage of fluid along the solid surface is considered as a boundary condition at the solid/fluid interface. A characteristic length scale named slip length is defined as the ratio between the relative velocity and the shear rate at the boundary. Although the microscopic origin of slippage varies from situations [START_REF] Lauga | Microfluidics: the no-slip boundary condition[END_REF], there have been extensive studies on the measurement of the slip length due to the development of new experimental techniques [START_REF] Neto | Boundary slip in newtonian liquids: a review of experimental studies[END_REF][START_REF] Bocquet | Nanofluidics, from bulk to interfaces[END_REF][START_REF] Guo | Direct measurement of friction of a fluctuating contact line[END_REF]). Interestingly, in some studies using polymer melts as working fluids, slip lengths as large as a few micrometers have been reported [START_REF] Reiter | Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films[END_REF][START_REF] Leger | Friction mechanisms and interfacial slip at fluid -solid interfaces[END_REF][START_REF] Fetzer | New slip regimes and the shape of dewtting thin liquid films[END_REF][START_REF] Fetzer | Quantifying hydrodynamic slip: A comprehensive analysis of dewetting profiles[END_REF][START_REF] Bäumchen | Reduced interfacial entanglement density affects the boundary conditions of polymer flow[END_REF][START_REF] Haefner | Influence of slip on the Plateau-Rayleigh instability on a fibre[END_REF]. These findings raise fundamental questions on the description of the contact line motion and the evolution of the interface profile, particularly in micrometric [START_REF] Cuenca | Submicron flow of polymer solutions: Slippage reduction due to confinement[END_REF][START_REF] Setu | Superconfinement tailors fluid flow at microscales[END_REF] or nanometric [START_REF] Falk | Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction[END_REF] systems, for which the separation of length scales may not be fulfilled.

An opposite process of spreading (wetting), named dewetting, occurs when the driving forces tend to decrease the contact area between the liquid and the solid. Dewetting has been commonly studied in the geometry of liquid films [START_REF] Redon | Dynamics of dewetting[END_REF][START_REF] Snoeijer | Asymptotics of the dewetting rim[END_REF][START_REF] Rivetti | Universal contact-line dynamics at the nanoscale[END_REF]. In these situations, due to accumulation of mass at the contact line region, a bump of liquid is naturally formed at the rim. In the case of noslip/ weak slip, the bump maintains a static shape with a growing size (i.e. quasistatic), and the contact line moves at a constant speed [START_REF] Redon | Dynamics of dewetting[END_REF][START_REF] Snoeijer | Asymptotics of the dewetting rim[END_REF]. Recently, the dewetting of flat droplets on a solid surface has been studied in detail [START_REF] Edwards | Not spreading in reverse: The dewetting of a liquid film into a single drop[END_REF]. The dewetting process has been found to be similar to that of liquid films [START_REF] Redon | Dynamics of dewetting[END_REF][START_REF] Snoeijer | Asymptotics of the dewetting rim[END_REF], except the final state is a single droplet. Another recent study on dewetting polymer microdroplets [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF] showed that the transient droplet shape evolution, in the regime where the slip length is comparable to or larger than the typical droplet size, is much richer than one expects under the assumptions of quasistatic profiles and dissipation localized near the contact line. The transient droplet profiles are indeed found to be non-spherical (i.e. non-quasistatic), and highly dependent on the precise value of the slip length. One characteristic feature of the dewetting process is the development of a transient ridge for relatively small slip lengths, which are nevertheless comparable to the droplet size. The ridge was found to be more pronounced when the slip length is smaller and avoided for larger slip lengths due to elongational flow inside the droplet. On the other hand, as discussed above, when the slip length is many orders of magnitude smaller than the droplet size, one expects to recover the typical quasistatic sequence of spherical cap shaped profiles [START_REF] Bonn | Wetting and spreading[END_REF].

