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High-Order Finite Volume Method for Gas Dynamics on geometrically HO multielement unstructured grids

A spatially high order Finite Volume scheme is being extended and evaluated for supersonic and transonic flows. The shock capturing method is an extension at high order of the Jameson-Schmidt-Turkel scheme, where the coefficients of 2 nd and 4 th order dissipation and the shock detection criterion are formulated on wider stencils. A novel formulation of the inviscid slip boundary condition enables to reach an increased accuracy in computing the wall pressure. The scheme is also extended with the same count of degrees of freedom (1 per equation and control volume) to curved faces of HO elements, both inside the field and at the boundaries, in a recent CPU-effective formulation. These algorithmic features are evaluated against test cases from the High Order CFD workshop and from the literature. The Kexactness of the WLSQ polynomial reconstruction at different orders is verified together with its grid wave-number resolutions, on simple linear triangular grids as well as geometrically P2 and P3 multi-elements 3D grids of interest for industrial applications. These latter grid systems are the support for RANS discretizations on HO staggered primal and dual grids.

Introduction

I.

table and accurate flux integration methods on unstructured grids are needed for robust CFD solvers of compressible fluid flows. In the context of cell-centered Finite Volume, the polynomial reconstruction of the fields of conserved or primitive variables over a wider source stencil by Least-Squares methods is the basis for a number of developments [START_REF] Le Gouez | High-Order Overset Interpolation via Weighted Least-Square Polynomial Reconstruction for Finite Volume CFD[END_REF] [2] [4] [START_REF] Khohla | Using Fourth order accurate spatial integration on unstructured meshes to reduce LES run times[END_REF] [6] [START_REF] Mccorquodale | An adaptive multiblock high-order finite-volume method for solving the shallow-water equations on the sphere[END_REF] [START_REF] Caraeni | Unstructured-Grid Third-Order Finite Volume Discretization Using a Multistep Quadratic Data-Reconstruction Method[END_REF]. In the projection phase of these numerical techniques, the reconstructed solution valid over the stencil can be evaluated in a number of different ways:

• at nodal flux integration points on the interfaces, where eventually dual-valued conservative variables from left and right-biased stencils serve as an input for an approximate Riemann solver formulated at each integration point, • as a surface integral on these interfaces, for example to compute a single value of the flux from interface-averaged conservative variables, • as a volume average of the field on some target cell in an overset grid problem. The NXO cell-centered Finite Volume method presented here also makes use of an optional formulation where the reconstructed fields are not the conservative variables, but the components of the flux density tensor of each conservation equation. The flux tensor has a non-linear expression as function of the conservative variables in all equations, except for the mass conservation. Its spatial reconstruction limits the overall asymptotic order of the scheme to 3, but it was shown in [START_REF] Le Gouez | High-Order Overset Interpolation via Weighted Least-Square Polynomial Reconstruction for Finite Volume CFD[END_REF] that much higher grid convergence indices can be obtained with this scheme on grids of moderate refinement, and the entrance of the scheme into the asymptotic regime is obtained with a coefficient of the leading error term that is reduced by several orders of magnitude when compared to standard FV or FD methods.

The computations presented here use the flux density tensor reconstruction algorithm up to the fifth order, associated to a face-centered stencil and stabilized by first-order and eventually a blend of 1 st -and 3 rd -order grid difference operators across the interface, as in the JST scheme [START_REF] Jameson | Origins and Further Development of the Jameson-Schmidt-Turkel Scheme[END_REF]. Also of recent interest for FV methods is the capacity of dealing with HO grids [START_REF] Wang | High-Order CFD Methods: Current Status and Perspective[END_REF]. We present recent extensions of the NXO scheme on geometrically high order grids with the same count of 1 dof per cell and equation, where the cells are bounded by a discrete set of curvilinear surfaces expressed as polynomials of 2 nd to 4th degree in the space coordinates (HO NGON). The characteristic feature of the scheme in terms of computational efficiency is the fact that also in this case, the curvilinear flux integral of each equation is a linear combination of the discrete values of the flux tensor components over the cells in the stencil.

All coefficients of these linear combinations are computed in the geometric preprocessor, they include an a priori stabilization feature that enhances the diagonal dominance of the overall scheme, by using fast decaying weights towards the periphery of the stencil, in the Weighted Least Square reconstruction.

The application of this scheme on high order grids which were made available at the 3 rd and 4 th HO CFD workshops is illustrated on the shock-free cases of the Ringleb flow and a subsonic bump [START_REF] Le Gouez | Researchgate project[END_REF].

The expression of the first and third order normal grid differences and the discontinuity detector used to stabilize the flux centered reconstruction in presence of shocks is detailed.

Application examples dealing with supersonic and transonic flows around aerodynamic profiles meshed by structured quadrangles or unstructured triangles are presented. They concern a Bow shock from a flow at Mach 4 encountering a flat plate with rounded edges, which is also a test case from the HO workshop, and Mach 0.8 and 0.95 flows around a NACA0012 profile. For this latter case the expression of the wall boundary condition was improved to interpolate within the wall stencils only over quantities that are more continuous across shocks. This enabled significant gains in accuracy in the wave drag exceeding one order of magnitude on the reference grids that were formerly used for studies with 2nd order FV solvers.

The k-exactness of the scheme obtained with the WLSQ procedure is verified, together with the resolution in terms of grid wave numbers on arbitrary triangular grids,

The same verification is done in 3D on complex, multi-element grids of geometrical high order (P2, P3), both on the primal and on the derived HO node-, edge-and face-dual grid systems. Finally, a procedure for mixing the control volumes in the various stencils of these staggered grids is analyzed, together with a simultaneous resolution of the governing equations on all primal and dual grids.

Main features of the scheme II.

A. Polynomial reconstruction by WLSQ Sketch 1: Cell stencils (red, green), centered on cells on either side of the common interface and their face centered union

We consider an arbitrary field known only from its volume averages over a number of neighboring cells defining a "stencil". The exact value of the field at any point of space is unknown, and especially since we consider high order variations of the field with the space coordinates, the value at the center of the cell is not mistaken with the cell average. In the following, we represent a volume average of a fieldφ by φ , a surface average by φ ) . We introduce a polynomial function of arbitrary degree valid over a stencil, expressed in the local reference frame (X,Y,Z) centered on the interface between the cells L and R: 
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where { } ijk is a unique index from a convention to number the monomials, combining i,j,k, and varying from 1 to mo n , the size of the reconstruction basis. This polynomial is not strictly conserving any cell means in the stencil, but it does it in the weighted least square sense over all cells of the stencil. We want to find the coefficients of the polynomial that minimizes the square of the distance between the volume averages of this "reconstruction" polynomial and the mean values in the cells, each of volume
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φ is an arbitrary distribution of cell-averaged discrete values for the field φ , with s the local numbering of the cells in the stencil, c(s) the global cell number.

