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ON MINIMAL KERNELS AND LEVI CURRENTS

ON WEAKLY COMPLETE COMPLEX MANIFOLDS

FABRIZIO BIANCHI1 AND SAMUELE MONGODI2

Abstract. A complex manifold X is weakly complete if it admits a continuous
plurisubharmonic exhaustion function φ. The minimal kernels Σk

X , k ∈ [0,∞] (the
loci where are all Ck plurisubharmonic exhaustion functions fail to be strictly plurisub-
harmonic), introduced by Slodkowski-Tomassini, and the Levi currents, introduced
by Sibony, are both concepts aimed at measuring how far X is from being Stein. We
compare these notions, prove that all Levi currents are supported by all the Σk

X ’s,
and give sufficient conditions for points in Σk

X to be in the support of some Levi
current.

When X is a surface and φ can be chosen analytic, building on previous work
by the second author, Slodkowski, and Tomassini, we prove the existence of a Levi
current precisely supported on Σ∞

X , and give a classification of Levi currents on X.
In particular, unless X is a modification of a Stein space, every point in X is in the
support of some Levi current.

1. Introduction

Given an abstract (and possibly very complicated) manifold, a natural question is
whether it is possible to see it as a subset of a simpler space. In the real category, a
fundamental theorem by Nash states that this is always possible, and in a very strong
sense: every Riemannian manifold can be isometrically embedded in some RN . When
moving to the complex category, we can then ask the following natural question: is it
possible to embed any complex manifold in some CN , by means of a holomorphic map?
We call Stein a manifold for which the above holds true. This time, the rigidity of
holomorphic functions readily provides negative examples: for instance, the maximum
principle implies that any holomorphic map on a compact complex manifold must be
constant, and thus the manifold cannot be Stein. A central question is then to under-
stand when a given complex manifold is Stein. More specifically, given a dimension
n, one would like to understand the obstructions for an n-dimensional manifold to be
Stein.

A major advance in this direction was provided by Grauert [3]: a complex manifold is
Stein if and only if it admits a C2 strictly plurisubharmonic (psh for short) exhaustion
function. The C2 assumption was relaxed to C0 by Narasimhan [12, 13]. In view
of these results, it is natural to tackle the question by studying the positive cone
Psh0

e(X) of all continuous psh exhaustion functions on X (or more generally the cone

Pshke(X) := Psh0
e(X) ∩ Ck for some k ∈ [0,∞], and in particular to find obstructions

for them to be strictly psh. As a rough idea, such obstructions must correspond to the
presence of some sets in X along which all continuous psh functions must necessarily be
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pluriharmonic. As a prototypical example, the blow-up of a point and its corresponding
exceptional divisor give precisely this kind of obstruction.

A precise study of this kind of phenomena was started by Slodkowski and Tomassini
in [24] in the setting of weakly complete complex manifolds, i.e., manifolds admitting a
continuous psh exhaustion function. A crucial definition is the following: for k ∈ [0,∞]

the minimal kernel of a manifold X (with respect to Pshke) is

(1) Σk
X := {x ∈ X : i∂∂u is degenerate at x ∀u ∈ Pshke(X)},

i.e., the subset of X where no element of Pshke can be strictly psh. A key result of [24]

is that, whenever Pshke(X) is not empty, there actually exists a function φ0 ∈ Pshke(X)
(called minimal) which fails to be strictly psh precisely on the minimal kernel Σk

X .
Moreover, the minimal kernels are local maximum sets (see Definition 3.1). Some
finer properties are also established (some requiring at least the C2 regularity, see for
instance [24, Theorem 3.9]). Observe that the Σk

X ’s are increasing in k, but it is not
known whether equalities should occur in general, see for instance [23, Section 5.10].

In [9, 10], the second author, Slodkowski, and Tomassini showed that, if X has
complex dimension 2 and Psh∞e contains at least one real analytic function, the minimal
kernel is either a union of countably many compact (and negative) curves or equal to
the whole manifold, by giving a full classification of the possible structures that such
a manifold can present. An important point here is that, although in general the
minimal kernel does not have a priori an analytic structure, however its intersection
with any level of a psh exhaustion function does (at least in dimension 2).

In [20], Sibony introduced the notion of Levi current (see Definition 2.1), which is
related to the (non-)existence of strictly psh functions on a complex manifold and thus
to the problem of determining whether a given manifold is Stein, see also [15, 19, 21].
Extremal Levi-currents are supported on sets where all continuous psh functions are
constant. In the case of infinitesimally homogeneous manifolds, a foliation is con-
structed and linked to the obstructions to Steinness.

