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Abstract7

In this work we perform a-priori analyses of the Discontinuous Galerkin (DG) Variational Mul-8

tiscale (VMS) method for Large Eddy Simulation (LES). An analytical framework is introduced9

to study the ideal energy transfer between resolved and unresolved scales. The proposed frame-10

work is consistent with the discretization employed for the DG-LES simulations. The concept11

of modal eddy viscosity is also introduced which can be employed for the a-priori analysis of12

the DG-VMS method or spectral vanishing viscosity approaches. The developed framework is13

then applied to the analysis of the energy transfer in DG-LES by employing a DNS database of14

the Taylor-Green Vortex (TGV) at Re = 5 000, 20 000 and 40 000. A-priori analyses are carried15

out for the Vreman [1] and all-all [2] variants of the DG-VMS approach. The performed analy-16

sis demonstrates that when the DG-LES resolution limit falls at the beginning of the dissipation17

range the assumption of large scales free of interaction with the unresolved scales is valid and18

the DG-VMS approach can replicate the ideal SGS dissipation spectrum. For coarser resolutions,19

typical of LES at high Reynolds numbers, the DG-VMS approach is unable to replicate the ideal20

energy transfer mechanism at the large-resolved scales. It is shown, a-priori, that a more accurate21

agreement can be obtained by employing a mixed Smagorinsky and DG-VMS approach with a22

fixed value of the scale-fraction parameter.23

Keywords: High-order, discontinuous Galerkin, Variational Multiscale, a-priori analysis,24

spectral energy transfer25

1. Introduction26

Large Eddy Simulation (LES) is a well established methodology for the prediction of tur-27

bulent flows for applications ranging from fundamental research to industrial design [3, 4, 5].28

The working principle of LES is to resolve only the large-scale turbulent eddies and model the29

effect of the unresolved scales by means of a subgrid-scale (SGS) closure, thereby reducing the30

computational cost of simulations with respect to Direct Numerical Simulation (DNS).31

One of the fundamental traits of turbulence, that must be correctly reproduced by SGS mod-32

els, is the physical mechanism of energy transfer between the resolved turbulent scales and the33
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unresolved scales. This energy transfer mechanism can be studied by analysing the non-linear34

interaction of the full velocity field such as that obtained from DNS or by theoretical analyses by35

employing an analytical energy spectrum.36

Early theoretical analyses of the energy transfer mechanisms in turbulent flows were per-37

formed by Heisenberg [6] and Kraichnan [7]. These studies involved the choice of an analytical38

energy spectrum and an arbitrary convolution filter to separate resolved and unresolved scales39

and evaluate the corresponding non linear interactions and energy transfer. The energy transfer40

mechanism was represented by means of an additional spectral eddy viscosity acting on the re-41

solved modes. Kraichnan [7] employed a sharp cut-off filter in Fourier space to separate resolved42

and unresolved scales in theoretical turbulence characterized by an infinite inertial range (i. e. as-43

suming infinite Reynolds number). Under these conditions, Kraichnan identified the presence44

of a cusp in the spectral eddy viscosity, near the cut-off, and a plateau at lower wavenumbers,45

which is a manifestation of the significant interaction between the unresolved scales and the large46

resolved scales away from the cut-off.47

A-priori numerical analyses were carried out by Domaradzki et al. [8] based on DNS of the48

Taylor-Green Vortex (TGV) flow at Re = 3 000 by applying a sharp spectral filter to define the49

ideal LES solution. This work confirmed the presence of the cusp of the spectral eddy viscosity50

near the cut-off. However, differently from the studies of Kraichnan, a negligible energy trans-51

fer was observed at relatively lower wavenumbers. A similar result was observed by McComb52

and Young [9] who analysed the spectral eddy viscosity for homogeneous isotropic turbulence at53

microscale Reynolds number Reλ = 190. In their work a plateau in the eddy viscosity was ob-54

served only for the coarsest resolution, indicating a negligible interaction between large resolved55

and unresolved scales. In contrast, Métais and Lesieur [10] identified a plateau in the spectral56

eddy viscosity evaluated from an LES of homogeneous isotropic turbulence at infinite Reynolds57

number.58

Using a-priori testing, the ideal energy transfer and the effective eddy viscosity obtained59

by applying the LES filter to DNS data can be employed to evaluate SGS models and aid in60

their improvement. As an example, the Smagorinsky model [11], still widely employed due61

to its simplicity and robustness, has been shown in a-priori analyses to be overdissipative on62

the large-scale structures, confirming the observations from a-posteriori tests [12]. Using the63

same approach, it has been shown that even though its dynamic variant by Germano et al. [13]64

is able to provide the correct global SGS dissipation and near-wall scaling, it fails to reproduce65

the ideal energy transfer spectrum (also called SGS dissipation spectrum). Indeed, it introduces66

an insufficient amount of dissipation at high wavenumbers while exhibiting an overdissipative67

behaviour at low wavenumbers as shown e. g. by Hughes et al. [14].68

A number of new SGS models have been developed with the aim of reducing these short-69

comings of traditional LES techniques. One such model is the Variational Multiscale (VMS)70

approach proposed by Hughes et al. [15]. The VMS approach advocates the strict separation of71

the resolved velocity field into a large-scale component, containing the largest coherent structures72

of the flow, and a small-scale component by means of a high-pass projection filter. The model73

then relies on the spectral gap assumption such that the large resolved scales are assumed to be74

virtually free of SGS dissipation. Thus the model (e. g. the Smagorinsky model or its dynamic75

version) only acts on the small-scale resolved component of the velocity field. This approach76

therefore mimics the ideal energy transfer mechanism as described by Domaradzki et al. [8].77

The VMS approach, originally developed in the context of stabilized finite element (FE) and78

spectral methods, has demonstrated very accurate results in the simulation of several turbulent79

flow configurations and has since been extended to finite volume (FV) and spectral element type80
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methods such as the discontinuous Galerkin (DG) method. We refer to the reviews of Grave-81

meier [16], Ahmed et al. [17] and Rasthofer and Gravemeier [18] for an overview of the VMS82

approach and several variants that have been proposed by other authors.83

The combination of the VMS approach with DG methods in particular presents several prop-84

erties which are of great interest for the improvement of the quality and efficiency of LES [19].85

The DG methods have rapidly gained popularity for scale-resolving simulations due to their ex-86

cellent scalability and their ability to achieve high-order accuracy on general meshes [20]. The87

variational framework on which these methods rely allows for the local separation of scales us-88

ing polynomial basis functions, which can be employed for multi-level methods and the VMS89

approach. In contrast to the spectral method, the DG framework allows for the efficient separa-90

tion of scales even while working on completely unstructured meshes without requiring complex91

spatial filters. Moreover, the high-order polynomial representation of the solution allows for a92

higher flexibility in the decomposition into large and small scale components, as compared to93

FV and low order FE methods. Finally, the use of discontinuous solution spaces allows for the94

straightforward local adaptation of the scale-separation operator.95

There are however still several open questions which require specific analysis in the context96

of the DG-VMS method. These are: the effect of the LES filter on the effective eddy viscosity,97

the effect of the scale-separation operator and the calibration of the coefficient involved in the98

SGS model. While these questions are still the subject of current research in the context of99

the DG-VMS approach, several studies have been already carried out in the context of standard100

LES approaches based on convolution filters. The main conclusions of these works are briefly101

outlined below.102

The effect of the LES filter. Leslie and Quarini [21] performed theoretical analyses by consider-103

ing an infinite inertial range and a Gaussian filter. Their results demonstrated that, in contrast to104

what is obtained for a sharp spectral filter, the use of a Gaussian filter leads to a spectral eddy105

viscosity characterized by a plateau from low to high wavenumbers and a sharp decay as the106

wavenumber approaches 1/∆ (∆ being the filter width). Moreover, in the case of a production-107

type spectrum, the shape of the ideal eddy viscosity strongly depends on the ratio between the108

LES cut-off wavenumber kc and that corresponding to the energy production phenomena. Similar109

conclusions can be drawn from the work of Cerutti et al. [22] who evaluated the eddy viscosity110

from experimental measurements corresponding to the use of a mixed filter (spectral cut-off in111

one direction and top-hat filter in the other two directions). The outcome of this study led the112

authors to conclude that the use of a mixed viscosity-hyperviscosity model can improve the accu-113

racy of LES simulations. More recently Lamballais et al. [23] have evaluated the eddy viscosity114

from the DNS of the TGV configuration at Re = 20 000 and observed the presence of the plateau115

described by Kraichnan [7] employing a spectral cut-off filter.116

It appears, therefore, that the validity of the spectral gap assumption needs to be carefully117

analysed depending on the LES filter employed in the simulation. The extension of these analyses118

to the case of the DG-VMS approach presents additional complications as the DG-projection119

filter is not a convolution filter (as explained in Sec. 2). Thus this topic deserves special attention.120

The effect of the high-pass filter. The second open question is the effect of the high-pass filter121

on the quality of the VMS model. As regards the choice of the cut-off wavenumber k̄ associated122

with the high-pass filter, in actual simulations, this parameter is often selected heuristically or by123

trying to match reference results. In early numerical experiments, Hughes et al. [15] and Hughes124

et al. [24] have used a high-pass spectral filter with k̄ corresponding to a scale-fraction parameter125
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β = k̄/kc equal to 0.59 and 0.5, respectively, when employing the VMS approach with constant126

model coefficient. In later works Hughes et al. [14] employed a scale-fraction parameter β = 0.5127

for the VMS approach based on the dynamic Germano procedure for the determination of the128

model constant. Holmen et al. [25] carried out a sensitivity analysis for the LES of the turbulent129

channel flow. The authors showed that the use of the dynamic procedure reduces the sensitivity130

of the VMS-LES to the scale-fraction parameter and optimal results were obtained for β ≈ 0.5.131