In this article, by extending the theoretical work of [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF], we elucidate the transition between the quasistatic and non-quasistatic evolutions of a dewetting droplet. We study the dewetting of a viscous droplet for a wide range of slip lengths and various equilibrium contact angles using the boundary element method. The non-sphericity of the droplet increases when the slip length is first decreased from the full slip limit. Further decreasing the slip length, we observe a new feature with respect to previous works [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]: the non-sphericity reaches a maximum and then starts to decrease. This behavior is demonstrated for different equilibrium contact angles. We give explanations for these results in terms of flow structures and the spreading of a localized ridge.

Formulation

As an initial condition, we consider a spherical-cap shaped droplet sitting on a plane and smooth substrate with a contact angle θ i , which is smaller than the equilibrium contact angle θ e . In order to minimize the surface energy, the droplet starts to retract and approaches a spherical cap with the equilibrium contact angle. Because of the homogeneous and planar substrate, the shape of the droplet remains axisymmetric during its evolution. The droplet profile is described by the height, h(r, t), of the liquid with respect to the substrate as a function of the radial distance from the central axis r and time t. We further assume the liquid inside the droplet to be a highly viscous and incompressible Newtonian liquid so that the flow obeys the Stokes equation, for which viscous effects dominate over inertial effects. The Stokes equation is given as

η∇ 2 u -∇p = 0 , (2.1) 
and the continuity equation reads

∇ • u = 0 , (2.2) 
where u and p are the velocity field and the pressure field in the liquid respectively, and η is the dynamic viscosity of the liquid.

To solve for the flow fields and the evolution of the interface profile, one needs to specify appropriate boundary conditions. First, the stress tensor σ in Cartesian coordinates is given as

σ ij = -pδ ij + η ∂u i ∂x j + ∂u j ∂x i , (2.3) 
and the stress f at the boundary reads

f = σ • n . (2.4)
Here n is the unit vector normal to the boundary of the droplet pointing into the enclosed fluid.

Assuming the surrounding air flow is negligible, the tangential stress vanishes at the liquid/air boundary. The normal stress f free n ≡ f free • n at the free surface is balanced by the surface tension, leading to the Young-Laplace law:

f free n = γκ , (2.5)
where γ denotes the interfacial tension and κ the curvature of the free surface, which is defined as

κ = ∂ 2 h ∂r 2
(1 + ( ∂h ∂r )

2 ) 3/2 + ∂h ∂r r(1 + ( ∂h ∂r )

2 ) 1/2 .

(2.6)

Note that disjoining pressures are not considered in this model. The evolution of the interface profile is given by the kinematic condition along the free interface, that is

∂h ∂t = u z - ∂h ∂r u r .
(2.7)

At the solid/liquid boundary, the velocity normal to the wall vanishes as no penetration of fluid through the solid is allowed. Regarding the velocity component parallel to the wall u wall t r, we impose a Navier-slip condition which reads

u wall t = b η f wall t , (2.8)
where r is the unit vector in the radial direction, f wall t ≡ f wall • r is the shear stress at the wall and the slip length, b, is assumed to be a constant. To complete the hydrodynamic problem, we impose the condition that the free surface touches the wall with a finite contact angle. This angle is assumed to be the same as the equilibrium contact angle θ e , independent of the contact line velocity. Moreover, since the substrate surface is smooth and chemically homogeneous, θ e is also independent of the contact line position.

Boundary element method

The governing equations (2.1) and (2.2) can be formulated in the form of the boundary integral equations; a method which has been used extensively to study many interfacial flow problems [START_REF] Pozrikidis | Boundary Integral and singularity methods for linearized flow[END_REF]. In this approach the velocity u(s 0 ) at any point s 0 can be written in terms of integrals involving the stress f and the velocity on the boundary. For the axisymmetric Stokes flow problem we study in this article, the boundary integral equations [START_REF] Pozrikidis | Boundary Integral and singularity methods for linearized flow[END_REF] read

u α (s 0 ) = - A 4πη c Ḡαβ (s 0 , s)f β (s)dl(s) + A 4π c Tαβζ (s 0 , s)u β (s)n ζ (s)dl(s), (2.9) 
where the subscripts α, β and ζ represent either the radial (r) or the vertical (z) components in cylindrical coordinates, and c is the contour line (boundary) over which the integration takes place. The repeated Greek indices take the summation connection, namely they are summed over the radial and the vertical components. For the expression of the tensor components Ḡαβ and Tαβζ , we refer to the Appendix. The value of A depends on the position s 0 .