This distance is represented by the error functional:
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A number of free parameters are represented by coefficients (weights between 0 and 1): 
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the volume moment of order {ijk} of each cell. This provides a linear system that links the vector of polynomial coefficients
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Ρ is a symmetric square matrix of order mo n and Μ a rectangular array mo s n n * . This represents the reconstruction phase, where the array κ is computed that expresses that the coefficients of the polynomial that minimizes the overall reconstruction error are each a linear combination of the discrete values of the field.

If the subsequent projection is to be expressed on a fixed geometrical support (target) with respect to the reference frame where the reconstruction was formulated (where the target is a cell interface, gauss points, nodes, a target cell of a fixed overset grid,…), the pre-processor phase can be further extended in the following way, for example for an evaluation of an average of the polynomial on the surface lr common to cell l and r :
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The average components of the gradient on the interface can be expressed in the same way:
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, we obtain the compact representation of the linear combination coefficients :
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The linear interpolation coefficients λ and µ r are functions of the volume and surface moments of the cells and the interface coordinates, the distribution of weights and the choice of the polynomial basis. They need a lower storage space per cell interface than the κ array.

For the array Ρ to be inverted, the stencil needs to be balanced according to the set of monomials. The condition number of the array Ρ measures the ability to represent a given order polynomial base over the retained stencil.

B. Related FV scheme for the Euler and Navier-Stokes equations on a linear grid

The linear combination method relates cell averages to cell-interface averages. This high order interpolation process is then used for a number of options in the evaluation of the normal inviscid and viscous flux integrals by upwind or centered schemes.

For the compressible Navier-Stokes equations, the conservative formulation integrated in space is written : )
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for a characteristic upwind scheme, with a unique flux evaluation from the dual-sided face-averaged evaluation that stems from the interpolations to the face n on the left and right stencils of the conservative fields

c l l n l W W , , λ = ) and c r r n r W W , , λ = )
. These left and right stencils are cell-centered, they are built starting from the cells L and R to a certain number of successive face neighbors, and strongly overlap each other.

The inviscid numerical flux is defined as the natural flux computed at some "upwinded state" lr W ) 
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, the natural inviscid normal flux is evaluated at the "characteristic upwinded" state.
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) ) [START_REF] Vassberg | In poursuit of grid convergence, Part I: Two-dimensional Euler solutions[END_REF] for a centered scheme stabilized by an artificial dissipation operator.

Two alternatives are retained for the artificial dissipation term of eqn. i :
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where the 1 st and 3 rd face normal grid differences The cell-to interface-average interpolation of a function known from its volume average, denoted φ ) for the function φ is done both on the flux densities normal to the interface and on the cell conservative variables, using the same interpolation coefficients. The normal flux densities reconstruction is done twice, on the 2 sided stencils centered on the left end right cells, rather than once on the face-centered union of these two stencils, with fastdecaying Gaussians functions for the weights distributions that ensure diagonal dominance in each of the left and right linear combinations and stability.

Both schemes hold accuracy errors due to the non-linear nature of the normal fluxes with respect to the conservative variables (but for the mass fluxes), and are not expected to reach the optimal asymptotic order of accuracy from the degree of the polynomial reconstruction.

In particular:

-for scheme a we take This process of evaluating a single normal flux for each equation rather than performing a high order numerical integration on the interface is asymptotically bounded to second order of spatial accuracy, but very CPU efficient.

The asymptotic order of the resulting scheme after the flux balance could reach 3. As it was discussed in reference [START_REF] Le Gouez | High-Order Overset Interpolation via Weighted Least-Square Polynomial Reconstruction for Finite Volume CFD[END_REF], the value of the coefficient of the leading error term in the fluxes spatial integration, related to the accuracy of the reconstruction method, can be lowered by several orders of magnitude when compared to standard FV or FD schemes on mid-size grids, before entering the asymptotic regime. This feature can be maintained on geometrically high order grids.

C. High-order spatial integration of the fluxes over a curvilinear interface

Achieving a high space order in the Navier-Stokes schemes should permit to reduce drastically the number of cells in a grid to reach a target accuracy. Reconstruction of degree 3 of conservative variables and their gradients, associated to HO integration could lead to 4 th order space schemes, and are also investigated in the framework of reconstructed DG methods [START_REF] Li | High-Order Hyperbolic Navier-Stokes Reconstructed Discontinuous Galerkin Method[END_REF] and the ADER scheme [START_REF] Dumbser | A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes[END_REF] that bridges FV and DG methods.

At this stage, using HO grids becomes necessary, and at the vicinity of walls in particular, it implies that cells with curved boundaries must be used to represent properly the wall geometry [START_REF] Menasria | Improving the treatment of near-wall regions for multiple-correction kexact schemes[END_REF].

With these grids that are still more refined in the wall normal direction in order to properly resolve the boundary layers, the curvature of the cell faces at the wall needs to be propagated inside the grid. A full formulation of the FV scheme on HO grids is found necessary, besides curved wall HO boundary conditions. In a first step, for the reconstruction itself, the control volume faces being represented by HO polynomials, equation ( 2) uses curvilinear integration for the volume integrals of the monomials.

The HO fluxes integration is then expressed in the following way, by introducing the components h g f , ,

of the inviscid and diffusive flux density tensors and the unit normal vector ( )
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After integration on a cell of volume Ω enclosed in a discrete set of curved boundaries n Ω ∂ , with the volume average of a field represented by an overbar (eqn. 13) and the surface average represented by an overhat (eqn. 15), ( ) ( )
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the natural inviscid and diffusive fluxes, diss i F , r the added artificial dissipation, computed from the first and/or third order grid difference and discussed in the next section. The HO curvilinear integration is presented in this section for the natural fluxes; it was also extended to the artificial dissipation. We compute in the preprocessor, component-wise and with the desired numerical accuracy, the face integral of the unit normal vector multiplied by the monomials of the base as [START_REF] Todarello | Finitevolume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates[END_REF]. For the monomial 1 (i=j=k=0), this vector is the surface vector. Then, by using the equation ( 3), the curvilinear flux integral is expressed as a linear combination over the stencil of the discrete components of the flux density tensor:
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We need to store in the preprocessor, on each interface, the coefficients of the linear combinations γ β α , , , computed from the product of κ and π r , to obtain afterwards at a low CPU cost (but with a higher memory stress) the flux curvilinear integrals for each equation of the NS system at each iteration of the solver.

D. Extension of the JST scheme at High Order on HO grids

We concentrate here on the inviscid fluxes of the governing equations. The scheme used is a centered scheme close to the JST scheme [START_REF] Jameson | Origins and Further Development of the Jameson-Schmidt-Turkel Scheme[END_REF], with natural inviscid fluxes and an artificial dissipation with a shock detector. The 5 conservation equations in 3D are written:
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is the mean of the reconstructed and face projected normal fluxes in the cells of the left and right stencil (see eqn. 11), is the highest module of the eigenvalues of the flux Jacobian at the interface, computed from the centered stencil average of conservative variables ( )
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The grid differences in the JST scheme are evaluated commonly by a 2 point formula for the first difference and a 4 point formula for the third grid difference. The high order evaluations of the grid differences chosen here use the first and third normal derivatives of the reconstructed polynomials, which are polynomials in the coordinate normal to the interface, and of degrees k-1 and k-3.