In contrast, for the static variants optimal results were obtained for β ≈ 0.7 and the quality of the132

solution quickly deteriorated for other values. Ramakrishnan and Collis [26] have shown that the133

optimal scale-fraction parameter might depend on the flow considered and resolution available.134

It was observed that the optimal high-pass filter length can be related to the characteristic length135

of coherent structures of the flow. However they remarked that the small-scale space should136

contain at least 50% − 60% of all modes to provide high quality first and second-order statistics.137

The effect of the type of the high-pass filter in VMS was also analysed by Sagaut and Lev-138

asseur [27] and Meyers and Sagaut [28]. It was observed that the sharp cut-off filter (orthogonal139

in Fourier space) can provide an overdissipative behaviour at high wavenumbers leading to a140

bottleneck effect and the generation of a middle-wavenumber pile-up. Moreover, a discrete jump141

might appear in the energy spectrum near the high-pass filter cut-off (as observed by Meyers and142

Sagaut [28]). The use of a non-orthogonal high-pass filter (e. g. Gaussian filter) led to improved143

results by rendering all scales sensitive to the subgrid closure. Similar results were reported144

by Meyers and Sagaut [28] who further noted a reduced dependency on β when employing a145

Gaussian filter. Other non-orthogonal high-pass filters have been employed in the Regularized146

Variational Multiscale (RVM) model by Jeanmart and Winckelmans [12]. The regular filter used147

by this model is obtained by iterating a tensor product compact discrete filter which can be effi-148

ciently applied in physical space for Finite Difference methods.149

Calibration of the SGS model constant. As regards the value of the constant involved in the150

VMS model, a calibration has been derived by Hughes et al. [15] using the procedure due to151

Lilly [29]. The procedure assumes an infinite Reynolds number (infinite inertial range) and the152

calibration was obtained considering an isotropic sharp spectral filter for both the LES and high-153

pass filters. The most comprehensive work on the calibration of the model constant for the VMS154

approach is however the study by Meyers and Sagaut [30]. One of the most important results155

of this research is that the optimal model coefficient strongly depends on the choice of LES and156

high-pass filter. Moreover, the authors have provided an analytical framework for the evaluation157

of the optimal model coefficient in the case of convolution filters. As already mentioned, the158

DG-projection filter is not a convolution filter and therefore special care is required to extend159

the conclusions of these works. A different approach has been employed by Cocle et al. [31]160

who have calibrated the model coefficient of the RVM model a-posteriori by performing LES of161

decaying homogeneous isotropic turbulence at very high Reynolds number. Due to the different162

high-pass filter employed, similar but different values of the model constant have been obtained163

as compared to the study of Meyers and Sagaut [30]. Finally, we mention the work of Bricteux164

et al. [32] on the development of a wall-adaptive local eddy viscosity RVM model that ensures165

the correct near-wall scaling of the eddy viscosity.166

The studies cited above clearly outline that the performance of the VMS approach is strongly167

influenced by a number of parameters primarily associated with the LES and high-pass filters.168

Therefore the systematic and robust application of the DG-VMS approach can be improved by169

analysing these questions in the context of the DG-projection filter as both the LES filter and170
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scale-separation operator. We analyse for this purpose the effect of the DG-LES filter on the171

ideal energy transfer and the validity of the assumption of absence of SGS dissipation acting on172

the largest resolved scales. The accuracy of the DG-VMS approach and the associated high-pass173

filter in replicating the ideal energy transfer will then be considered with the objective of identi-174

fying guidelines for the selection of the scale-fraction parameter.175

This work is therefore organized as follows. In Section 2 the DG-filter and the ideal DG-176

LES solution are discussed. Their definition is then employed in Sections 3 and 4 to extend177

the energy transfer analysis framework to the context of DG-LES. The presented framework is178

then applied in Section 5 to a DNS database of the TGV configuration at Re = 5 000, 20 000 and179

40 000. Obtained results are then compared in Section 6 to the energy transfer and eddy viscosity180

provided by the DG-VMS approach. Finally conclusions are presented in Section 7.181

2. The ideal DG-LES solution182

A-priori testing can provide valuable information about the accuracy of LES modeling ap-183

proaches. The central question with this type of analysis is the definition of an appropriate ideal184

LES solution, which in the general case is not straightforward. It is, however, essential to answer185

this question, as the way in which this ideal solution is defined has a direct impact on the way186

the ideal SGS quantities are computed.187

In the classical approach, described in most books on the topic of LES, the LES solu-188

tion is defined as the spatially filtered DNS solution. For this purpose, convolution filters are189

conventionally employed such that for any function f we define the filtered function f (x) ..=190 ∫
Ω

G(x − ξ) f (ξ)dξ with G(x − ξ) being the filter kernel. The convolution filter can be applied191

to the Navier-Stokes (NS) equations such that the ideal LES solution satisfies the filtered NS192

equations in their strong form. One of the advantages of this approach is that the application of193

the convolution filter can be expressed in the Fourier space as f̂ (k) = Ĝ(k) f̂ (k) where (̂·) denotes194

the Fourier transform. It is thus easy to demonstrate that the convolution filter commutes with195

the spatial derivatives. This approach however entirely ignores the details of the discretization196

employed and the fact that the LES solution so defined might not be an admissible solution of197

the considered discrete problem. It must also be stressed that in most practical LES no explicit198

filtering is employed and practitioners rely on the implicit filtering introduced by the numerical199

discretization itself. Under these conditions, most of the assumptions employed by this method-200

ology, including those related to the regularity of the resolved and unresolved scales, are not201

satisfied. For these reasons, this approach presents serious limitations when extending the results202

of theoretical studies to FV and FE type methods, which might lead to significant differences203

between a-priori and a-posteriori analyses.204

A second approach has been proposed by Pope [33], in which the LES solution is conceived205

as the projection of the DNS solution onto a set of local basis functions. It has been shown by206

Vreman [34] that an arbitrary orthogonal projection operator can be reformulated as a kernel filter207

such that for any function f we can indicate its projection as fh(x) ..= Ph[ f ] =
∫

Ω
Kp(x, ξ) f (ξ)dξ.208

The use of a non uniform filter kernel Kp(x, ξ) implies that in general the projection operation209

and differentiation do not commute. For this reason the closure problem needs to be redefined210

employing the semidiscrete weak form of the equations as described by Pope [33] and in the211

context of the VMS approach (e. g. [35]).212

This methodology provides a definition of the ideal resolved field which is consistent with213

the employed numerical discretization. Following this approach Beck et al. [36] have defined the214
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ideal DG-LES solution as the L2-projection of the DNS solution on the discretization space and215

identified the ideal subgrid stress to develop a Deep Neural Network turbulence model. Similarly216

van der Bos and Geurts [37] have defined the ideal DG-LES solution by means of a face-based217

projection to perform a systematic analysis of computational errors of DG-FEM for LES.218

The use of a projection type filter however can introduce significant aliasing errors at wavenum-219

bers close to the grid cut-off, producing unphysical reference data. This is a direct consequence220

of the approximation properties of polynomial basis functions (see [38]).221

In this work we propose to employ an alternative approach in which the ideal DG-LES so-222

lution is defined as the result of the application of two successive filtering operations. A first223

convolution filter is applied to the DNS data which filters out wavenumbers beyond the LES grid224

cut-off. Next, a L2-projection of this filtered field is performed on the hp-discretization space225

(referred to in the following as DG-projection). This procedure reduces considerably the aliasing226

errors introduced by Pope’s approach, while allowing the inclusion in the analysis of the effect227

of the hp-discretization associated with the adopted numerical method. A similar approach has228

been employed by Carati et al. [39] and by Winckelmans et al. [40] to take into account both229

a smooth filter and the discretization operator in the definition of the LES equations under the230

assumption that the two operators are commutative.231

The following section provides a formal framework for the definition of the ideal DG-LES232

solution as described above and the expression of the corresponding ideal SGS energy transfer.233

3. The DG-LES framework and the ideal energy transfer234

The N-S equations for an incompressible flow read235

∂u
∂t

+ ∇ · Fc(u, q) + ∇ · Fv(u,∇u) = 0 , ∀x ∈ Ω, t ≥ 0 , (1)
236

∇ · u = 0 , (2)

where u is the velocity field, q is the pressure, and Fc and Fv are the convective and viscous237

fluxes, defined respectively as238

Fc(u, q) = u ⊗ u + qI , (3)

Fv(u,∇u) = ν(∇u + (∇u)T ) . (4)

We define Ωh to be a shape regular partition of Ω into N non-overlapping, non-empty ele-239

ments of characteristic size h and we further define the broken Sobolev space S p
h

..= {φ ∈ L2(Ωh) :240

φ|K ∈ P
p(K),∀K ∈ Ωh} to be the space of piecewise polynomials of partial degree at most p.241

Then we indicate as fh ..= PS p
h
[ f ] the projection of any function f on the hp-discretization defined242

by the space S p
h .243

Following the approach described in the previous section, we define the ideal DG-LES so-244

lution as uh
..= PS p

h
[u], which is the result of the successive application to the velocity field u245

of a convolution filter and the DG-projection filter defined by the space S p
h . The convolution246

filter employed in this work is a sharp spectral anisotropic filter with expression in spectral space247