Our goal here is to compare these two approaches, and in particular to use the
notion of Levi current on X to study the analytic structure of the minimal kernels Σk

X .

In order to do this, let us denote by Pshk, for 0 ≤ k ≤ ∞, the cone of Ck psh function
on X and define the distribution Ek in TX as

(2) Ek := {(x, v) ∈ TX : (dϕ)x(v) = 0 ∀ϕ ∈ Pshk(X)}.

A distribution is a subset of TX whose intersection with TxX is a (real) vector subspace
of the latter for every x ∈ X. In general, Ek will not be a subbundle of TX, as dim Ekx
is not constant; however it is a closed subset of TX, hence the function x 7→ dim Ekx is
upper semicontinuous.

The following is our main result.

Theorem 1.1. Let X be a weakly complete complex manifold and T a Levi current on
X. Denote by Σk

X the minimal kernels of X and by F the union of the supports of all

Levi currents on X. Then F ⊆ Σk
X for all k ≥ 0 and

(1) if T has compact support KT , then KT is a local maximum set;
(2) if K is a local maximum set, then there exists a Levi current supported on K.

In particular, K ∩ F 6= ∅.
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Moreover, if X is a surface, φ ∈ Ck a psh exhaustion function, and Y a regular
connected component of a level set {φ = c},

(3) if 4 ≤ k ≤ ∞ and U ⊆ Σk
X is an open set in Y and there exists x ∈ U such

that dim Ekx = 2, then X is a union of compact complex curves. In particular,
F = Σk

X = X;

(4) if 2 ≤ k ≤ ∞ and Y ⊆ Σk
X , then there exists c′ < c such that the connected

component of φ−1([c′, c]) containing Y is contained in F . In particular, Y ⊆ F .

Moreover, given any psh function u ∈ Psh0(X), any Levi current T can be naturally
disintegrated as T =

∫
Tc dµ, where µ is a positive measure on R and Tc is a Levi

current supported on {u = c}, see Corollary 2.3. This in particular gives examples
of Levi currents for which Item (1) applies. Notice that, whenever two level sets of
u, v ∈ Psh0(X) do not coincide, this allows to further refine the description of the
extremal Levi current. This motivates the definition (2) of the distributions Ek.

It follows from [9,24] that, when k ≥ 2, for any level set Y of an exhaustion function
φ ∈ Psh0

e, the set Σk
X ∩ Y is a local maximum set (or empty), see Lemma 3.4. Hence

Item (2) applies for instance to such sets. Finally, the manifold X = C× P1 provides
an example where the Items (3) and (4) apply.

Remark 1.2. It would be interesting to know if the equality holds in Item (2) (and
in particular for the intersections between levels sets of a psh exhaustion function and
the minimal kernel). Namely if, for any point in a local maximum set K, there exists
a Levi current T such that x ∈ sptT .

The paper is organized as follows. In Section 2 we recall the definition of Levi
currents and the properties that we will need in the sequel. In Section 3 we prove
Items (1) and (2) of Theorem 1.1. The first item is established for Σk

X ∩ {φ0 = c0}
(where c0 is an attained value for a continuous minimal function φ0 and k ≥ 2) in
[24, Theorem 3.6], and is actually a consequence of [19, Theorem 3.1], where it is
proved through an integration by parts, see also [20, Proposition 4.2] for an analogous
statement for F . We give here a different proof by means of a characterization of
the local maximum property due to Slodkowski [22] which allows to bypass the use
of Brebermann functions and Jensen measures as in [24]. In Section 4 we study the
relation between the minimal kernels Σk

X and distributions in the tangent bundle TX
given by directions satisfying some degeneracy condition. This leads to the proof of
Item (3). The proof of Theorem 1.1 is completed in Section 5, where we establish Item
(4). In Section 6 we consider the case where X is a surface and the exhaustion function
in Theorem 1.1 can be chosen analytic. By exploting the main result in [9], we deduce
a classification of Levi currents in this case.
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2. Levi currents on complex manifolds

In this section we recall the definition of Levi current and give the properties that
we need in the sequel. These results are essentially contained in [20, Section 4] and
[21, Section 3], we sketch here the proofs for completeness. We let X be any com-
plex manifold and we denote by Psh0(X) the space of continuous plurisubharmonic
functions on X.