The coefficients of these polynomials are multiples of those of the direct reconstruction ones { } ( )
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, combined with the components of the unit normal vector If h is the grid size normal to the interface:
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Consistently with the Jameson scheme, the 2 ε coefficient of eqn. 18 contains a discontinuity detection formula and 4

ε is constant away from the discontinuity and related to 2 ε so that it vanishes near the discontinuity.

The discontinuity detector is based on an estimate of the total variation of pressure over the s n cells of the stencil, scaled by the minimal value of the pressure in the left and right cells adjacent to the interface: χ is found to vary in the range 10 -3 to a few units in the stencils containing the shock.
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The spatial variation of this discontinuity detector is too sharp, so it is smoothed by using the log function; we 

E. Improved wall boundary condition for transonic applications

A special processing is introduced in the stencils adjacent to the walls for transonic cases, in order to improve the quality of the reconstruction over the wall stencils containing the shock. In all wall stencils, we choose to reconstruct the spatial variation of the « lagrangian » fluxes, i.e. the projection of the flux density tensor components of each equation k on the unit vector in the direction of the velocity
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refer to eqn. [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -With applications to Euler flows[END_REF]. These fields, computed in all the cells of the wall stencils as shown on figure 1, hold a higher continuity over the shocks than the conservative variables or the face-normal fluxes (wall-normal here) used for the standard reconstructions presented before.

After computing through the "NXO extrapolation" the wall face average of the fields k ϕ (the reconstruction and projection in the dissymmetrical wall stencil represent a high order extrapolation to the wall), there remains, in order to apply the wall b.c., to extract the pressure from these quantities.

art c

The values k ϕ are interpreted as the fluxes in the direction of the unit velocity vector at the wall

( ) t z y x τ τ τ τ , , = r .
This vector is evaluated independently from the "NXO extrapolation" of the unit velocity vectors in the stencil, it is not imposed to be tangent to the wall. The quantities k ϕ are related to the primitive variables by the following equations, with γ the ratio of specific heats:
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ρ from these 6 equations, we obtain an equation of second degree for the pressure:
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This equation provides 2 roots that correspond respectively to a subsonic and a supersonic state. The selection between these is done, and the compatibility relationship is completed from the direct extrapolation of the conservative variables to the wall. They provide a normal momentum, a sound velocity, and a Mach number. Then the wall pressure is expressed as 

A. Smooth inviscid bump (5 th HO CFD Workshop [7])

This 2D test case of a subsonic flow about a Gaussian shaped bump is provided by the 5 th HO CFD workshop organizers with a series of 5 imposed quartic grids.

It was computed with the curvilinear reconstruction and integration scheme of section II.C. Three different degrees for the (K-exact) polynomial representation of the flux density tensor were used, where K is the maximum degree of the monomial basis: K=max(i+j+k). The degree of reconstruction reduces in the stencils close to the boundaries from the one imposed in the center of the domain.

These levels of accuracy were: K=1, which is close to an unlimited and really 2D MUSCL-type interpolation, K=2.25 (K=2 for 80% of the stencils and K=3 for 20% of them), K=3.15 (3 for 90% of the stencils and 4 for 10%).

The notion of "really 2D" refers to the fact that the reconstruction at any degree K is a unique polynomial in all space coordinates over a cell-centered stencil, and the evaluation of this same polynomial is done at all the interfaces of the cell for both characteristic-upwind or centered schemes. The density field computed on grid 4 is shown on figure 2. Figure 3 presents the L2 norm of the entropy error over the grids, as a function of an average cell size. The grid convergence index reaches 4.1 for the K=3+ scheme, which is at par with the majority of the element-based solvers which contributed to this test case. Also the error levels are close to those obtained with element-based schemes. This 2D test case of a shock-less isentropic flow in a curved channel is provided by the workshop organizers with a series of imposed quartic grids [START_REF] Le Gouez | Researchgate project[END_REF]. Only very coarse grids were provided, since they were computed essentially by element-based solvers with a high number of dof per element. The NXO scheme with one dof/element/eqn achieved good performances.

The test case was computed at k=4 with the curvilinear reconstruction scheme of section II.C, and a curvilinear numerical integration of the fluxes at high order. The projection of the reconstructed polynomial is not done as a surface integral, but evaluated at multiple face integration points for the approximate Riemann solver. This requires to store multiple linear interpolation coefficients on each face and can only be used for simpler verification cases). Since the analytical solution is available at each point, the L2 error for each field over all degrees of freedom (cell averages of conservative variables) can be computed, together with the entropy deviation from its constant reference, and grid convergence indices evaluated for each field. These results for 3 different grid sizes are presented in table 1. The grid convergence index varies between -3 and -4, and is somewhat better for mass, energy and entropy than momentum.

Table 1: Error levels for the Ringleb flow computations

The HO graphical post processing can evaluate each monomial within the cell and its coefficient is obtained from the cell averages in the stencil, so a spectral representation can be done by summing at each point the contribution of all monomials of the same degree. Figure 5 represents the spectral content of the y-momentum field on grid 2 (32*96). The mode 0 at the left of the figure is a standard representation of a FV low-order solution.

Figure 6 represents the reconstructed field of entropy error on the medium grid, concentrated at the points of higher wall curvature. This test case was to be computed on the 5 provided structured grids [START_REF]5th International Workshop in High-Order CFD Methods[END_REF], adapted to the bow shock position for a reference 2 nd order FV solver. In order to calibrate the amount of artificial dissipation and to compare it with the JST scheme [START_REF] Jameson | Origins and Further Development of the Jameson-Schmidt-Turkel Scheme[END_REF], the scheme of section II.D was used on 1D stencils extending along the grid line normal to the interface. The only monomials of the base are powers of the normal coordinate. (see Fig. 8 for a plot of some stencils).

The preprocessing is done successively with cell stencils of 5, 7 and 9 stencils enabling K-exact reconstructions from K2 to K5, since from our experience the WLSQ requests a ratio between the number of cells and the number of monomials higher than or equal to 1.5. The exact cell node coordinates are used, so varying size of the cells in the stencil is accounted for.

The corresponding face stencils used for the artificial dissipation comprise 6, 8 or 10 cells, and enable to reconstruct K3 to K5 polynomials. The 6-cell face stencil is the smallest one that permits a K3 reconstruction and a high order expression of the third differences.

A typical set of coefficients associated to an interface is shown in table 2. The first two cells are the left and right ones, then they are at increasing distances from the interface. The diagonal dominance is ensured by the high coefficient of the "upside" cell in the first two rows. The first and third difference coefficients are of the same order of magnitude and with correct signs.