Ĝ(k) = H(kDG − ‖k‖∞) where kDG = π(p + 1)/h and H is the Heaviside function.1248

1The sensitivity of the obtained results to the introduction of the convolution filter is discussed in Appendix C.
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Applying the convolution and DG-projection filter to Eq. (1), we derive the evolution equa-249

tions for the ideal DG-LES solution250

∂

∂t

∫
Ωh

uhφ dx +
∑

K

[∫
∂K
F c(u, q) · n+φ+ dσ −

∫
K
F c(u, q) · ∇φ dx

+

∫
∂K
F v(u,∇u) · n+φ+ dσ −

∫
K
F v(u,∇u) · ∇φ dx

]
= 0 , ∀φ ∈ S p

h ,

(5)

where we have used the commutation property of the convolution filter with spatial derivatives251

and the definition of the L2-projection, which implies,
∫

Ωh
(u − uh)φ = 0,∀φ ∈ S p

h .252

The DG-LES equations can now be defined by rewriting Eq. (5) as253

∂

∂t

∫
Ωh

uhφ dx +

Lc(uh, qh, φ)︷                                                                            ︸︸                                                                            ︷∑
K

[∫
∂K

hc(u+
h , q

+
h ,u

−
h , q

−
h ,n

+)φ+ dσ −
∫

K
Fc(uh, qh) · ∇φ dx

]
+

∑
K

[∫
∂K

hv(u+
h ,u

−
h ,n

+)φ+ dσ −
∫

K
Fv(uh,∇uh) · ∇φ dx

]
︸                                                                     ︷︷                                                                     ︸

νLv(uh, φ)

+R(u,uh, φ) = 0 , ∀φ ∈ S p
h ,

(6)

where hc and hv are the convective and diffusive numerical fluxes and f + and f − indicate the254

trace of any function f on the element’s boundary ∂K.255

In Eq. (6), R(u,uh, φ) is the total DG-LES residual representing the effect of the unresolved256

scales u − uh on the resolved field, which can be obtained by comparing Eq. (5) and Eq. (6).257

Note that, as the DG-projection filter does not commute with the spatial derivation, in gen-258

eral both the pressure and viscous terms contribute to the total DG-LES residual. In this work,259

however, we assume that this term is dominated by convective effects thus the contribution of260

the viscous and pressure terms is neglected 2. This leads to the following form for the DG-LES261

residual,262

R(u,uh, φ) ≈
∑

K

[∫
K

(
Fc(uh) − F c(u)

)
· ∇φ dx

−

∫
∂K

(
hc(u+

h ,u
−
h ,n

+) − F c(u) · n+
)
φ+ dσ

]
.

(7)

We point out that, for the derivation of Eq. (7), the sole property which has been required of263

the spatial filter is commutativity with spatial derivation. If a convolution filter is considered264

which presents additional regularity properties it is of interest to distinguish, in the total LES265

2The viscous contribution to the DG-LES residual might be relevant for wall-bounded flows. We remark however
that, for the incompressible flows considered in this work, the viscous contribution appears due to the non-commutability
between the DG-LES filter and spatial derivation and not due to non-linear effects such as those encountered in com-
pressible flows.
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residual, the contributions only due to the application of the spatial filter, i. e. subfilter stresses,266

and those due to the projection on the solution space, i. e. subgrid stresses, see e. g. [39, 40]. A267

possible approach to decompose the total DG-LES residual in subfilter scale (SFS) and subgrid268

scale contributions is described in Appendix A.269

However, the LES formulation on which DG-VMS simulations are based [2, 41] is derived270

by directly projecting the NS equations onto the DG functional space, which implicitly defines271

the filter. This operation leads to the appearance of the SGS residual, which represents the full272

residual term that needs to be model. Additionally, the sharp cut-off filter considered in this work273

does not present the additional regularity properties which are required for the mathematical274

analysis of LES seen as a regular convolution.275

Therefore, by analogy with the terminology used in the context of DG-VMS simulations and276

with a slight abuse of notation, in what follows, we will refer to the total DG-LES residual simply277

as SGS residual.278

Indicating as {ψ1
K . . . ψ

Np

K } ∈ P
p(K) an orthonormal basis for Pp(K) with ψi

K(x) = 0,∀x ∈279

K′,K′ , K, the solution uh is expressed as a linear combination of the basis functions such that280

uh(x, t) =
∑

K

Np∑
i=1

ũ
i,K
h (t)ψi

K(x) , ∀x ∈ Ωh . (8)

The modal coefficients ũ
i,K
h obey the following equation281

∂ũ
i,K
h

∂t
+Lc(uh, qh, ψ

i
K) + νLv(uh, ψ

i
K) + R(u,uh, ψ

i
K) = 0 , ∀K ∈ Ωh,∀i = 1 . . .Np , (9)

which is derived from Eq. (6) considering ψi
K as test function and using the orthonormality of282

the basis (the mass matrix being the identity). These equations can be combined to rewrite the283

semidiscrete DG-LES equations (6) as284

∂uh

∂t
+ Lc(uh, qh) + νLv(uh) + R(u,uh) = 0 , (10)

where

Lc
..=

∑
K

∑
i

Lc(uh, qh, ψ
i
K)ψi

K , (11)

Lv
..=

∑
K

∑
i

Lv(uh, ψ
i
K)ψi

K , (12)

R ..=
∑

K

∑
i

R(u,uh, ψ
i
K)ψi

K . (13)

This leads to the following equation for the evolution of the energy associated to each wavenum-285

ber k of the resolved scales as286

∂E(k)
∂t

+ ûh(k) · L̂c(k) + νûh(k) · L̂v(k) + ûh(k) · R̂(k) = 0 . (14)

The ideal energy transfer from the resolved modes of wavenumber k to all unresolved scales can287

therefore be obtained from the subgrid residual as288

Tsgs(k) =
∑
‖k‖=k

ûh(k) · R̂(k) . (15)
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Positive values of Tsgs correspond to kinetic energy being transferred from resolved to unre-289

solved scales, whereas negative values correspond to energy being transferred from unresolved290

to resolved scales, commonly indicated as backscatter.291

Note that the use of the DG-projection filter introduces discontinuities in the filtered velocity292

field that need to be taken into account. It also requires the definition of the numerical flux hc293

that appears in the surface integral in Eq. (7). The subgrid stress thus depends in general on294

both, the definition of the filter and the choice of this numerical flux. While this choice might295

appear arbitrary, it reflects the notion that the subgrid term which needs to be modelled must take296

into account the choice of the numerical discretization and the numerical dissipation thereby297

introduced.298

In the a-priori analyses presented in the following, we are interested in investigating the299

ideal SGS dissipation in absence of dissipation introduced by the discretization of the convective300

flux. For this purpose we consider a central flux hc(u+
h ,u

−
h ,n+) = 1

2 (Fc(u+
h ) + Fc(u−h )) · n+. The301

stabilizing effect provided by the upwind component of any convective flux can then be sepa-302

rately analysed by means of the same methodology employed in this research for the DG-VMS303

approach. This approach can be employed to assess the accuracy by which the numerical dissi-304

pation can model the SGS stresses, as commonly done in the framework of Implicit LES [42].305

3.1. The modal energy transfer and eddy viscosity306

The analysis presented up to this point represents an extension of the classical energy transfer307

spectral/Fourier analysis. In the context of the DG method useful information can be extracted308

by performing this analysis in the modal/polynomial space. For this purpose, let us consider now309

Ω to be a cubic domain with Ωh being a uniform Cartesian grid. We further consider a basis310

for S p
h which is formed by the tensor product of normalized Legendre polynomials of maximum311

degree p. We indicate as ψm
K the generic element of this basis such that m = (mx,my,mz) and312

ψm
K = lmx

( x−xK,c

h/2

)
lmy

( y−yK,c

h/2

)
lmz

( z−zK,c

h/2

)
(16)

where xK,c, yK,c and zK,c are the coordinates of the barycenter of K and li is the i-th Legendre313

polynomial normalized such that
∥∥∥ψm

K

∥∥∥
L2(Ωh) = 1.314

We then define Wm
h = span

{
ψm

K ,∀K ∈ Ωh,m − 1
2 < ‖m‖ ≤ m + 1

2

}
, we call m the mode-number315

and define PWm
h

[uh] as the component of the DG-LES solution uh of mode-number m and the316

modal energy spectrum as317

Ẽ(m) =
1
2

∫
Ωh

PWm
h

[uh] · PWm
h

[uh]dx . (17)

As
∫

Ωh
(PWm

h
[uh] − uh)φdx = 0, ∀φ ∈ Wm

h and Wm
h ⊂ S p

h , from Eq. (5) we can write318

∫
Ωh

∂

∂t
PWm

h
[uh]φdx +Lc(uh, φ) + νLv(uh, φ) + R(u,uh, φ) = 0 , ∀φ ∈ Wm

h , (18)

and it can be immediately obtained that319

∂Ẽ(m)
∂t

+Lc(uh,PWm
h

[uh]) + νLv(uh,PWm
h

[uh]) + R(u,uh,PWm
h

[uh]) = 0 . (19)
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Thus the modal energy transfer from the resolved scales of mode-number m to the unresolved320

scales can be evaluated as321

T̃sgs(m) ..= R(u,uh,PWm
h

[uh]) . (20)

It is can be easily shown that Eq. (20) can be rewritten as322

T̃sgs(m) =
∑

K∈Ωh

∑
m− 1

2<‖m‖≤m+ 1
2

ũh
m,K
· R(u,uh, ψ

m
K ) , (21)

with ũh
m,K

=
∫

Ωh
uhψ

m
K dx, which closely resembles Eq. (15) obtained in Fourier space. We thus323

introduce the concept of a modal eddy viscosity, defined as324

ν̃e(m) ..=
R(u,uh,PWm

h
[uh])