Definition 2.1 (Sibony [20]). A current T on X is called Levi current if

(1) T is non zero;
(2) T is of bidimension (1, 1);
(3) T is positive;
(4) i∂∂T = 0;
(5) T ∧ i∂∂u = 0 for all u ∈ Psh0(X).

A Levi current T is extremal if T = T1 = T2 whenever T = (T1 + T2)/2 for T1, T2
Levi currents.

Lemma 2.2. Take u ∈ Psh0(X) and let T be a Levi current. The currents

T ∧ ∂u , T ∧ ∂u , and T ∧ ∂u ∧ ∂u

are all well defined and vanish identically on X.

Proof. The currents in the statement are well defined when u is smooth, and the
arguments from [2, Section 2] and [20, Section 4] prove the good definition for u ∈
Psh0(X).

If u ∈ Psh0(X), then also exp(u) ∈ Psh0(X). So, by Definition 2.1 of Levi current,
T ∧ i∂∂ exp(u) vanishes identically. Hence, we have

0 = exp(u)T ∧ i∂∂u+ i exp(u)T ∧ ∂u ∧ ∂u .

Given that T ∧ i∂∂u = 0, we conclude that T ∧ ∂u ∧ ∂u = 0. This gives the last
identity. We prove now the first one, the proof for the second one is similar. Since T
is positive, for any (0, 1)-form α by Cauchy-Schwarz’s inequality we get

|〈T, ∂u ∧ α〉|2 ≤ c〈T, ∂u ∧ ∂̄u〉 · 〈T, α ∧ ᾱ〉

where c is a constant independent of T, u, and α. Since the first factor in the RHS is
zero by the first part of the proof, the assertion follows. �

By a standard disintegration procedure, we obtain the following consequence.

Corollary 2.3. Suppose T is a Levi current and u ∈ Psh0(X); then there exists a
measure µ on R and a collection of currents Tc, c ∈ R such that

• Tc is supported on Yc = {x ∈ X : u(x) = c} for all c ∈ R;
• Tc is non zero for µ-almost every c ∈ R;
• whenever Tc 6= 0, Tc is a Levi current;
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• for every 2-form α on X we have

〈T, α〉 =

∫
R
〈Tc, α〉dµ(c) .

Moreover, if u ∈ Psh1(X) and c is a regular value for u, then Tc = j∗Sc, where j is
the inclusion of Yc in X and Sc a current on the real manifold Yc.

Notice that Tc needs not be extremal, as it is easily seen considering X = C× P1.

Remark 2.4. Suppose now that X is weakly complete and let φ be a psh exhaustion
function. By Corollary 2.3, every Levi current is obtained by averaging Levi currents
which are supported on the level sets of φ; as the latter is an exhaustion of X, its
level sets are compact, so every Levi current on X is an integral average of compactly
supported Levi currents, i.e., positive currents of bidimension (1, 1) which are ∂∂-closed
and compactly supported.

Corollary 2.5. If T is a Levi current and u ∈ Psh1(X), then the vector field associated
to T is tangent to the kernel of ∂u∧∂u, whenever the latter is non-zero (and the former
is defined). Moreover, if there exists v ∈ Psh0(X) which is strictly plurisubharmonic
at a point x ∈ X, then x 6∈ sptT for any Levi current T .

Proof. The first statement is equivalent to T ∧∂u∧∂u = 0, hence follows from Lemma
2.2. Suppose now that we have v ∈ Psh0(X) which is strictly psh at x and a Levi
current T . First, by Richberg [16, Satz 4.3] we can assume that v is C∞ and strictly
psh near x. Then, if ρ ∈ C∞0 (X) is supported in a neighbourhood of x where v is strictly
psh and ‖ρ‖C2 is small enough, then also v + ρ is psh. In particular, we can choose
ρi, 1 ≤ i ≤ 2n such that the ker(∂(v+ ρi)∧ ∂(v+ ρi))x are independent (over R). This
property holds true in a neighbourhood of x. Hence, as the vector field associated to T
(on a full measure subset of the support T for the mass measure) should belong to all
these subspaces, the only possibility is that x 6∈ sptT . This concludes the proof. �

Lemma 2.6. Let T be a Levi current such that K = sptT is compact. If u is defined
and plurisubharmonic in an open neighbourhood V of K and strictly plurisubharmonic
at x ∈ V , then x 6∈ sptT .