A = 1/2 for s 0 inside the system enclosed by the boundary, 1 for s 0 on the closed boundary.

(2.10)

We note that Ḡαβ and Tαβζ are singular at s = s 0 ; the integral over the singular point is thus computed analytically by expanding the tensor components in series about s = s 0 [START_REF] Lee | The motion of a sphere in the presence of a deformable interface. II. A numerical study of the translation of a sphere normal to an interface[END_REF][START_REF] Van Lengerich | Energy dissipation and the contact-line region of a spreading bridge[END_REF].

The main advantage of the boundary element method is that the velocity field is explicitly written in terms of the velocities and the stresses on the boundary. No discretization of elements inside the droplet is required to solve for the flow fields. As given from the boundary conditions, not all the velocities and stresses at the boundary are known. For example, the velocities at the free interface are unknowns. Yet, the unknown quantities can be found by solving (2.9) for s 0 on the boundary. For a numerical treatment of the problem, the contour is discretized into small elements. A system of linear equations is then obtained from (2.9), and the unknown quantities can be computed. Note that the normal stress for the numerical element of the liquid/air interface containing the contact line is computed with the boundary condition of the imposed equilibrium contact angle θ e . Once the velocities at the free surface have been computed, one can determine the profile evolution using the kinematic condition (2.7).

Initially, the droplet has a spherical cap shape with a contact angle θ i . Due to the small molecular relaxation time scale at the contact line, the contact angle quickly reaches the equilibrium contact angle θ e microscopically [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]). To approximate this initial microscopic contact angle in our numerical computations, we assume that at t = 0, there is a kink in the interface profile at the contact line position. The line connecting the first numerical marker point and the contact line makes an angle θ e with the substrate. Due to this kink, the magnitude of the approximated interfacial curvature near the contact line is larger than that on the rest of the interface, thus the Laplace pressure is unbalanced and the pressure gradient initiates a flow. Hence, the contact line starts to move towards the center. This numerical treatment for the initial profile is justified as it has been shown that the initial shape close to the contact line does not have much influence on the profile evolution [START_REF] Edwards | Not spreading in reverse: The dewetting of a liquid film into a single drop[END_REF].

We nondimensionalize the problem as follows: all lengths are rescaled by the initial maximum height of the droplet h 0 , and all the times by the viscous capillary time scale h 0 η/γ. All these dimensionless variables are denoted with a tilde. We are thus left with three independent dimensionless parameters. In the following, we consider the initial contact angle θ i , the equilibrium contact angle θ e and the rescaled slip length b ≡ b/h 0 as the control parameters. For all our numerical computations, 300 marker points are used to describe the interface profile of the droplet. The vertical separation between two marker points is approximately 0.003. For smaller separations, the profile evolution becomes unstable. We then set the smallest rescaled slip length to b = 0.023, which is about ten times the marker separation. Hence for all our computations, the rescaled slip length is varied in a range b > 0.023.

Results and discussion

In this Section, we present the results of our numerical computations. In section 3.1, we revisit the interfacial profile evolution as studied by [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]. We characterize and quantify the deviation of the transient droplet profiles from a spherical cap. Then we investigate the temporal evolution of the non-sphericity and how the non-sphericity depends on the slip length and the equilibrium contact angle. The early time dynamics of the transient ridge is studied in section 3.2. In section 3.3, we give explanations for the behavior of the non-sphericity, in terms of the flow structure and the spreading of the ridge. The transient profiles of the droplets shown in figure 1 deviate significantly from the shape of a spherical cap. To quantify the non-sphericity of the droplet, we determine the spherical cap of profile z = S(r, t; ρ, S0 ) that best fits the profile of the droplet; S is given implicitly by ρ2 = r2 + ( S -S0 ) 2 , where S0 is the vertical shift of the sphere center while ρ is its radius of curvature. More precisely, for each time t we introduce the observable ∆V , defined as the total volume of the non-overlapped region between the droplet and the corresponding spherical cap. The spherical cap is selected under the condition that the total non-overlapped volume is minimized. Namely, Note that h(r, t) = 0 for r > R( t) , S(r, t; ρ, S0 ) = 0 for r > Rcap ( t; ρ, S0 ) ,