Lv(uh,PWm
h

[uh])
, (22)

which can be interpreted as an additional eddy viscosity which acts on the resolved modes simi-325

larly to the spectral eddy viscosity defined by Kraichnan [7].326

We point out that neither the modal energy transfer nor the modal eddy viscosity necessarily327

have a physical meaning. This methodology is however useful as it can be directly compared328

to the VMS approach and LES models based on a spectral vanishing viscosity such as that pro-329

posed by Karamanos and Karniadakis [43]. In the context of DG methods, these approaches are330

based on modifying the modal energy transfer or eddy viscosity provided by an SGS model as a331

function of m, see e. g. [44]. A similar energy transfer analysis has already been employed by332

Oberai et al. [45] to perform a-priori analyses of the VMS approach based on a FE method.333

In the following, the modal eddy viscosity is presented normalized as334

ν̃†e(m) ..=
ν̃e(m)√

E(k̃DG)/k̃DG

. (23)

where E(k) is the energy spectrum of the DG-LES field and k̃DG =
(p+1)nel

3 is a relevant frequency,335

as will be seen in Sec. 5.336

We point out that Eq. (22) depends on the discretization of the viscous terms. Therefore it337

provides the modal eddy viscosity which must be provided by the SGS model employing a cho-338

sen discretization. This approach highlights the relevance of taking into account the dissipation339

properties of the numerical scheme used for the discretization of the model term. In Sec. 5 and 6340

results will be presented which are based on the BR1 scheme [46] and the BR2 scheme [47].341

4. The DG-LES modelling and the DG-VMS approach342

Starting from Eq. (6), the effect of the subgrid scales can be approximated by a model term343

that depends only on the resolved field344

R(u,uh, φ) ≈ Lm(uh, φ) . (24)

One common approach to formulate SGS models for DG methods is to discretize LES models345

derived in the continuous framework, such as those relying on an eddy-viscosity approach like346

the Smagorinsky model.347
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For the Smagorinsky model, a SGS flux is introduced in the filtered NS equations which takes348

the form349

Fm = 2νs(∇u)S (∇u) with νs(∇u) = (Cs∆)2‖S (∇u)‖ , (25)

where S = 1
2

(
∇u + ∇uT

)
is the strain rate tensor, with norm ‖S ‖ =

√
2S i jS i j. The Smagorinsky350

constant Cs has values between 0.1 and 0.2, and ∆ is the filter width which in the DG framework351

can be defined as ∆ = h/(p + 1).352

By applying the same numerical treatment used for the viscous fluxes, the DG-LES model353

term can be written as,354

Lm(uh, φ) =
∑

K

[∫
∂K

hm(u+
h ,u

−
h ,n

+)φ+dσ −
∫

K
Fm(uh)∇φdx

]
, ∀φ ∈ S p

h , (26)

where hm is the model numerical flux.355

Following the approach presented above (see Sec. 3.1), the modelled spectral energy transfer356

can therefore be evaluated as357

Tm(k) =
∑
‖k‖=k

ûh(k) · L̂m(k) with Lm
..=

∑
K

∑
m
Lm(uh, ψ

m
K )ψm

K , (27)

and the modelled modal energy transfer and eddy viscosity take the form358

T̃m(m) ..= Lm(uh,PWm
h

[uh]) , and ν̃†m(m) ..=
Lm(uh,PWm

h
[uh])

νLv(uh,PWm
h

[uh])
. (28)

The VMS approach is based on the separation of the resolved scales into large and small359

resolved scales by means of a projection filter. To this end, we separate the solution space into360

a large-scale space VL ..=
⋃

m≤pL
Wm

h and a small-scale space VS ..= S p
h \ VL, where pL is the361

so-called scale-separation parameter and we indicate as β = (pL + 1)/(p + 1) the scale-fraction362

parameter.3363

The original formulation of the VMS approach proposed by Hughes et al. [15] relies on two364

assumptions: the absence of energy transfer between the large resolved and the unresolved scales365

and the fact that the SGS model should be evaluated from the small-resolved scales.366

This leads to a model term which takes the form367 (
∇ · Fm(uh)

)
s-s = PV s

[
∇ ·

(
2νs(PV s [∇uh])S (PV s [∇uh])

)]
. (29)

This approach is commonly referred to as the small-small approach, as both the eddy viscosity368

and the strain rate tensor in the model term are computed directly from the small resolved scales.369

The outer filter operation restricts the action of the LES model only to the small-scale solu-370

tion corresponding to mode-numbers higher than the scale-separation parameter. It corresponds371

therefore to the assumption T̃sgs(m) ≈ 0 and ν̃sgs ≈ 0 for m ≤ pL.372

We point out once more that the L2-projection and differentiation do not commute, thus373

the order of the operations is important in the definition of the model term. In particular, we374

remark that while the effect of the model is applied to the small-scale solution, the model flux is375

3Other choices can be employed for the definition of the large-scale space. Further discussion on this topic is presented
in Appendix D.
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computed from the filtered gradient4 which does not correspond to the gradient of the small-scale376

solution. This distinction disappears in the original formulation employing a convolution filter.377

Other variants of the VMS model have been proposed in the literature. They include the378

large-small [15] and the all-small [25] approaches which correspond to evaluating the eddy vis-379

cosity from either the low-pass filtered gradients or all the resolved scales. In the case of homo-380

geneous isotropic turbulence this modification leads to only minor differences and it amounts to381

modifying the model coefficient [31].382

Vreman [1] has proposed to discard the outer filter in Eq. (29) leading to383 (
∇ · Fm(uh)

)
Vrem = ∇ ·

(
2νs(PV s [∇uh])S (PV s [∇uh])

)
. (30)

This approach has led to qualitatively similar results to the small-small approach [1]. However it384

is not consistent with the original formulation by Hughes et al. [15] and is more closely related to385

the high-pass filtered Smagorinsky model [49]. This formulation has nonetheless the advantage386

of reducing the number of filtering operations required for the evaluation of the model. A large387

reduction of its computational cost can therefore be obtained for some formulations of the DG388

method (e.g. nodal DG).389

Chapelier et al. [2] have proposed an all-all approach consisting in evaluating both the eddy390

viscosity and the strain rate from all resolved scales and retaining only the outer filtering opera-391

tion392 (
∇ · Fm(uh)

)
a-a = PV s

[
∇ ·

(
2νs(∇uh)S (∇uh)

)]
. (31)

This approach is specifically tailored for the DG-modal formulation employing orthonormal393

hierarchical bases. In this case the outer filtering operation can be implicitly applied by removing394

the model term from the equation of the modal coefficients associated with the large-scale space395

basis functions. Thus the all-all approach presents the same computational cost as the standard396

Smagorinsky model for this class of methods.397

In Sec. 6 the three variants of the DG-VMS approach here described are compared by analysing398

their accuracy in replicating the ideal energy transfer mechanism.399

5. Ideal energy transfer from DNS data400

The methodology laid out in the Sec. 3 is applied to three DNS data sets of the TGV con-401

figuration at Re = 5 000, 20 000 and 40 000. The reference DNS have been performed using the402

sixth-order incompressible flow solver Incompact3D [23]. The considered computations have403

been obtained on a regular Cartesian mesh of respectively 12803, 34563 and 54003 nodes in a404

triperiodic domain of [−π, π]3 using symmetries to divide by 8 the number of degrees of free-405

dom (dofs) actually computed. A snapshot of each of these data sets at t = 14 (non-dimensional406

time units) is selected for analysis. At this time the flow is fully developed in a state close to407

isotropic and homogeneous conditions with values of the Reynolds number based on the Taylor408

microscale Reλ = 136, 286 and 400 for Re = 5 000, 20 000 and 40 000 respectively.409

In Fig. 1 we report the energy spectrum of the snapshot corresponding to Re = 5 000. On the410

same figure we report the energy spectra of the ideal DG-LES solution for p = 7 and respectively411

723, 1443 and 2883 dofs, computed as described in Appendix B.412

4When employing the BR1 and BR2 schemes this requires the use of the filtered lifted derivatives (see e.g. [48]).

12



100 101 102 103
10−8

10−7

10−6

10−5

10−4

10−3

10−2

k

E

100 101 102 103

k
100 101 102 103

k

Figure 1: TGV at Re = 5 000: Energy spectra from the DNS computation (black) and the ideal DG-LES solution (blue)
for various discretizations: p = 7 and 723, 1443 and 2883 dofs. The corresponding values of kDG and k̃DG are marked by
black dashed lines and blue dot-dashed lines respectively.

Re=5 000, DG+spectral filter

10−2 10−1 100

0.0

0.5

1.0

1.5

·10−4

k/kDG

T
sg
s

kDG = 36

10−2 10−1 100

0.0

2.0

4.0

6.0

8.0
·10−5

k/kDG

kDG = 72

10−2 10−1 100
−0.2

0.0

0.2

0.4

0.6

0.8

1.0
·10−5

k/kDG

kDG = 144

Figure 2: TGV at Re = 5 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
kDG/3 are marked by dash-dotted lines.