Proof. Let V ′ b V be an open neighbourhood of K containing x. Let χ ∈ C∞0 (V )
be such that χ|V ′ ≡ 1, then χu is defined on X and psh on V ′. As sptT ⊆ V ′, also
spt(T ∧ i∂∂u) ⊆ V ′, so T ∧ i∂∂u is positive; moreover, as T is a Levi current, we have
i∂∂T = 0, hence

0 = 〈i∂∂T, u〉 = 〈T, i∂∂u〉 = 〈T ∧ i∂∂u, 1〉.
Therefore, T ∧ i∂∂u = 0 as a (positive) measure.

Since (i∂∂u)x > 0, this happens in a neighbourhood of x, so T ∧ i∂∂u is strictly
positive in a neighbourhood of x unless T is zero there. This gives x 6∈ sptT and
concludes the proof. �

Lemma 2.7. Suppose that a current T satisfies requests 1 − 4 of Definition 2.1 and
T has compact support. Then T is a Levi current.

Proof. Given that T is compactly supported, so are uT , T ∧ ∂u, T ∧ ∂u, and T ∧ i∂∂u
for all u ∈ Psh0(X). Moreover, as T is positive and u is psh, T ∧ i∂∂u is a positive
measure on X; therefore, it is zero if and only if 〈T ∧ i∂∂u, 1〉 = 0.
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Notice that, by Stokes’ theorem, we have 〈i∂∂(uT ), 1 = 0〉, hence

0 = −〈i∂∂u ∧ T, 1〉+ 〈ui∂∂T, 1〉+ 〈i∂(∂u ∧ T ), 1〉 − 〈i∂(∂u ∧ T ), 1〉.
We have i∂∂T = 0 by hypothesis, while 〈i∂(∂u ∧ T ), 1〉 and 〈i∂(∂u ∧ T ), 1〉 vanish by
another application of Stokes’ theorem. Therefore T ∧ i∂∂u = 0, that is, T is a Levi
current. �

3. Local maximum sets

We establish here Items (1) and (2) of Theorem 1.1. We recall the following defini-
tion, see also [24, Section 2] and [17].

Definition 3.1. Let X be a complex manifold and K ⊂ X be compact. We say that
K is a local maximum set if every x ∈ K has a neighbourhood U with the following
property: for every compact set K ′ ⊂ U and every function ψ which is strictly psh in
a neighbourhood of K ′, we have

max
K∩K′

ψ = max
K∩bK′

ψ.

Proposition 3.2. Suppose that X is weakly complete. If T is a Levi current with
compact support, then sptT is a local maximum set.

Proof. Suppose that K := sptT is not a local maximum set. By [22, Proposition 2.3]
there exist x ∈ K, a neighbourhood B of x, with local coordinates z with origin in x,
such that B ≡ {z ∈ Cn : ‖z‖ < 1}, and ψ : B → R strictly psh with ψ(x) = 0 and
ψ(y) ≤ −ε‖z(y)‖2 for all y ∈ K ∩B. Up to replacing ψ by an element of a continuous
approximating sequence, we can directly assume that ψ is continuous. By taking a
possibly smaller ball a x, we can also assume that −ε‖z(y)‖2 − ε/8 ≤ ψ(y) on K. Set

A := {y ∈ B : ‖z(y)‖2 > 3/4} and V = {y ∈ B : |ψ(y) + ε‖z(y)‖2| < ε/4}.
By the continuity of ψ and the bounds above, V is an open subset of B containing K.
Consider u ∈ Psh0(X) such that u(x) = −ε/4 and supB |u| < ε/2 (this function exists
because of the assumption on X). Since K ∩ B ⊂ V , there also exists χ ∈ C∞0 (X) be
such that χ|K ≡ 1 and sptχ ∩B ⊂ V . Define the function v : X → R as

v =

{
χmax{u, ψ} on B,

χu on X \B.
We claim that v = χu on A. Indeed, for every p ∈ sptχ ∩A, we have that p ∈ V , and
so ψ(p) < −3ε/4 + ε/4 = −ε/2. Hence, ψ(p) < u(p) and v(p) = (χu)(p).

By construction, v coincides with ψ in a neighbourhood of x. It follows that v is
psh in a neighbourhood of K and strictly psh in x. Therefore, we have x 6∈ sptT by
Lemma 2.6. This gives a contradiction with the choice of x ∈ K and completes the
proof. �

Proposition 3.3. Let K ⊂ X be a local maximum set. There exists a Levi current T
such that sptT ⊆ K.