Table 2: Scheme coefficients for an interface in the region of grid refinement at the normal shock, see fig. 8 The results of the runs are reported in Table 3. The coefficient art c of eqn. ( 22) takes the values 1/16 for coarse grids to 1/10 for the finer ones. The exact value of pressure at the stagnation point is known, it serves as an error indicator, together with the field deviation from the reference total enthalpy. The scheme is found more accurate on 8-cell stencils. In Table 3 we record the pressure at the stagnation point and its error, together with the rms error on total enthalpy, respectively on all grid cells and wall faces. The convergence of the integral of the pressure force on the wall is also presented. The rate of spatial convergence of the rms error on total enthalpy per unit mass, over the whole grid, is of the order of 1, its value is on average 12 times lower than the error of the reference 2 nd order FV solver with a centered scheme and 120 lower than the HLLE results of this solver, for all grids. The main point that allows a higher accuracy is the stencil-reconstruction of face normal fluxes rather than conservative variables. These fluxes are continuous over the stencil across normal shocks when the grid is fitted to them (see figure 11), although their space derivatives in the flow direction are not (the longitudinal fluxes along x start to decrease linearly towards the wall after the shock).

Cell

The stencil HO reconstruction of the fluxes rather than conservative variables transfers the error in the regions where the shock is not normal and less intense. The error trace in total enthalpy over the shock is plotted on figure 14, its amplitude if of the order of 1% to 2% of the absolute level and decreases on the finest grids. The error is located in only 2 cells across the shock.

Error on pressure at the stagnation point The space convergence is plotted on figure 13. The rate of spatial convergence of this local error is of the order of 1.5, and its magnitude is about 10 times lower than the 2 nd order FV solution on each grid. Error on total enthalpy over the wall

The rate of spatial convergence of this rms error is about 3.26 and rather uniform from grid0 to grid4 (Fig. 13).

Rate of convergence of the control volume residuals

The solution is evolved to steady-state with the 3-stage RK iteration scheme proposed by Shu and Osher [START_REF] Shu | Efficient implementation of essentially non-oscillatory shock-capturing schemes[END_REF], using a local pseudo-time, computed for a cfl of 0.75. The convergence of the residuals of all equations is uniform to machine accuracy. This is presented on Fig. 10.

Figure 10: Convergence of the rms residuals of the 4 conservation equations for the 5 grids

The quality of the solution, even on the coarser grids, is shown on Fig. 12 where the iso-Mach lines on all 5 grids are superimposed. The shock location and its shape converge fast with the mesh size. 

Flow fields variation along the symmetry axis

On Figs. 14 and 15 are presented the evolution of the solutions along the stagnation line, for the density and the total enthalpy. These illustrate the sharpness of the density jump and the convergence of the solution at the stagnation point. The total enthalpy only departs from its reference value in 2 cells across the shock (Fig. 15). The relative error in total enthalpy at the stagnation point is of the order of 10 -6 on all grids except for the coarsest one. 

A. Drag convergence using quadrilateral structured grids

The flow about a NACA0012 airfoil at Mach 0.8 without incidence is computed on a series of structured O-grids These high quality regular grids that are not refined at the shock have been created by Jameson and Vassberg for their grid convergence projects, in particular [START_REF] Vassberg | In poursuit of grid convergence, Part I: Two-dimensional Euler solutions[END_REF]. They were made available by them to ONERA for the projects of D. Destarac and his co-workers [START_REF] Destarac | Spurious Far-Field-Boundary Induced Drag in Two-Dimensional solutions[END_REF]. We acknowledge here their support and express our thanks.

The NACA0012 profile was extended slightly after x=1 until it closes without modifying its equation. These structured grids are interpreted as unstructured by the solver. Three successive options of the NXO scheme have been used, all with the reconstruction of components of the flux density tensor at all faces but the boundaries: a/ The expression on linear grids, with wall slip boundary conditions processed by the HO extrapolation to the wall, over the wall stencil, of conservative variables (section II. B), b/ The same scheme at inner faces, and a wall boundary condition based on the reconstruction / extrapolation of "lagrangian" fluxes in the wall stencils and resolution of a second degree equation for pressure at the wall (section II.E, eqn. 25) c/ Same as b/, but with also a high order geometric representation of the wall face, as a quartic Lagrange polynomial in space, obtained by adding 3 supplementary definition points for the profile at their exact coordinates within each wall face. All H.O. moments of the spatial coordinates over cells and interfaces are computed with curvilinear integrals: see eqns ( 2), ( 5), ( 14). Runs a/ were done on a series of grids of sizes from 128*128 to 1024*1024, which had previously been computed by a 2 nd order cell-centred FV code at Onera.

The only difference between the grids used by NXO and this other code is the stretching of the cells near the wall. For a given number of cells the NXO solution is optimal with a cell stretching (ratio of about 3.5) such as shown on figures 16 and 17, while the 2 nd order code used 'square' cells near the wall.

The reconstruction K4 on a full 2d base was used in the field stencils, and K3 in the wall ones (comprising 25 cells in the field and 16 at the wall).

The field of absolute error on the total enthalpy field is plotted on figure 16. The reference value for total enthalpy is 2.82. This error is lower in the field than at the wall, where there is an error spot at the shock location.

This error spot is detailed on figure 18, where the total enthalpy along the wall is plotted in function of the wall face number. The error maximum is found independent of the grid refinement, so it contributes to the overall wall error proportional to the tangential cell size. We present on figure 19 the absolute error in drag (the extrapolated value for infinite fine grid from elsA with the JST scheme, Cx = 0.0083409 is used for the red, green and blue curves, and the Nxo value for the black curve) and the relative error in total enthalpy at the wall, i.e. the contour integral along both sides of the profile of The grid convergence index for the drag error is a little better than 3.5, the one for the total enthalpy error is 1.

The wall pressure field computed with the most accurate wall boundary condition c/ is shown on figure 20.

We have plotted here, along both sides of the wall and with the cell index in abscissa, the 2 solutions of the equation of second degree for the wall pressure in green and blue, together with the one that was retained, in red, based on the evaluation of the Mach number.

The wall faces are numbered in clockwise order from the trailing edge. The stagnation point at center (i=128) is in the low subsonic zone, with a corresponding supersonic solution close to 0, then as we move downstream pressure decreases and the flow becomes supersonic.

It is noticeable that the pressure gradient along the wall is continuous where the flow becomes supersonic (i=105 and i=145), although we are changing the choice of the root of the second degree equation, that is we change the formula relating the retained pressure to the coefficients of this equation, which are continuous along the wall.

Then at the shock we switch again roots, without excessive wiggles in its vicinity. The improved solution, in drag and total enthalpy, is plotted on figure 19 as triangles and circles. They plot the same data, with different estimations of the infinite fine grid solution. For the curve with black circles, the drag computed with the model c/ is extrapolated from its own data for an infinite fine grid to Cx*= 0.0083417 rather than the 2 nd order FV value of 0.0083409 used before. The convergence rate for drag is 3.7, while the total enthalpy error stalls.

The total enthalpy field of run c/, shown on figure 21, where there is no need for a stretched grid, shows now a more continuous level of error inside the domain and at the wall. The error levels of b/ and c/ are lower, except in the supersonic zone, between the cell faces 150 and 185, where the error in the initial model a/ drops near 10 -6 . The b/ and c/ models are more accurate across the shock and downstream it. The formulation with higher order geometry representation (blue curves) does not result in an important reduction of the error levels, only in an improved streamwise regularity of the solution.