When analysing DG-LES simulation results it is assumed that the resolution limit is defined413

by the cut-off wavenumber kDG =
π(p+1)

h =
(p+1)nel

2 (marked by black dashed lines in Fig. 1)414

where nel is the number of elements in one direction. By analysing Fig. 1, however, it can be415

observed that the DG-LES spectrum is almost undistinguishable from that corresponding to the416

DNS up to a wavenumber k̃DG =
(p+1)nel

3 and decays rapidly for higher wavenumbers. Moreover,417

the energy spectrum is “polluted” by the presence of discontinuities for wavenumbers close to418

kDG. Additionally the discontinuities generate a tail on the energy spectrum that decays as k−2. It419

is argued therefore that k̃DG is more relevant in identifying the resolving capabilities of the DG420

discretization. We will see in Sec. 5.2 that these observations are valid for other values of the421

polynomial degree p.422

The values of k̃DG for the three discretizations considered are therefore also reported in Fig. 1.423

These wavenumbers fall respectively within the inertial range (E ∝ k−5/3), at the end of the424

inertial range and in the dissipation range.425

In Fig. 2 we report the ideal SGS dissipation spectra, as defined in Eq. (15), computed for the426

three considered resolutions. In each plot, we observe that the dissipation spectrum presents a427

peak at k̃DG and rapidly decays for higher wavenumbers. This behaviour is remarkably different as428

compared to the case of sharp spectral filters for which a cusp appears at the cut-off wavenumber.429

This observation further confirms the relevance of k̃DG in identifying the resolving capabilities of430

the employed discretization.431
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Figure 3: Energy spectra for the TGV at Re = 20 000 (left), 40 000 (right). The considered values of k̃DG are marked by
dashed lines.

As regards the lower wavenumbers, we observe that for the coarsest employed discretization432

the interaction between the largest-resolved scales and the unresolved scales is non-negligible.433

As the value of k̃DG is moved toward the dissipation range, we observe from the middle and right434

panel of Fig. 2 a clearly different behaviour. In this case the ideal energy transfer is negligible up435

to a wavenumber corresponding to k̃DG/2 = kDG/3 and the dissipation spectrum rapidly increases436

up to k̃DG corresponding to a hyperviscous-type behaviour. A sharper peak of the SGS dissipation437

spectrum is observed as the resolution is increased. Additionally for the finest resolution consid-438

ered kDG = 144 the ideal energy transfer is negative for wavenumbers below kDG/3 corresponding439

to backscatter. While similar results are seldom presented in the literature we mention that both440

Domaradzki [8] and Métais and Lesieur [10] reported negative values of the eddy viscosity in the441

smallest wavenumber range employing an isotropic sharp spectral filter with cut-off wavenum-442

ber in the dissipation range. Moreover Métais and Lesieur [10] have shown that with this type of443

LES filter a negative value of the plateau of the eddy viscosity is obtained assuming an energy444

spectrum E(k) ∝ k−m with m ≥ 5.445

In order to analyse the generality of these observations we consider now the TGV configu-446

ration at higher Reynolds numbers, namely Re = 20 000 and 40 000. The corresponding energy447

spectra are reported in Fig. 3 as well as the values of k̃DG corresponding to three discretizations448

considered. These discretizations correspond to p = 7 and a number of dofs equal to 1443, 2883
449

and 5763 for the lower Reynolds number and 2883, 5763 and 11523 for the higher Reynolds450

number configuration. For both configurations the coarsest discretizations correspond to k̃DG in451

the inertial range, whereas the finer discretizations correspond respectively to k̃DG at the end of452

the inertial range and k̃DG in the dissipation range.453

For both configurations and all resolutions considered we observe in Figs. 4 and 5 again a454

peak of the dissipation spectrum at k̃DG and a rapid decay towards kDG, confirming the results455

obtained for the configuration at Re = 5 000. In this case, however, for the two lower resolutions,456

with k̃DG located in the inertial range, we observe a mixed viscous-hyperviscous behaviour. The457

viscous type behaviour, corresponding to an ideal SGS dissipation spectrum which scales as k
1
3 ,5458

is dominant for the low and intermediate wavenumbers up to approximately kDG/3 whereas the459

hyperviscous behaviour is dominant for higher wavenumbers up to k̃DG.460

5We refer to viscous-type behaviour when the SGS dissipation acts as a viscous dissipation with constant viscosity.
In the spectral space, for homogeneous isotropic turbulence, this quantity is proportional to k2E(k), see e.g. [8], and
therefore proportional to k2k−5/3 = k1/3 in the inertial range.
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Figure 4: TGV at Re = 20 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
kDG/3 are marked by dash-dotted lines.
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Figure 5: TGV at Re = 40 000: Ideal SGS dissipation spectrum for three discretizations with p = 7. The values k̃DG and
kDG/3 are marked by dash-dotted lines.

However, as resolution is increased, the contribution of wavenumbers below kDG/3 to the total461

SGS dissipation is progressively reduced and most of the SGS dissipation acts on the wavenum-462

bers [kDG/3, kDG]. Eventually, as the resolution is further increased and k̃DG moves into the dis-463

sipation range, the interaction between the large-resolved scales and unresolved scales becomes464

negligible. This can be observed in the right panels of Figs. 4 and 5. In this case, the energy trans-465

fer is dominated by the SGS dissipation acting on wavenumbers [kDG/3, kDG]. For wavenumbers466

below kDG/3 the energy transfer is predominantly negative corresponding to backscatter.467

The results obtained therefore indicate that the large-resolved scales are free of interaction468

with the unresolved ones only when the DG-LES limit of resolution falls at the end of the inertial469

range and within the dissipation range. For most cases of practical interest, when a coarser470

resolution is employed, a mixed viscous-hyperviscous type behaviour can be observed and the471

SGS dissipation acting on the large-resolved scales is not negligible.472

The mixed type behaviour is not observed in Fig. 2 as the TGV at Re = 5 000 presents a very473

short inertial range.474

5.1. Ideal modal energy transfer and eddy viscosity475

We now analyse the modal energy transfer as defined by Eq. (20) for the same configurations476

described in the previous section. Obtained results are reported in Fig. 6. We observe a remark-477

ably consistent behaviour across all resolutions and Reynolds numbers considered. A first region478
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Figure 6: Modal energy transfer for the ideal SGS stress for the TGV at Re = 5 000 (left), 20 000 (center), and 40 000
(right) for various discretizations with p = 7.
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Figure 7: TGV at Re = 20 000: Modal energy transfer for the ideal SGS stress for several discretizations with p = 7.

can be identified which is characterized by a nearly constant modal energy transfer for mode-479

numbers m from 0 to 5. The modal energy transfer then increases rapidly presenting a peak at480

m = p and then decreases smoothly for higher mode-numbers. We remark that these two differ-481

ent behaviours are separated by the same mode-number corresponding to (m + 1)/(p + 1) = 0.75482

for all the discretizations and Reynolds numbers considered.483

As we would expect from the previous analysis in Fourier space, the energy transferred to484

modes corresponding to low mode-numbers is not in general negligible. As the discretization485

is refined this value progressively decreases and the energy transfer mechanism is dominated by486

the SGS dissipation acting on modes (m + 1)/(p + 1) > 0.75.487

The consistency of the described behaviour is further illustrated by Fig. 7 which reports the488

modal energy transfer obtained at Re = 20 000 for 9 discretizations with p = 7 and a number of489

dofs between 1443 and 5763. We additionally observe that for relatively coarse discretizations as490

the resolution is increased, the main effect is to reduce the modal energy transfer at low mode-491

numbers. Only when the resolution limit is in the dissipation range (kDG > 168) a significant492

reduction of the peak value is obtained as the discretization is further refined.493

The ideal modal eddy viscosity, as defined in Eq. (22) using the BR1 scheme for the viscous494

discretization, is reported in Fig. 8 for the three Reynolds numbers and discretizations.495

Similarly to what has been observed for the modal energy transfer, the modal eddy viscosity496

presents a plateau at mode-numbers m ≤ 5 and increases for higher mode-numbers. In con-497

trast to the modal dissipation spectrum, however, the modal eddy viscosity presents in general498
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Figure 8: Ideal modal eddy viscosity for the ideal subgrid stress for the TGV at Re = 5 000 (left), 20 000 (center), 40 000
(right) for various discretizations with p = 7.

a “parabolic” shape (in place of a spike) with a smoother increase and decay for relatively high499

mode-numbers.500

To conclude this analysis we observe that all the obtained results indicate that the interac-501

tion between large-resolved scales and unresolved ones, when employing the DG-LES filter, is502

negligible only for finite Reynolds numbers when the turbulent scales are resolved up to the be-503

ginning of the dissipation range. Based on these findings, it could be argued that models based504

on this assumption present a limited applicability as they would rely on high resolution being505

available and thus provide a limited computational gain as compared to (underresolved) DNS.506

In contrast, for most cases of practical interest, at relatively high Reynolds numbers when the507

resolution limit falls within the inertial range, the SGS dissipation acting on the large-resolved508

scales is not negligible. We want to remark however that the resolution requirements in an actual509

simulation vary in space and time and thus this assumption might be locally valid. This is the510

case for transitional or spatially inhomogeneous flows.511

As an example, we illustrate in Fig. 9 the modal energy transfer for the TGV at Re = 20 000512

at various times for a discretization corresponding the intermediate resolution considered (p = 7,513

nel = 36 and 2883 dofs). It can be observed that the SGS dissipation rapidly increases during the514

transition phase (left panel of Fig. 9) and the energy transfer from large scales remains non negli-515

gible during the first part of the decay phase (central panel). However for t > 14 the resolution is516

sufficient such that the energy transfer from modes m ≤ 5 is clearly negligible (right panel). Thus517

the ideal LES model should be able to adapt to each of these conditions by reducing the SGS518

model dissipation applied to large scales during the initial transition phase and late dissipation519

phase.520

5.2. Sensitivity to the polynomial degree521

In this section we investigate the generality of the obtained results by analysing discretiza-522

tions corresponding to various values of the polynomial degree p. All the results here reported523

have been obtained from a snapshot at t = 14 of the TGV at Re = 20 000. The comparisons are524

carried out by fixing the total number of dofs to the same values employed in Sec. 5, that is 1443,525

2883 and 5763 dofs. Four values of the polynomial degree are at first considered: p = 5, 7, 8,526

and 11.527

Fig. 10 presents the energy spectra of the DNS data set and the ideal DG-LES solutions for528

all considered discretizations. We observe that for a fixed number of dofs the energy spectra are529

almost identical up to kDG and as mentioned in the previous section (see Fig. 1) identical to the530
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Figure 9: TGV at Re = 20 000: Ideal modal energy transfer for the ideal SGS stress at various times for p = 7 and 2883

dofs.
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Figure 10: TGV at Re = 20 000: Energy spectra of the DNS data and the ideal DG-LES solution for various discretiza-
tions for 1443, 2883 and 5763 dofs. Close-up view at wavenumbers between k̃DG and kDG.