R(0)-R( t) R(0)-R(∞) ∆V/V
∆V = min
where R( t) and Rcap ( t; ρ, S0 ) are the contact line radius of the droplet and the spherical cap respectively. Clearly ∆V changes throughout the droplet evolution.

In figure 2 (a), ∆V rescaled by the volume of the droplet is plotted as a function of the contact line displacement R(0) -R( t) normalized by the total displacement R(0) -R(∞) for b = 0.023, 0.20 and 23.2. For all three cases, ∆V /V is zero at t = 0 and at equilibrium because of the spherical cap shape of the droplets. During the evolution, the non-sphericity attains a maximum. This maximal non-sphericity, ∆V m /V , occurs at smaller contact line displacements for smaller slip lengths.

A full investigation of ∆V m /V as a function of b is shown in figure 2(b) for various θ e . We observe that this maximal nonsphericity of the droplet evolution is non-monotonic with b for all θ e investigated. We note furthermore the presence of a well defined maximum at a slip length that we denote bm (θ e ). For b > bm , ∆V m /V decreases with b and asymptotically saturates to a finite ∆V m (∞)/V . For b < bm , ∆V m /V decreases with decreasing b. As expected, the non-sphericity becomes smaller as the equilibrium contact angle θ e approaches the initial contact angle θ i .

The similar features of ∆V m /V as a function of b for different equilibrium contact angles θ e suggest possible scaling solutions. First, we shift ∆V m /V such that all the curves have the same reference level in the full slip limit. Then we rescale the shifted ∆V m /V by V d ≡ ∆V m ( bm )/V -∆V m (∞)/V . We hence introduce a rescaled quantity V 1 ( b) as the following:

V 1 ( b) ≡ 1 V d ∆V m ( b) -∆V m (∞) V .
(3.4)

The maximum of V 1 is unity for any equilibrium contact angles. When plotting V 1 versus b multiplied by a scaling factor k 1 (θ e ) in figure 3(a), we observe that the curves for different θ e collapse into a single function for b > bm . The dependence of V d and k 1 on θ e is shown in figure 3(b). Note that k 1 is not unique. The effect of k 1 is shifting the curve horizontally. Multiplying k 1 by an arbitrary factor will still collapse all the curves. Here we take k 1 = 1 for θ e = 17 • . For 0.023 < b < bm , a different rescaling is required to reach a collapse of the curves. In figure 3(c), V 2 , defined as ∆V m /V rescaled by ∆V m ( bm )/V , is plotted as a function of ( b/ bm ) k2 ; a single curve is thus obtained for 0.023 < b < bm . This rescaling suggests a relation of the form V 2 /k 2 ∼ log( b/ bm ). Such a logarithmic relation is reminiscent of the weak slip models for nonequilibrium droplets (de Gennes 1985; Cox 1986), in which the contact line dynamics and the interface profile also depend on the slip length logarithmically. The dependence of bm and k 2 on θ e is shown in figure 3(d 

The transient ridge and early time dynamcis

As one can observe from the profile evolution in figure 1(a), the deviation from a spherical cap of the droplet profiles for intermediate and small slip lengths is related to the formation of the transient ridge. It is thus important to examine the growth of the ridge once the contact line has started to move. We first look at the motion of the contact line. To resolve the contact line motion for early times, we investigate the rescaled contact line displacement R( t) ≡ ( R(0) -R( t))/( R(0) -R(∞)). For given θ i = 10 • and θ e = 62 • , R( t) as a function of time is plotted in figure 4 (a) in log-log scale for different b. For large b, the slope of the curves decreases with time. A power law is observed for intermediate slip lengths in the vicinity of the slip length bm corresponding to the maximal non-sphericity, ∆V m . We recall that bm = 0.21 for θ e = 62 • . For example, for b = 0.46 and 0.12 < t < 30, the relation, i.e. R ∼ tβ , describes the data with β = 0.59. The power law relation becomes less pronounced when decreasing b for b < bm . For b = 0.023, the curve is seen to bend upward with time. These behaviors are also observed for other equilibrium contact angles. The exponent β is found to be 0.57 for θ e = 40 • and 0.54 for θ e = 23 • , given that b = 0.46.