The curvilinear integral of the relative error on total enthalpy is divided by a factor 3 from model a/ to model c/, 1.1 10 -3 to 3.5 10 -4 . A second series of runs was performed on the same airfoil at Mach 0.95, with fully unstructured grids and stencils made of triangles (Fig. 23). The formulation a/ was used, since the flow is supersonic along the wall, from 6% of chord, and gets subsonic way downwind the trailing edge.

B. Drag convergence using triangular unstructured grids

The meshes used here stem from an ONERA project with the hybrid (structured/ unstructured) version of elsA, where a goal-oriented grid adaptation method using the adjoint of the unstructured solver was developed [START_REF] Peter | Goal oriented mesh adaptation using total derivative of aerodynamic functions with respect to mesh coordinates -With applications to Euler flows[END_REF]- [START_REF] Todarello | Finitevolume goal-oriented mesh adaptation for aerodynamics using functional derivative with respect to nodal coordinates[END_REF]. Although the spatial schemes of elsA and NXO on unstructured grids strongly differ, the grid adaptation algorithm is also driven by the physics of the flow and the error decreases fast on the refined grids. Figure 23 shows the grid refinement zones related to global flow features.

The error field on figure 24 takes low levels along the profile, below 10 -4 . The errors as function of the mesh size are reported in table 4 and plotted on figure 25. A smooth solution is captured even on very coarse grids (Fig. 26).

High grid convergence rates are evidenced on mid-size grids, owing to the grid adaptation algorithm. Errors in the wave drag below 10 -6 are obtained with only 200 2 dof per equation. Representation of some stencils near the airfoil downstream edge The robustness and accuracy of the spatial scheme can be asserted, a full convergence of the residuals to machine accuracy is reached, despite the complex configuration of the 3 rd _neighbour stencils in the refined zones shown on figure 24. Verification of K-exactness and wave-number resolution on unstructured grids III.

Various Finite Volume reconstruction schemes have been proposed, where the stress is put on the "conservation of the mean" in all cells or at least the central cell of the stencil, in the reconstructed fields. The NXO scheme presented here is only driven by this conservation in the least square sense over the whole reconstruction stencil.

The resulting deconvolution step, consisting in the WLSQ resolution of the over-determined system, uses however a larger number of integral objectives (the conserved quantities) than the number of coefficients of the full polynomial base.

It was found worthwhile to verify the quality of the reconstruction (k-exactness) of given polynomial fields in the first step, and of sine waves in a second step to asses also the corresponding resolution of the scheme in terms of grid wave numbers. For this no transport equation is solved, only the quality of the process of interpolation from cell averages to face averages is quantified.

The grid of figure 27 is used for these verification tests. The average mesh size is 1/64. The functions evaluated are all the monomials up to degree 5, and sine functions of the form with n and m integers up to 64. For this purpose, the exact analytical integral of the test function is computed in all cells, and over all interfaces.

The accuracy criterion is the L2 norm of the difference between the analytical integral of the test function over all inner interfaces (inside and over the red contour) on the one side, and the same quantity evaluated from the "NXO" interpolation from the discrete cell integrals in the stencils. The errors in the average components of the gradient of the test function are also evaluated in the same manner. interface: the left and right cell stencils and their union. For the boundary interfaces (drawn in red in figure 27), by convention, the right stencils are surrounding the cell outside the boundary, and their sizes are smaller than the inner ones since a reduced number of layers of halo cells are retained. The results are presented in the table 5. The 5_exactness is verified for all stencils, except for the right stencils of the boundary interfaces where the machine accuracy is not reached for monomials of degree 5, since the basis degree had to be dropped to 4 due to the lower size of the stencil. The fused stencils for the evaluation of the average components of gradients are also sufficient for their 5-exactness over all interfaces.

Table 5: L2 norm of the integral reconstruction / projection of monomials and their gradients up to degree 5 on a triangular grid

On figure 28 is plotted the same L2 error over interfaces for the upwind convection of a sine function, using the 'left' stencils at different degrees of reconstruction. It was verified that the orientation of the sine wave n/m has no influence on the results on this triangular grid, and that only the norrn of the wave number ( )

2 2 m n + is significant.
It can be checked that we obtain a very high gain when going from a linear reconstruction K1 to K5. In particular the highest possible resolution at K1 (10 -2,6 ) with 64 points per wavelength is reached from 5 points per wavelength on, with the K4 and K5 schemes.

monomial

Left interpolation errL2

Right interpolation errL2

Gradient_x errL2 

A. Preprocessing of HO grids for the connectivity and space scheme tables

The formulation of this scheme on high order P2 and P3 grids of interest for industrial applications is investigated. It is the basis for a RANS discretization to be compared to state of the art 2 nd order FV solvers [START_REF] Couaillier | Numerical simulation of separated turbulent flow based on the solution of RANS/low Reynolds two-equation model[END_REF], where the upwind and centered schemes tables will be used for different equations of the governing set.

The P2 primal grid of which 2 macro-partitions are shown on figure 29 was created by POINTWISE for the High Lift Prediction workshop [START_REF] Steinbrenner | Construction of Prism and Hex Layers from Anisotropic Tetrahedra[END_REF]. It is made of quadratic triangles, quads, tets, pyramids and pentaedra (prisms with a triangular base).

This particular grid called HLCRM Extra-tiny P2 is partitioned in 2 successive steps, with 64 macro-partitions and 64*128 sub-partitions. At each level of partitioning, 2 layers of face-neighbor cell halos are identified.

Then, from the sub-partitions and their halos, we generate 3 types of dual P2 grids centered respectively on P1 nodes, edges and faces (the so-called "diamond" cells), by extracting inside each primal P2 cell surface patches that bound the dual cells. A node-dual sub-partition is represented in Fig. 30. Such multi-dimensional high-order reconstructions on dual grid systems have also been considered in [START_REF] Nishikawa | Third-Order Edge-Based Scheme for Unsteady Problems[END_REF].

These P2 patches are identified by 6 nodes for the triangular ones and 9 nodes for the quadrangular ones. These nodes have specific 3D parametric coordinates within each type of primal element that correspond to spatial coordinates through the representation of the primal cells by Lagrange polynomials. 2 layers of halos are also identified for these new grids.

A representation of the interface patches where the FV fluxes are computed and that are stored on the computer in the NGON HO element format is shown on Figs 30 and 31. This NGON format was created to represent control volumes of complex shape, with an arbitrary number of faces connecting them to the adjacent Finite Volumes.

Only the geometry of the faces is described by the (HO) polygonal lines that surround them. On figure 31 we represent the 4 different grids of 2 sub-partitions. These are in the same location, and shifted on each figure for clarity. The sub-partition at the left is in a region further from the wing-body, where isotropic cells where generated, while the sub-partition at the right is at a wing contact, and made of extruded prisms from the wing triangle mesh. The aspect ratio of these 15 layers of cells is as high as 1500. The representation of the curvature of these elements is important, on all grid types (primal, duals).