DNS spectrum up to k̃DG. The most notable differences appear in the tail of the spectra related to531

the discontinuities of the DG-LES solutions. Thus we can reasonably conclude that increasing532

the polynomial degree for a fixed number of dofs has a limited effect on the resolving capabilities533

of the DG-LES method.6534

This conclusion is also confirmed by analysing Fig. 11 which reports the SGS dissipation535

spectrum. Indeed the same behaviour can be observed for all polynomial degrees confirming the536

generality of the conclusions drawn in the previous section.537

In Figs. 12 and 13 we report the modal energy transfer and eddy viscosity. The modal energy538

transfer levels cannot be directly compared, as a different number of modes is retained for each539

polynomial degree, however we can observe that the same trend seen for p = 7 (see Sec. 5.1) is540

obtained for the other discretizations. The generality of our conclusions is further illustrated by541

Fig. 13 which demonstrates the close agreement of the modal eddy viscosity for all discretiza-542

tions and confirms the relevance of the mode-number m + 1 = 0.75(p + 1) in separating the two543

different behaviours.544

We consider now relatively lower polynomial degree representations: p = 2, 3, 4 and 5. The545

energy spectra for all discretizations are not reported here as they lead to the same conclusions546

6This observation only concerns the accuracy of the considered solution space in representing the DNS solution. It
does not take into account the dissipation properties of the numerical fluxes as done e. g. by Moura et al. [50].
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Figure 11: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines mark values of k̃DG and kDG/3.
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Figure 12: TGV at Re = 20 000: Ideal modal energy transfer for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.
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Figure 13: TGV at Re = 20 000: Ideal modal eddy viscosity for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.
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Figure 14: TGV at Re = 20 000: Ideal SGS dissipation spectrum for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines mark values of k̃DG and kDG/3.
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Figure 15: TGV at Re = 20 000: Ideal modal eddy viscosity for various discretizations for 1443, 2883 and 5763 dofs.
Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

drawn from Fig. 10. More marked differences can be observed in Figs. 14 and 15 reporting the547

ideal SGS dissipation spectrum and modal eddy viscosity. Overall a similar sensitivity to the548

available resolution can be recognized for different values of p in Fig. 14. However, in constrast549

with the results obtained for higher polynomial degrees, the presence, location and value of the550

peak of the SGS dissipation spectrum appear to be dependent on the polynomial degree for p ≤ 4.551

Similarly, in Fig. 15 we observe relatively marked differences in the modal eddy viscosity for552

different values of p. As the resolution is increased the SGS dissipation acts on the highest mod-553

enumbers. However compared to Fig. 13, no real plateau can be identified for the modal eddy554

viscosity at low modenumbers and for the highest resolution (right panel of Fig. 15) markedly555

negative values are obtained for the modal viscosity at low modenumbers.556

6. A-priori analysis of the DG-VMS approach557

In this section, we perform an a-priori analysis of the all-all and Vreman variants of the DG-558

VMS model. For this purpose, we evaluate the DG-VMS model from the ideal DG-LES solution559

corresponding to Re = 20 000 and t = 14 for p = 7 and nel = 72. As described in the previous560

section, for this Reynolds number and discretization considered the resolution limit, k̃DG = 192,561

falls within the dissipation range. Under these conditions the interaction between large-resolved562
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Figure 16: TGV at Re = 20 000, p = 7, kDG = 288: Ideal SGS energy transfer (black solid), SGS model dissipation
spectrum provided by the Smagorinsky model (dashed) and two variants of the DG-VMS approach for: β = 0.25 (green),
β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).

and unresolved scales is negligible (see Fig. 4) and we expect the DG-VMS approach to recover563

the ideal SGS dissipation.564

Both variants of the DG-VMS model are evaluated from this solution for different values565

of the scale fraction parameter β. We do not consider the calibration of the model coefficients,566

as described e.g. by Meyers et al. [51], as a function of β. One reason for not employing such567

calibration is that it is derived for convolution filters. As we have observed in Sec. 2, this is not568

the case for the DG-projection and additional care is required to derive a consistent calibration569

procedure. Additionally it has been shown by Meyers et al. [51] that the model constant is de-570

pendent on the ratio ∆/η, where η is the Kolmogorov scale, when ∆/η 6 100. This is the case571

when the DG-LES resolution falls at the beginning of the dissipation range as considered here.572

Thus we also make no attempt at providing a general calibration of the model coefficient from573

the employed DNS/LES data as the results would be dependent on this parameter in the range of574

validity of the DG-VMS approach. In order to facilitate the analysis, all the results are presented575

with the model constant selected such that the modelled dissipation spectrum presents the same576

maximum value as that of the ideal SGS dissipation spectrum. The employed values of the model577

coefficient are reported in Table 1.578

β = 0.25 β = 0.5 β = 0.75

all-all 0.094 0.096 0.098
Vreman 0.099 0.117 0.162

Smagorinsky 0.090

Table 1: TGV at Re = 20 000, p = 7, kDG = 288: Model coefficients selected for the Smagorinsky and DG-VMS model
using the BR2 scheme (ηbr2 = 2).

In Fig. 16 we report the ideal and model SGS dissipation spectrum corresponding to the579

Smagorinsky model and the DG-VMS approach using the BR2 scheme with ηbr2 = 2.580

It is obvious from this figure that, as already shown by other authors, the Smagorinsky model581

provides excessive dissipation at low wavenumbers. This effect is drastically reduced by em-582

ploying the considered variants of the DG-VMS approach. As expected, increasing the value583

of β restricts the action of the SGS model on progressively finer scales and, for a fixed model584
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Figure 17: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal energy transfer (black solid) and modelled modal energy
transfer provided by the Smagorinsky model (dashed) and two variants of the DG-VMS approach for: β = 0.25 (green),
β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).

constant, reduces the total SGS dissipation.585

In particular for β = 0.75 the SGS model acts only on the range of scales [kDG/3, kDG] and pro-586

vides a relatively accurate agreement with the ideal energy transfer. The quality of the agreement587

for wavenumbers close to and above k̃DG was however found to be sensitive to the discretization588

employed for the DG-VMS model, such as the value of ηbr2 or the use of the BR1 scheme rather589

than the BR2 scheme. The interested reader is referred to [52] for a more complete discussion590

on this topic.591

For lower values of β however the distribution of the modelled SGS dissipation does not592

correspond to the ideal SGS dissipation for any of the considered discretizations. This effect is593

particularly marked for β < 0.5 and has also been observed by employing the DG-LES solution594

at the intermediate resolution kDG = 144 (not reported here).595

We further remark that the SGS dissipation spectrum decays smoothly for low wavenumbers596

for all variants of the DG-VMS approach. This is expected as the high-pass projection filter is597

not sharp in Fourier space. This result illustrates an advantage of using a modal decomposition as598

opposed to an orthogonal spectral filter as Sagaut and Levasseur [27] have shown that a smooth599

decay of the SGS dissipation spectrum leads to improved results in a-posteriori tests. Nonethe-600

less, analysing Fig. 16, we observe that both VMS approaches present a negligible amount of601

SGS dissipation acting on the large resolved scales. This confirms that the DG-VMS approach602

is not able to replicate the viscous-type behaviour observed at low wavenumbers when the reso-603

lution limit falls within the inertial range.604

Comparing the two variants we observe that the all-all approach presents a marginally better605

agreement with the ideal SGS dissipation spectrum. We recall that this variant presents a much606

lower computational cost for modal DG methods. On the other hand, for the Vreman approach607

the SGS stress is computed from the filtered gradients. This implies that the SGS stress is aligned608

with the small-scale gradients and tends to zero when the flow is well resolved and the solution609

is represented entirely by the large-scale component. An analysis of the alignment between610

the ideal SGS stress and the modelled one could therefore be employed in order to draw more611

definitive conclusions.612

The conclusions drawn above are confirmed by analysing the modal energy transfer and eddy613

viscosity presented in Figs. 17 and 18.614

It is clear from these figures that for the all-all approach a value of β = 0.75 must be em-615
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Figure 18: TGV at Re = 20 000, p = 7, kDG = 288 : Ideal modal eddy viscosity (black solid) and modelled modal eddy
viscosity provided by the Smagorinsky model (dashed) and two variants of the DG-VMS approach for: β = 0.25 (green),
β = 0.5 (blue), and β = 0.75 (red) using the BR2 scheme (ηbr2 = 2).
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Figure 19: TGV Re = 20 000: Ideal SGS dissipation spectrum and model dissipation spectrum using the all-all DG-VMS
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ployed in order to mimic the negligible ideal energy transfer at low mode-numbers. In this case616

a remarkably good agreement is obtained with both the modal energy transfer and eddy vis-617

cosity, confirming the conclusion drawn from the spectral energy transfer analysis. A different618

behaviour is obtained for the Vreman model as T̃m is positive for (m+1)/(p+1) = β and becomes619

negative for lower values of m.620

The presented analysis has been repeated for different values of the polynomial degree p.621