Given the power law relation, it is instructive to investigate whether the interface profiles near the contact line can be described by a similarity solution. Assuming a similarity solution of the form h = tα f (( R( t) -r)/ tα ), we found that the best value of α that gives a collapse of the rescaled profiles in the rim region is 0.64 for θ e = 62 • , 0.59 for θ e = 40 3.3. Physical explanation for the behavior of the non-sphericity: flow structures and the spreading of the ridge
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In this section, we provide explanations for the non-monotonic behavior of the nonsphericity, in terms of the flow structure and the spreading of the ridge.

The vanishing of the transient ridge for large slip lengths has already been discussed in [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]. For large b (i.e. b bm ), low friction at the substrate promotes an elongational flow which affects the whole droplet in a very short time. Therefore, the central height of the droplet increases even at early times due to the upward flow in the center. This prevents mass accumulation at the edge of the droplet. When approaching bm from large b, the elongational flow becomes less dominant. Mass is thus accumulated in the rim while the contact line is moving towards the droplet center. As a consequence a pronounced transient ridge is observed, and the non-sphericity ∆V m /V , becomes more strong when decreasing b for b > bm . As shown in section 3.2, the ridge profiles in the early times can be described by similarity solutions for b close to bm . For small equilibrium contact angles, the similarity solutions can be obtained from the intermediate slip lubrication model in which the dissipation by the friction at the substrate becomes dominant [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]. That means for b around bm , the elongational flow and shear flow inside the droplet play relatively minor roles for the dynamics.

When further decreasing b from bm , the non-sphericity becomes less pronounced. For those small b cases, the flow is more confined to the contact line and presents a 

R(0)-R( t) R(0)-R(∞) R(0)-r inf ( t) R(0)-R ( 
( R(0) -rinf ( t))/( R(0) -R(∞)) versus the contact line displacement ( R(0) -R( t))/( R(0) -R(∞)).
vertical parabolic profile associated with strong shear dissipation. In addition, similarity solutions cannot describe the early ridge profiles anymore. Instead, the question of how much mass is accumulated at the ridge depends on the contact line speed and how fast the mass is redistributed to the central part of the droplet by shear flow. This type of mass redistribution can be observed from the spreading of the ridge. One can imagine a situation when a contact line is pinned from a certain moment, the accumulated mass then 

Characteristic of the global bump

In this section we discuss the properties of the global bump, which reflects the global feature of the droplet profile. Understanding of this feature might be useful for droplet When θ e is close to θ i , namely θ e < 32.1 • , no global bump appears for any value of b. In these cases, a ridge is observed at the early stage for small slip lengths. However, a global bump (with a profile maximum not at r = 0) does not form because the initial and the final droplet shapes are too similar. In figure 7(b), one can observe a bifurcation starts from θ e = 32.1 • . Although the second transition is not observed for θ e > 36.2 • due to numerical limitations, we expect the bump to diminish in magnitude also for very small slip lengths in this case; the decrease of h b in figure 6(a) for small b supports this argument. Nevertheless, the slip length below which the global bump disappears is expected to be extremely small if the difference between the initial contact angle and the equilibrium contact angle is large. A recent study has demonstrated that a pronounced global bump exists in the dewetting of very flat droplets (h 0 /R(0) ≈ 0.02) even though the slip length is very small ( b ≈ 10 -5 ) [START_REF] Edwards | Not spreading in reverse: The dewetting of a liquid film into a single drop[END_REF]). In such cases, the transient global bump itself can be treated as quasistatic, as is the case in dewetting rims of thin liquid films [START_REF] Redon | Dynamics of dewetting[END_REF][START_REF] Snoeijer | Asymptotics of the dewetting rim[END_REF][START_REF] Rivetti | Universal contact-line dynamics at the nanoscale[END_REF].