.All the staggered sub partitions of a given type are completed with boundary conditions, HO "half-cells" are generated at the contact with the boundaries.

Finally we obtain 4 self-consistent grids represented in exactly the same format as the primal grid, in terms of NGON connectivity (left and right control volumes on either side of a flux surface, left control volume and BC information for boundary surfaces) and description of halos connectivity.

The tables of linear combination coefficients of the NXO scheme are computed on these grids, with a full polynomial basis up to a degree 3 comprising 20 monomials. For this, in order to conduct the WLSQ reconstruction, we need to create stencils with a minimum of about 25-28 cells.

On a given grid, it is necessary to collect finite volumes of the same type up to the second layer of neighbors, which has consequences on the compactness of the scheme and size of MPI cross-partition messages. Another approach is to create "composite stencils". We have kept in the preprocessor information on the connectivity among the 4 grid types, since they are not simply overset grids but they share links with the primal grid as staggered grid systems. The control volume samples that compose the stencil of a given grid control volume and of a NGON face can also be gathered from the other grid types ; then the solution on these other grids must be computed at the same time.

If this option is retained for the solver, we store at adjacent Cpu memory addresses the linear combination tables for the FV scheme on all active grid systems and their solution fields, for an optimal efficiency of the processor caches (the active grids, up to 4, are considered as a single one). The total number of sub-partitions is chosen such that the memory foot-print of each does not exceed a few Mbytes, corresponding to about 1000 FV/sub-partition.

The distribution of the unit solution kernels over the network to the individual cores is done over an MPI layer (one rank per compute node that handles a number of macro-partitions) and 2 nested OpenMP layers, one numaaware layer for the distribution of the active macro-partitions on the node, a second one for the distribution of the sub-partitions to the core threads.

Finally only the halo layers of the macro-partitions that reside on different compute nodes are duplicated in memory, while the other macro-partition and all sub-partition halos are not.

At the innermost execution kernels, vectorization is active for all stencil operations loops: computation of primitive variable, flux density tensor components and their linear combinations with the tables of coefficients of the NXO scheme. The efficiency of this parallel computing strategy scales up to 16000 sub-partitions/Cpu node (20GBytes).

B Quality of the stencil reconstruction and HO fluxes integration

The quality of the scheme is evaluated up to degree 3 on all stencils. This comprises stencils centered on controlvolume (used for convective-or characteristic-upwind evaluations) and stencils centered on interfaces for HO inviscid and diffusion fluxes integration (evaluation of gradients followed by fluxes spatial integration over a curvilinear surface).

Stencils for each individual grid type and also composite stencils are considered.

After the interpolation tables are computed, we evaluate the K-exactness, with K=max(i+j+k) by comparing the L2 norm over all interfaces (NGONs) of the difference between : a/ On one hand the exact integrals of a monomial over the surface, and its flux components (surface integrals of the monomial multiplied by the space-varying components of the normal vector) : To simplify the analysis, all contributions of monomials of the same degree are added in the L2 norm. We compute the logarithm at base 10 of the L2 error to obtain the number of significant digits.
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Since there is a high number of sub-partitions (8000 like those of the figure 30) we try to characterize them by 2 real numbers: the mean curvature of the NGON interfaces and the mean aspect ratio of the control volumes over the sub-partition.

We plot then, as a function of one of these representative parameters, the number of significant digits that result from the overall process of volume reconstruction / interface integration (NXO scheme).

For a macro-partition, we gather the curvature and aspect ratios of the sub-partitions and the significant digits, and we plot these latter quantities a function of one of the former, organized in ascending order.

Figures 32 and 33 are for independent grid systems, while composite stencils and coupled resolution paradigms are presented on figures 34 and 35.

Independent grid systems

On Fig. 32 is represented the number of digits function of the curvature for each polynomial degree, over all types of grids: C0-C3 for the primal grid, N0-N3, E0-E3, F0-F3 for the dual ones.

The curvature is evaluated on each edge of the NGON patches (P2 triangles or quads) as the ratio of the distance from the central node of this edge to the center of the linear segment that links the extremities, divided by the length of the segment. From Fig. 32 we infer that the quality of integration on the edge-and face-dual grids (right figure) in mixed element zones is as good as on the primal and its node-dual grid (left figure). Quasi-exactness is obtained for 2 nd degree polynomials (blue lines) on most of the interfaces and the accuracy for 2 nd degree monomials can be higher than for the linear ones. The 3 rd degree monomials are not well represented in the majority of the sub-partitions, for the cell-and edge-centered grids. This could be due to the insufficient number of cells in some stencils, less than 25, so the contribution in these sub-partitions to the L2 norm is 0 digits. This has no influence on the validity of the overall computation of the tables of linear combination coefficients, which simply don't consider the highest degree monomials.

In general, the solution is relatively independent of the curvature. Regions of lower curvature are also those where there are less pentahedra and fewer connections among elements (fewer direct face neighbors).

On figure 33, the results are plotted function of the control volume aspect ratios. These aspect ratios are defined as the ratio of the square root of the exchange surface to the cell thickness (Vol./Surf.) in the direction normal to an NGON interface. (Left: Node-dual and Cell-primal, Right: Edge-and Face-dual) The edge-and face-dual grids are overall more accurate, with a more pronounced loss of accuracy with increasing mesh aspect ratio on the face-dual grid. The quality of reconstruction of quadratic monomials is better than for the linear ones on many situations. 3 rd degree representation is insufficient, except for face-dual cells at lower aspect ratio.

Composite stencils for a coupled resolution on different grid systems

Composite stencils for the primal grid are constructed by adding to a cell neighbors stencil the control volumes of its P1 vertices, its faces, and eventually its edges, to reach a number of stencil elements exceeding 25.

For a pentahedron, the primal-cell stencil will comprise itself, the 5 adjacent pentas, the 6 dual control volumes from its P1 nodes, the 5 face-dual and 9 edge-dual control volumes, i.e. 26 finite volume averages from which to reconstruct a 3 rd degree polynomial with 20 coefficients. This illustrates the prospective gain in compactness of this approach.

The same procedure of composite stencils is also tested for the other grid systems, where the nearest control Finite Volumes of the other grids are added to the volume centered stencils. Face centered stencils remain the union of the left and right ones centered on volumes. A wide number of options are currently being compared, including the optimal weights distribution in the WLSQ step.

On figure 34, the result of this process is shown for the higher polynomials degrees (2 nd on the left figure, 3 rd on the right one), as a function of the mesh aspect ratio, in a near-wall region meshed with pentas. The primal mesh stencils lag behind for 3 rd degree representation. Some effects of the mesh aspect ratio are visible from 300 on.

The increased regularity in the distribution of control volumes in space for all dual grids is visible. A coupled resolution might improve the solution on each grid. A more consistent trend as function of curvature can be seen on figure 35. The macro-partition considered is at mid-distance away from the walls, at the transition between tet., pyra. and penta., i.e. where a complex connectivity exits.

The stencils figure an almost exact solution for all HO monomials below 1% curvature and lose 4 or 5 significant digits for higher curvatures above 15%. Here again the primal mesh solution is less accurate, even for linear grids. 