Similar conclusions have been obtained with regards to the comparison of the two variants and622

the sensitivity of the model dissipation spectrum to β (not reported here). However, the optimal623

value of β appears to be dependent on p when p ≤ 4. This result is expected from the a-priori624

analysis carried out in Sec. 5.2. To illustrate this, we report in Fig. 19 the ideal SGS dissipation625

spectrum and the model energy transfer for p = 3, 8 and 11 using the DG-VMS all-all approach626

and the BR2 scheme (ηbr2 = 2).627

While the results obtained for p = 8 and 11 agree with those previously presented, for p = 3628

the ideal SGS dissipation spectrum does not present a single peak at k̃DG. In this case the ideal629

SGS dissipation is in between that provided by the DG-VMS model for β = 0.5 and β = 0.75.630

This result indicates that for p ≤ 4 the DG-VMS approach might not be able to replicate the631

distribution of the ideal SGS dissipation.632
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The analysis presented up to this point has focused on the ability of the DG-VMS approach to633

replicate the ideal energy transfer mechanism when the SGS dissipation acting on large-resolved634

scales is negligible.635

We have observed in Sec. 5 that when the resolution limit falls within the inertial range a636

viscous-type behaviour can be observed and is dominant at wavenumbers below kDG/3. It appears637

from these analyses that the DG-VMS approach is not able to replicate this mechanism.638

Modifying or adapting β does not lead to a better representation of the SGS dissipation spec-639

trum. However this parameter allows us to control the set of scales on which the SGS dissipation640

acts and the total amount of SGS dissipation. Thus the DG-VMS approach can nonetheless lead641

to improved results with respect to the standard or dynamic Smagorinsky model which might642

introduce excessive dissipation on the large resolved scales. This also explains the promising643

results observed for the local VMS approach proposed by Ramakrishnan and Collis [26] and644

for the dynamic partition selection algorithm for the DG-VMS approach proposed by Naddei et645

al. [53].646

In the context of high Reynolds numbers and typical LES resolutions, the limitations of the647

DG-VMS model could be mitigated by combining it with an eddy-viscosity model, which mimics648

the viscous-type behaviour observed at low wavenumbers. The ideal SGS dissipation spectrum649

could be therefore approximated by employing a mixed Smagorinsky+DG-VMS model where650

the Smagorinsky model acts on all scales and the VMS approach with β = 0.75 replicates the651

hyperviscous behaviour dominant on wavenumbers k > kDG/3. Similar approaches have already652

been proposed in the literature, e. g. the Smagorinsky and residual-based-VMS approach by653

Wang and Oberai [54], or the enhanced field model and the mixed Smagorinsky-hyperviscosity654

model by Jeanmart and Winckelmans [12]. Two model coefficients appear however in the re-655

sulting model. These coefficients should be dynamically adapted, e.g. using a Germano-type656

procedure similarly to that used in [12]. An alternative approach could consist in evaluating657

dynamically one of the coefficients and calibrating their ratio based on the resolution available,658

e.g. as a function of h/η.659

In order to illustrate this idea, in Fig. 20 we consider the ideal SGS dissipation spectrum660

for a snapshot at t = 14 of the TGV at Re = 20 000, p = 7 and 2883 dofs. In the left panel,661

the ideal SGS dissipation spectrum is compared to the two variants of the mixed model with662

constant coefficients. This figure illustrates that a dynamic mixed model even with global model663

coefficients has the potential, at least a-priori, to an accurate agreement with the ideal SGS-664

dissipation. This is not the case for the standard Smagorinsky and the DG-VMS models as665

shown on the right panel of Fig. 20. However, the appropriateness of such a model can only be666

confirmed via a-posteriori testing. This is out of the scope of this research and is thus left for667

future work.668

7. Conclusions669

In this work we have proposed a framework for the a-priori analysis of DG-LES methods670

based on DNS databases. It is an extension of the classical framework for the analysis of the671

energy transfer between resolved and unresolved scales of Kraichnan [7] and Domaradzki et672

al. [8]. The proposed framework is consistent with the employed discretization and as such,673

allows the evaluation of the ideal SGS dissipation spectrum that needs to be modelled including674

the effect of discontinuities inherently present in the DG method and the particular choice of the675

numerical flux.676

24



10−2 10−1 100
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
·10−5

k/kDG

T
m

ideal
Smag + all-all
Smag + Vreman

10−2 10−1 100
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
·10−5

k/kDG

T
m

ideal
Smag
all-all
Vreman

Figure 20: TGV Re = 20 000, p = 7, kDG = 144: Ideal SGS dissipation spectrum and modelled dissipation spectrum for
mixed Smagorinsky+DG-VMS models (left) and the Smagorinsky and standard DG-VMS models with β = 0.75 (right).
The model coefficients for the mixed versions are set to Cs,smag = 0.067 and Cs,a−a = 0.063 for the all-all variant and
Cs,vrem = 0.103 for the Vreman variant. For the standard version, the model coefficients are set to Cs,smag = 0.091,
Cs,a−a = 0.085 and Cs,vrem = 0.114 respectively.

We have further introduced the concept of a modal energy transfer and eddy viscosity. These677

quantities can be employed to analyse a-priori LES models that rely on modifying the amount678

of SGS dissipation acting on different modes of the solution such as the DG-VMS model and the679

spectral vanishing viscosity approach.680

The developed framework has been applied to a DNS database of the TGV at Re = 5 000,681

20 000 and 40 000 [23]. It has been shown that the ideal SGS dissipation spectrum presents682

in general a mixed viscous-hyperviscous behaviour. The viscous behaviour is dominant for683

wavenumbers below k̃DG/2 = kDG/3 = nel(p + 1)/6 whereas the hyperviscous behaviour is dom-684

inant at higher wavenumbers with a peak at k̃DG. Only when the DG resolution limit falls at the685

beginning of the dissipation range the energy transfer between large-resolved and unresolved686

scales is negligible. This corresponds to a negligible energy transfer to DG modes of mode-687

number m + 1 ≤ 0.75(p + 1). Under these conditions, the DG-VMS approach can provide an688

accurate approximation of the SGS dissipation spectrum.689

A-priori analyses of the Vreman [1] and all-all [2] variants of the DG-VMS approach have690

been carried out. It has been shown that, when the ideal SGS dissipation acting on the large691

resolved scales is negligible, the best results for the DG-VMS approach are obtained for a692

scale-fraction parameter of β = 0.75. Both variants provide a good agreement with the ideal693

SGS dissipation spectrum. In particular, the all-all approach more closely replicates the ideal694

modal energy transfer and presents a reduced computational cost.695

All results have been shown to only mildly depend on the polynomial degree for p ≥ 5 and696

more marked differences are observed for lower values of p which lead to different optimal values697

of β. We therefore suggest to employ a value of p ≥ 5 as it leads to a more consistent behaviour698

of the ideal energy transfer mechanism and a good agreement of the DG-VMS approach with the699

ideal quantities.700

Finally, we have shown that the DG-VMS approach is not able to reproduce the viscous-type701

behaviour observed at relatively low wavenumbers when the resolution limit falls within the702

inertial range. Under these conditions, the a-priori analyses indicate that a mixed model based703
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on the Smagorinsky model and the DG-VMS approach with β = 0.75 could provide an improved704

agreement over a wide range of resolutions provided that the model coefficients are dynamically705

adapted.706
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Appendix A. The subfilter and subgrid contributions to the total LES residual715

Following an approach similar to [40, 39] the total DG-LES residual Eq. (7) can be rewritten716

in the form717

R(u,uh, φ)) =
∑

K

[∫
K

(
Fc(uh) − Fc(u)

)
· ∇φ dx −

∫
∂K

(
hc(u+

h ,u
−
h ,n

+) − Fc(u) · n+
)
φ+ dσ

]
+

∑
K

[∫
K

(
Fc(u) − F c(u)

)
· ∇φ dx −

∫
∂K

(
Fc(u) − F c(u)

)
· n+φ+ dσ

]
.

(A.1)

Using integration by parts and summing over all elements for the integrals that do not depend on718

uh we obtain:719

R(u,uh, φ)) =
∑

K

[∫
K

(
Fc(uh) − Fc(u)

)
· ∇φ dx −

∫
∂K

(
hc(u+

h ,u
−
h ,n

+) − Fc(u) · n+
)
φ+ dσ

]
+

∫
Ωh

∇
(
F c(u) − Fc(u)

)
φ dx .