Conclusion

In this article, we study numerically the dewetting of a droplet, with an initial contact angle smaller than the equilibrium contact angle, using the boundary element method for axisymmetric Stokes flow. We impose the Navier-slip boundary condition at the solid/liquid boundary, and a time-independent equilibrium contact angle at the contact line position. The profile evolution is computed for a wide range of slip lengths (2.3 × 10 -2 < b < 10 4 ). For all our computations, the transient droplet profiles are found to deviate significantly from a spherical cap. One the other hand, one might expect the droplet to appear as a spherical cap shape throughout the whole evolution when b is small enough under the assumption of quasistatic approach used in the majority of large scale contact line motion problems. To bridge the gap between our computational results and the expectation from the quasistatic approach in the small slip length limit, we investigate the non-sphericity of the dewetting droplet. We find that when decreasing the slip length, the typical non-sphericity first increases, reaches a maximum at a characteristic slip length bm , and then decreases. This non-monotonic behavior is found for all of the equilibrium contact angles investigated in this study, from 17 • θ e 69 • .

The dependence of the non-sphericity on the slip length for different equilibrium contact angles can be described by two universal relations, one for b > bm and the other one for 0.023 < b < bm . This result indicates the existence of different flow structures depending on the value of b. For b bm , the flow is dominated by the elongational flow [START_REF] Mcgraw | Slip-mediated dewetting of polymer microdroplets[END_REF]. Around bm , the dissipation is dominated by the friction at the substrate as shown by the similarity solutions for the rim profile evolution at early times. When b < bm , shear flow becomes more important. We explain the decrease of the nonsphericity with decreasing b in terms of the spreading of the ridge and the contact line velocity. For smaller slip lengths, the accumulated mass due the movement of the contact line is redistributed to a wider extent, thus the droplet profile is closer to a spherical cap.

Although our numerical computations are limited to the smallest b = 0.023 we can access, the trend of the non-sphericity for b < bm implies that the transient droplet profile will be close to a spherical-cap shape when b is very small, consistent with the expectation from the quasistatic approach. Our study thus brings a first prediction on the connection between the quasistatic and non-quasistatic regimes of droplet dewetting.

Figure 1 .

 1 Figure 1. Evolution of the droplet profiles. The initial shape of the droplet (grey line)is a flat spherical cap with contact angle θi = 10 • . The final equilibrium droplet has contact angle θe = 62 • . Two of the profiles in each figure are plotted in dashed lines for ease of reading. (a) b = 0.46. The time interval δ t between two neighbouring curves is 3.48. (b) b = 23.2 and δ t = 1.28. Insets: The contact line position R( t) as a function of time t.

Figure 2 .

 2 Figure 2. (a) The non-sphericity, ∆V /V , versus the rescaled contact line displacement ( R(0) -R( t))/( R(0) -R(∞)) for θe = 62 • . The maxima are indicated by solid symbols. (b) The maximum of ∆V /V shown in (a), ∆Vm/V , as a function of slip length b for different equilibrim contact angles θe. For both (a) and (b), the intitial contact angle θi = 10 • .

Figure 3 .

 3 Figure 3. After two different rescalings, the data in figure 2(b) collapse into a single function for two different regions, namely b > bm as shown in (a) and 0.023 < b < bm as shown in (c). (a) V1, defined as (∆Vm/V -∆Vm(∞)/V )/V d , versus k1 b. (b) The dependence of V d and k1 on the equilibrium contact angle θe. (c) V2, defined as ∆Vm/V rescaled by the ∆Vm( bm)/V , versus ( b/ bm) k 2 . (d) bm and k2 as a function of θe.

  ). The different rescalings for b < bm and b > bm indicate the existence of different regimes of the droplet retraction dynamics. Namely, the dynamics is governed mainly by shear flow for b < bm and elongational flow for b > bm (McGraw et al. 2016). The details will be discussed in the following sections.