Conclusion

V.

In the past few years, it has been verified for robust Finite Volume HO reconstructed methods to reach a very high order of accuracy, comparable to that of the more classical element-based methods, on simple linear grids for subsonic or shock-free vortex flows of a perfect gas, under inviscid and laminar flow hypotheses.

The recent extensions presented here of the NXO scheme enable to take into account geometrically HO grids, both for the expression of boundary conditions on curved wall faces and for the CPU efficient computation of curvilinear flux integrals within the computation domain. This extension respects the essential feature of FV methods, i.e. the only dof per cell and equation is the mean of the conservative variable.

The shock capturing method at a high reconstruction order of this scheme could be formulated as an extension of the JST scheme where the principal operators (centered fluxes average, first and third normal grid differences, shock detector) are computed with a higher accuracy on wider stencils.

The stencil reconstruction and interface projection that were computed on simple test function illustrate the kexactness and high resolution capabilities of the scheme.

Innovative solver methodology and software architectures are designed to improve the robustness and resolution capability of the NXO Finite Volume scheme on High Order grids made of mixed elements.

  s ϖ . They are decreasing as a function of the distance to the center of the stencil, can be represented by a Gaussian function evaluated at the cell centers representative cell size, α of the order of 0.3.The functional ψ is of quadratic form with positive coefficients of the { } ijk a , and linear in the quantities arise from the cross products. So a global minimum exists and it is found by expressing, for each monomial coefficient:

  that expresses the balance of the numerical normal flux integrals over all ni interfaces of surface n S Two options are available for the inviscid fluxes integrals: a)

Lα

  state uses the left and right eigenvectors of the Jacobian matrix of the normal fluxes with respect to the conservative variables. The eigenvectors are computed from the Roe average of the states l W ) a L and a R where the subscript a stand for the Roe average state. a L lines are the left eigenvectors and a R columns are the right eigenvectors, are made of only the positive (resp. negative)eigenvectors (associated to wave speeds positive, resp. negative in the direction from left to right). may differ from 1 and represent different amounts of upwinding for the convective and acoustic waves, especially when the corresponding eigenvalues are close to 0, ν u and c are the fluid normal velocity from left to right and the sound speed at the state a.

  at high order from the normal derivatives of the reconstructed polynomial of the field i W . They are also obtained as a linear combination of the cell averages, see section II.D. of the eigenvalues of the average flux jacobian matrix along the interface, τ a parameter in the range 0.01 to 0.2.

  e. we replace in the flux integral over the interface the local value of the flux by a constant one, evaluated from the face-average upwinded state, e. we replace in the normal flux integral over the cells i F , before the reconstruction, the local value of the normal flux by a constant one, evaluated from the cell-average conservative state.

δ

  [START_REF] Couaillier | Numerical simulation of separated turbulent flow based on the solution of RANS/low Reynolds two-equation model[END_REF] is the artificial dissipation at high order, where * i W uses the total enthalpy rather than the total energy in the energy equation, is an evaluation at high order of the first grid normal difference of

  cells in the stencils are involved in the grid-normal difference formulas, which are linear combinations with the vectors of coefficients 1 τ and 3 τ derived from the array { } c ijk , κ of equation (4) and the surface moments of the interface.

  varies typically from 0.1 to 2.0 over a wider span from the discontinuity. We introduce an adjustable coefficient art c related to the amount of artificial dissipation by: calibration of the coefficient is done in a simulation of the capture of a strong BOW shock at Mach 4 in the context of the 5 th HO CFD Workshop (see paragraph IV.).

  . This model is used in a transonic test case, chapter III.

Figure 1 :

 1 Figure 1: Reconstruction of flux densities projected in the direction of the stencil-global face normal (inside the field stencils) or the cell-local velocity vectors (inside the wall stencils)

Figure 2 :

 2 Figure 2: Field of density for the run on grid4: 3072 cells (= number of dof/equation)

Figure 3 :

 3 Figure 3: L2-norm of entropy error over the grids B. Ringleb Flow (3 rd HO CFD Workshop [7])This 2D test case of a shock-less isentropic flow in a curved channel is provided by the workshop organizers with a series of imposed quartic grids[START_REF] Le Gouez | Researchgate project[END_REF]. Only very coarse grids were provided, since they were computed essentially by element-based solvers with a high number of dof per element. The NXO scheme with one dof/element/eqn achieved good performances.The test case was computed at k=4 with the curvilinear reconstruction scheme of section II.C, and a curvilinear numerical integration of the fluxes at high order. The projection of the reconstructed polynomial is not done as a surface integral, but evaluated at multiple face integration points for the approximate Riemann solver. This requires to store multiple linear interpolation coefficients on each face and can only be used for simpler verification cases).

Figure 4

 4 Figure 4 shows the field of Mach number, reconstructed in each cell by computing the coefficients of the polynomials for each conservative variable. For this we use the array

Figure 4 :

 4 Figure 4: Reconstructed Mach number fields on the coarse (16*48) and medium (32*96) grids

Figure 5 :Figure 6 :

 56 Figure 5: Field of y-momentum on grid2: mode 0, mode1, mode 2, mode 3 and full reconstructed solution (discontinuous across element faces but the jumps are barely noticeable: white dots)

Figure 7 :

 7 Figure 7: Fields of Mach number and coefficients of 2 nd order and 4 th order artificial dissipation (eqn. 18). Bow Shock at Mach 4, grid 2: 22098 dof/eqn (cells).
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 89 Fig. 8 Typical 8-cell face stencils

Figure 11 :

 11 Figure 11: Field of flux density tensor projected in the direction of the flow, for the energy equation, on 5 grids

Figure 12 :Figure 14 :

 1214 Figure 12: Iso-Mach lines on the 5 grids Figure 13: Error indicators and Wall x-force function of the mesh size for 6-, 8-, 10-cell stencils (red, green, blue)

Figure 16 :

 16 Figure 16: Field of total enthalpy absolute error for a grid 256*128 (tangential / normal)

Figure 17 :Figure 19 :

 1719 Figure 17: Typical stencils in the field and at the wall) Figure 18: Total enthalpy at the wall at the shock root, case a/ 256*128

Figure 20 :

 20 Figure 20: Solutions of the equation of 2 nd degree. Wall pressure run c/ 256*128. Retained solution is in red Zoom on the shock location

Figure 21 :Figure 22 :

 2122 Figure 21: Grid used for the computation c/ 256*128, relative error on total enthalpy

Figure 23 :

 23 Figure 23: Pressure field for the NACA0012 transonic flow at Mach 0.95. Grid C2_7 27959 dof/eqn

Figure 24 :

 24 Figure 24: Grid C2_7 Relative total enthalpy error (log scale). NACA0012 transonic flow at Mach 0.95.Representation of some stencils near the airfoil downstream edge The robustness and accuracy of the spatial scheme can be asserted, a full convergence of the residuals to machine accuracy is reached, despite the complex configuration of the 3 rd _neighbour stencils in the refined zones shown on figure24.