(A.2)

Employing the same procedure presented in Sec. 3 the contribution of the unresolved scales to720

the evolution of the DG-LES solution Eq. (13) can be expressed as721

R(u,uh) =

RS GS (u,uh)︷                                                                                                              ︸︸                                                                                                              ︷∑
i

∑
K

[∫
K

(
Fc(uh) − Fc(u)

)
· ∇ψi

K dx −
∫
∂K

(
hc(u+

h ,u
−
h ,n

+) − Fc(u) · n+
)
ψi,+

K dσ
]
ψi

K

+
∑

i

∑
K

∫
Ωh

∇ ·
(
F c(u) − Fc(u)

)
ψi

K dxψi
K︸                                                 ︷︷                                                 ︸

RS FS (u,u)

,

(A.3)
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where the second term can be rewritten as722

RS FS (u,u) = PS p
h

[
∇ ·

(
F c(u) − Fc(u)

)]
. (A.4)

The total influence of the unresolved scales on the evolution of the DG-LES solution can be723

therefore expressed as the combination of two contributions. The former is a subgrid-scale resid-724

ual term RS GS , which depends only on the DG-LES solution uh and the subgrid scales u − uh.725

The latter is a subfilter-scale residual term RS FS , which corresponds to the projection on the DG-726

LES space of the divergence of the subfilter stresses F c(u) − Fc(u) which depend only on the727

spatially filtered solution u and the subfilter scales u − u.728

We remark that in this work, in contrast to e. g. [39] or [40], we only assume that the filter (·)729

commutes with spatial derivatives and do not make any further assumption about its regularity.730

Such properties are however fundamental for the mathematical analysis of subfilter-scale stresses731

and the derivation of various LES models such as the Leonard [55] or the Bardina [56] models.732

Appendix B. Energy and dissipation spectra computation733

For the computation of the energy and dissipation spectra we need to evaluate the Fourier734

transform of the velocity field, SGS residual, and SGS model term. For this purpose we employ735

the Fast Fourier Transform (FFT) algorithm as implemented in the FFTW-3.3.8 library [57].736

The FFT algorithm requires the solution to be known on an uniform Cartesian grid. The vari-737

able of which we want to compute the FFT is therefore sampled on a post-processing grid formed738

by the union of n3
el uniform Cartesian grids centered on each cell and composed of q3

s sampling739

points. The post-processing grid on the domain [−π, π]3 is thus composed of the Cartesian prod-740

uct of the coordinates ( j− 1
2 ) 2π

qsnel
for j = 1, . . . ,NFFT = qsnel. The value of qs must be sufficiently741

large to evaluate accurately the Fourier coefficients corresponding to the wavenumbers of interest742

(that is at least up to kDG).743

Indeed, the presence of discontinuities in the DG-LES field leads to a reduction in the order744

of convergence of the FFT algorithm. We remark that the FFT algorithm relies on the trapezoidal745

integration rule which presents an order of accuracyO(NFFT
−1) in the presence of discontinuities,746

as opposed to the exponential convergence obtained for smooth functions. In this case the use of747

nel(p + 1) points per direction, as is usually found in the literature of DG-LES, is not sufficient748

for the evaluation of the energy and dissipation spectra. For this reason, we employ at least749

3nel(p + 1) points per direction and verify that increasing this value does not modify the energy750

and dissipation spectra at wavenumbers below kDG.751

In order to illustrate the need for a sufficiently high number of points for the evaluation of752

the FFT, we report in Fig. B.21 the energy spectra of the DG-LES solution of the TGV config-753

uration at Re = 20 000 and t = 14 using p = 5 and 7 and a total of 288 degrees of freedom for754

various values of qs. It can be observed that the FFT is inaccurate for low values of qs even at755

wavenumbers below kDG. Slight differences can be observed for wavenumbers below k̃DG and in756

some cases marked differences can appear at wavenumbers close to kDG. This is visible from the757

bump in the energy spectrum at kDG for qs = p + 1 on the right panel of Fig. B.21 corresponding758

to p = 7.759

Nonetheless, the spectrum converges as qs is increased and a value of qs ≈ 3nel(p + 1) ap-760

pears sufficient to obtain the Fourier transform for wavenumbers up to kDG. Further increasing the761

value of qs leads to the slow convergence of the tail of the spectrum associated with the DG-LES762

discontinuities.763
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Figure B.21: TGV at Re = 20 000, t = 14, kDG = 144: Energy spectrum for p = 5 (left) and p = 7 (right) for various
values of qs.

We note that alternative techniques can be employed to evaluate the Fourier transform avoid-764

ing the use of a large number of post-processing points. Such methodologies include the Non765

Uniform Fast Fourier Transform (NUFFT) [58, 59] and the Conformal Fourier Transform (CFT)766

[60].767

Appendix C. Sensitivity of the ideal energy transfer to the DG-LES filter768

As discussed in Sec. 2, all the results presented have been obtained by defining the ideal769

DG-LES solution as the L2-projection on the discretization space of the DNS solution filtered770

with a sharp spectral filter removing wavenumbers ‖k‖∞ ≥ kDG. Other possible definitions can be771

considered. Among them, the L2-projection of the DNS solution on the DG discretization space772

is an interesting candidate.773

The effect of these two different definitions on the results obtained is therefore investigated.774

For this purpose we employ the snapshot at t = 14 of the TGV at Re = 20 000. In order to775

simplify the notation we will refer to the L2-projection of the DNS solution on the DG space as776

simply the DG-projection in contrast to the employed definition of ideal DG-LES solution.777

In Fig. C.22 we report the energy spectra corresponding to the ideal DG-LES and the DG-778

projection for three resolutions. We observe that for all resolutions the energy spectra are in-779

distinguishable for wavenumbers up to k̃DG. Moreover we notice higher values of the tail of the780

energy spectra for the DG-projection which is especially evident for the coarsest resolution (left781

panel of Fig. C.22). This indicates, as one would expect, that the L2-projection of the DNS782

field presents stronger discontinuities than the L2-projection of the filtered field. Nonetheless,783

k̃DG appears to be a relevant wavenumber identifying the resolution properties of DG using both784

definitions.785

In Figs. C.23 and C.24 we present the spectral and modal energy transfer for the same resolu-786

tions. These figures illustrate a fair agreement between results obtained with the two definitions.787

The most remarkable differences appear in Fig. C.23 for the relatively low wavenumbers. Indeed788

the DG-projection leads to a more erratic behaviour of the spectral energy transfer which could789

be explained by the presence of aliasing errors as described in Sec. 2.790
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Figure C.22: TGV at Re = 20 000: Energy spectra of the DNS data, the ideal DG-LES solution, and DG-projection for
three resolutions with p = 7. Close-up view for wavenumbers between k̃DG and kDG.
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Figure C.24: TGV at Re = 20 000: Ideal modal energy transfer of the ideal DG-LES solution and the DG-projection for
three discretizations with p = 7. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.
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Figure C.25: TGV at Re = 20 000: Ideal modal eddy viscosity of the ideal DG-LES solution and the DG-projection for
three discretizations with p = 7. Dashed lines indicate mode-numbers m + 1 = 0.75(p + 1) and m = p.

Slightly more significant differences can be observed in Fig. C.25 which reports the modal791

eddy viscosity employing the BR1 scheme. In this figure we can identify lower values of the792

modal eddy viscosity at relatively high mode-numbers. These can be explained by the presence793

of stronger discontinuities and higher values of the lifting coefficients used for the BR1 scheme794

and therefore, higher values of the diffusive term in the denominator of Eq. (22) at high mode-795

numbers.796

Overall the results obtained demonstrate that, with the exception of small differences, the797

definition of the reference DG-LES solution as the L2-projection of the DNS field leads to the798

same conclusions drawn by employing the current definition of the ideal DG-LES solution.799

Appendix D. Choice of the large-scale space800

In Sec. 3 we have defined the space Wm
h = span

{
ψm

K ,∀K ∈ Ωh, m − 1
2 < ‖m‖ ≤ m + 1

2

}
. With801

this choice the assumption of T̃sgs(m) = 0 for m ≤ pL corresponds to the VMS approach defining802

the large-scale space as VL ..=
⋃

m≤pL
Wm

h as described in Sec. 4. Other definitions are possible,803

in particular the most common choice is to define VL ..= S pL
h which corresponds to assuming that804

T̃ c(m) = 0 for m ≤ pL where805

T̃ c(m) ..= R(u,uh,PWm,c
h

[uh]) , (D.1)

with Wm,c
h = span

{
ψm

K ,∀K ∈ Ωh, ‖m‖∞ = m
}
. It is immediate to show that Wm,c

h ≡ S m
h \ S m−1

h for806

m > 0 and that W0,c
h ≡ S 0

h.807

The definition employed throughout this work Eq. (20) corresponds to analysing the modal808

energy transfer by grouping together modes over spherical shells characterized by m − 1
2 <809

‖m‖ ≤ m + 1
2 , whereas Eq. (D.1) corresponds to grouping modes over cubic shells characterized810

by ‖m‖∞ = m.811

We argue that Eq. (20) allows for a more consistent description of the modal energy transfer812

mechanism. To justify this choice we report in Figs. D.26 and D.27 the contour plots of the813

modal eddy viscosity ν̃(m) for p = 7 and p = 11 defined as814
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Figure D.26: TGV at Re = 20, 000, t = 14: Contour plot of ν̃†(m) at constant mz = 0 for p = 7 and 1443, 2883 and 5763

dofs (left to right) using the BR1 scheme.
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Figure D.27: TGV at Re = 20, 000, t = 14: Contour plot of ν̃†(m) at constant mz = 0 for p = 11 and 1443, 2883 and
5763 dofs (left to right) using the BR1 scheme.

ν̃(m) ..=

∑
K∈Ωh

ũh
m,K
· R(u,uh, ψ

m
K )

∑
K∈Ωh

ũh
m,K
· Lv(uh, ψ

m
K )

. (D.2)

and normalized as in Eq. (23).815

We observe that the isolevel curves for ν̃†(m) are better approximated by spheres (circles in816

the plot) rather than by cubes centred in (0, 0, 0). Therefore we assume that improved results can817

be obtained for LES models by modifying the modal eddy viscosity as a function of ‖m‖ rather818

than ‖m‖∞.819
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