  • and 0.49 for θ e = 23 • . The corresponding rescaled profiles are shown in figure 4 (b), (c) and (d). Note that these exponents are slightly different from the exponent β for the contact line. The exponent 0.49 for the case of θ e = 23 • , in which the interfacial slope is small, is close to the α = 1/2 scaling predicted from the lubrication calculation for intermediate slip, namely when the dissipation is dominated by the friction at the substrate (McGraw et al. (2016)).

Figure 4 .

 4 Figure 4. (a) Rescaled contact line displacement ( R0 -R( t))/( R0 -R∞) as a function of t in log-log scale for different b and fixed θe = 62 • . The early time data for intermediate slip lengths around bm can be described by a power law. A single power law becomes less pronounced for large and small slip lenghts away from bm. (b), (c) and (d): Rescaled profiles for θe = 62 • and 2 < t < 30 in (b), θe = 40 • and 6 < t < 58 in (c) and θe = 23 • and 6 < t < 116 in (d). b = 0.46 in all cases.
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 5 Figure 5. (a) Droplet profiles for b = 0.023 and 0.14. The profiles are compared when they have the same contact line position. (b) The rescaled displacement of the inflection point ( R(0) -rinf ( t))/( R(0) -R(∞)) versus the contact line displacement ( R(0) -R( t))/( R(0) -R(∞)).

  has enough time to redistribute to the central part of the droplet and the development of a pronounced global ridge is avoided. Along this line of reasoning, we can understand the decrease of ∆V m /V with decreasing b. The characteristic speed of the contact line decreases logarithmically with decreasing b for small b (McGraw et al. 2016), which means that the disturbance at the contact line will have more time to spread for smaller b. This result is demonstrated in figures 5(a) and (b) for the case of θ e = 62 • . In figure 5(a), several interface profiles are shown for b =0.023 and 0.14. For both cases, the slip lengths are smaller than bm , so the shear dissipation dominates over the elongational one. The profiles are compared for the same contact line position. One clearly sees that the ridge spreads wider for the smaller slip length, namely b = 0.023.From the profiles of figure5(a), we observe an outermost inflection point where d 2h /dr 2 = 0. The position of the inflection point rinf ( t) is used to characterize the extent of the ridge. The displacement of this inflection point ( R(0) -rinf ( t)) normalized by ( R(0) -R(∞)) is plotted as a function of the rescaled contact line displacement in figure5(b). It is found that first, the inflection point moves faster than the contact line for both cases, and second, for the same contact line position, the inflection point displaces more for b = 0.023 compared to b = 0.14. This result shows again that mass is redistributed over a wider extent for the smaller slip length, b = 0.023. Hence the non-sphericity decreases with decreasing b. Although we are numerically limited to the smallest b = 0.023, from the trends shown in figure2(b), we expect that ∆V m /V diminishes in the limit of vanishing b. Our study thus indicates a crossover from a non-quasistatic regime to a quasistatic regime when b is small.

Figure 6 .Figure 7 .

 67 Figure 6. The global bump height h b versus b for θi = 10 • . The equilibrium contact angle θe = 62 • in (a), θe = 34.5 • or 36.2 • in (b).
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Appendix

Expressions of Ḡαβ and Tαβζ

For the axisymmetric Stokes flow problem we study in this article, the boundary integral equation is quoted in equation (2.9). Here, we provide the standard expressions of the tensors Ḡαβ and Tαβζ . Note that different symbols are used for these tensors in the book of [START_REF] Pozrikidis | Boundary Integral and singularity methods for linearized flow[END_REF]. First, we introduce a function I mn , which is defined as

(5.1) (5.12)

The tensors Ḡαβ and Tαβζ have singular points at s = s 0 and s = 0. Around these points, the boundary integral equation (2.9) is performed analytically by expanding Ḡαβ and Tαβζ in series [START_REF] Van Lengerich | Energy dissipation and the contact-line region of a spreading bridge[END_REF].