Figure 25 :

 25 Figure 25: Error on the drag (reference value from the literature is 0.1097978) Relative error in total enthalpy (log scale) NACA0012 transonic flow at Mach 0.95

Figure 27 :

 27 Figure 27: Linear triangle grid used for accuracy verification; Equal connectivity partitions (colors) for Cpu vectorization and typical stencils for k5 reconstructions (in black, right figure)

Figure 28 :

 28 Figure 28: L2 norm of error (all inner and boundary interfaces) for the flux integral of a sine test function. In abscissa is the average number of grid points per wave length, independent of the orientation n/m 3D Formulation and quality assessment on geometrically H.O. staggered primal and dual grids IV.

Figure 29 :Figure 30 :

 2930 Figure 29: Two of the 64 macro-partitions. Left: 54 000 primal elements, 2300 boundary triangles. Right: representation of P2 element types (triangles, pentahedron, pyramids, tetrahedron)

Figure 31 :

 31 Figure 31: Sub-partition from a macro partition of figure 29; staggered P2 grid patches.

  primal and dual grids (node-, edge-and face-control volumes)

  the other hand the scalar product of the discrete volume integrals of this monomial over the stencil elements, by the coefficients s s λ λ r , of the 4 tables (ns is the stencil size).

Figure 32 :

 32 Figure 32: Quality of integration (k-exactness) for degrees 0 to 3, on the NGON interfaces of 4 grids of the same sub-partition away from wall, as a function of curvature. (Left: Node-dual and Cell-primal, Right: Edge-and Face-dual)

Figure 33 :

 33 Figure 33: Quality of integration for degrees 0 to 3, as function of the cell aspect ratio.(Left: Node-dual and Cell-primal, Right: Edge-and Face-dual) The edge-and face-dual grids are overall more accurate, with a more pronounced loss of accuracy with increasing mesh aspect ratio on the face-dual grid. The quality of reconstruction of quadratic monomials is better than for the linear ones on many situations. 3 rd degree representation is insufficient, except for face-dual cells at lower aspect ratio.

Figure 34 :

 34 Figure 34: Quality of integration for degrees 2 and 3 on composite stencils, as function of the aspect ratio.

Figure 35 :

 35 Figure 35: Integration of the fluxes of high deg. monomials on composite stencils, function of the curvature. The next step of validation of this solver methodology is the analysis of the spectra of the linear convection and diffusion operators on each sub-partition, with Dirichlet boundary conditions in the halos of control volumes and Dirichlet or Neumann BC on physical boundary NGON faces. Independent grids and composite stencils are being considered respectively. Amplification matrices with a high number of entries are built from the stencils.

  

Table 3 : Results on the 5 grids with 8-cell stencils: k3 reconstructions of natural fluxes (see figure 15)

 3 

	number	left λ	right λ	τ h	1	h	3 τ	3
	18797 left	7.928224E-01	2.746035E-01	-7.901984E-01	8.435314E-01
	19093 right	3.631856E-01	9.336806E-01	7.625114E-01	-4.200037E-01
	18501	-1.462949E-01	1.748151E-02	-7.364388E-02	-2.629008E-01
	19389	5.650325E-03	-2.379641E-01	1.233299E-01	-1.793107E-01
	18205	-5.628299E-03	3.194552E-04	-7.385052E-04	-7.281388E-02
	19685	-1.200030E-02	7.556028E-04	-1.387728E-02	7.143579E-02
	17909	2.265183E-03	0.000000E+00	1.006295E-03	-1.422409E-02
	19981	0.000000E+00	1.112340E-02	-8.389457E-03	3.428604E-02
	Sum	1.000000E+00	1.000000E+00	8.658745E-14	4.251879E-13

Table 4 : Results for computations on unstructured grids (automatically refined for the elsA Hybrid solver)

 4 

  3 types of stencils are considered for each

							Nb		Nb triangles	Cd	E(Cd)	E(Ht)	Nit	Mem
							vertices	(dof/eqn)	(MO)
				C2_1	1352	2618 ( 51 2 )	0.1103989	6.0 10 -4	2.25 10 -3	3700	47
				C2_2	2738	5338 ( 73 2 )	0.1098347	3.7 10 -5	5.40 10 -4	5050	50
				C2_3	4092	8034 ( 90 2 )	0.1097869	1.1 10 -5	5.50 10 -4	6050	56
				C2_4	5640	11112 (105 2 )	0.1098049	7.1 10 -6	2.68 10 -4	6300	78
				C2_5	7146	14108 (119 2 )	0.1098021	4.3 10 -6	3.70 10 -4	7500	99
				C2_6	10049	19888 (141 2 )	0.1098062	8.4 10 -6	2.61 10 -4	8900	140
				C2_7	14100	27959 (167 2 )	0.1098007	2.9 10 -6	1.54 10 -4	12500	195
				C2_8	20000	39904 (200 2 )	0.1097984	6.2 10 -7	1.13 10 -4	16200	275
				C2_9	30000	59700 (244 2 )	0.1097971	7.5 10 -7	1.07 10 -4	19300	420
	φ	(	x ,	y )	=	( 2 π sin	( nx	+	) ) my

-017 1.314E-016 8.404E-015 7.305E-015 x4 3.256E-016 3.917E-016 2.301E-014 2.404E-014 x3y 1.868E-016 1.888E-016 1.6178E-014 1.567E-014 x2y2 1.131E-016 1.305E-016 9.916E-015 8.927E-015 xy3 6.995E-017 9.301E-017 6.139E-015 5.366E-015 y4 5.435E-017 7.496E-017 4.824E-015 4.350E-015 x5 2.943E-016 1.216E-010 1.948E-014 2.098E-014

  

					Gradient_y
					errL2
	x	9.268E-016	1.110E-015	6.875E-014	7.371E-014
	y	4.808E-016	5.694E-016	3.847E-014	3.613E-014
	x2	6.036E-016	7.147E-016	4.398E-014	4.666E-014
	xy	3.410E-016	3.838E-016	2.826E-014	2.671E-014
	y2	2.009E-016	2.515E-016	1.673E-014	1.477E-014
	x3	4.279E-016	5.134E-016	3.061E-014	3.210E-014
	x2y	2.525E-016	2.677E-016	2.130E-014	2.042E-014
	xy2	1.441E-016	1.743E-016	1.221E-014	1.104E-014
	y3 9.899Ex4y 1.417E-016	1.543E-010	1.260E-014	1.216E-014
	x3y2	9.185E-017	1.988E-010	8.125E-015	7.592E-015
	x2y3	5.330E-017	1.768E-010	4.856E-015	4.431E-015
	xy4	3.991E-017	1.557E-010	3.844E-015	3.447E-015
	y5	3.539E-017	3.723E-010	3.083E-015	3.106E-015

ONERA CFD Department (DAAA), jean-marie.le_gouez@onera.fr, AIAA member. S

Acknowledgments

VI.

The author expresses his thanks to Professor A. Jameson and Doctor J. Vassberg for providing to his research group their parametrized structured volume grid generator for wing profiles.