Proof. By [21, Theorem 3.1] (see also [20, Section 4]) and Lemma 2.7, if there are
no Levi currents supported on K, there exists a smooth strictly psh function u on
some open neighbourhood U of K. By slightly perturbing u, for every x0 ∈ K we
can construct 2n continuous strictly psh functions on some neighbourhood K ⊂ U ′ ⊆
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U such that du1, . . . , du2n are linearly independent at x0. This implies that, in a
neighbourhood of x0, we have

{u1 = u1(x0)} ∩ . . . {u2n = u2n(x0)} = {x0}.

By [23, Corollary 1.11] and [22, Theorem 4.2], for every family of continuous psh
functions on U ′ there exists a local maximum set K ′ ⊆ K with the property that all
functions of the family are constant on K ′. Choosing a point x0 ∈ K ′, the previous
paragraph gives that x0 is isolated in K ′. This is a contradiction, and the proof is
complete. �

We conclude the section with the following result, that we will need to prove Item
(3) of Theorem 1.1.

Lemma 3.4. Let X be a weakly complete complex surface and Y a regular level for a
C0 exhaustion function φ. Then, for all k ≥ 2, Σk

X ∩Y is a local maximum set and, for

all local maximum sets K ⊆ Σk
X , K is foliated by holomorphic discs, i.e., it is locally

a union of disjoint holomorphic discs.

Proof. The intersection Σk
X ∩ Y is a local maximum set by [9, Theorem 3.2]. As

observed in [9, Proposition 3.5], the proof of the lemma is then essentially given in
[24, Lemma 4.1], see in particular the Assertion in the proof of that lemma. �

We point out that [24, Lemma 4.1] relies on a result by Shcherbina [18], which holds
true only in dimension 2; this is the reason for restricting ourselves to the case of
surfaces. it would be interesting to prove (or disprove) a similar statement in higher
dimension.

4. Kernels and tangent directions

In this section we let X be a weakly complete complex manifold of dimension n and
assume that Pshk(X) contains at least one exhaustion function φ : X → R for some
2 ≤ k ≤ ∞. Recall that the minimal kernel Σk

X of X is defined as in (1) and the

distribution Ek of TX as in (2). We consider further the distribution Sk of TX given
by

(3) Sk := {(x, ξ) ∈ TX : ξ ∈ TxX, (i∂∂u)x(ξ, ξ) = 0∀u ∈ Pshk(X)} .

Similar objects have already appeared in relation to the study of the Levi problem, see
for instance [5] in the case of homogeneous manifolds and [4, 24]. We also set

Ek` := {x ∈ X : dim Ekx ≥ `} and Sk1 := {x ∈ X : dimSkx ≥ 1}.

By definition, Ek` ⊆ Ek`−1 and Ek` is closed in Ek`−1 for all ` ≥ 1. Observe moreover

that Sk is a complex distribution.

Remark 4.1. Let T be a Levi current. Then, for almost every point of the support
of T (with respect to the mass measure), the vector field associated to T at x belongs
to the fibre Skx of Sk at x.

Proposition 4.2. We have Sk ⊆ Ek, and Sk1 = Ek2 = Ek1 = Σk
X .



8 F. BIANCHI AND S. MONGODI

Proof. It follows from the definition of Ek that Ek1 = Ek2 . Moreover, if (x, v) 6∈ Ek,
there exists ψ ∈ Pshk(X) such that (dψ)x(v) 6= 0; then

i∂∂ exp(ψ) = exp(ψ)i∂∂ψ + i exp(ψ)∂ψ ∧ ∂ψ ≥ 0,

which implies that (i∂∂ exp(ψ))x(v, v) ≥ exp(ψ(x))|∂ψx(v)|2 > 0 and so (x, v) 6∈ Sk.
It follows that Sk ⊆ Ek.

We now prove that Ek1 = Σk
X . If x 6∈ Σk

X , then there exists ψ ∈ Pshke(X) which is
strictly psh around x; therefore, given any ρ : X → R smooth with compact support
near x, there exists ε > 0 such that ψ+ερ is still psh. So, we can construct psh functions
of class Ck whose differentials span the tangent space at x, which implies that these
differentials do not have any nontrivial common kernel in TxX. So Ekx = {0}, hence
Ek1 ⊆ Σk

X .

On the other hand, if Ekx = {0}, given v1, . . . , v2n ∈ TxX linearly independent, we can
choose psh functions ψij , i, j = 1, . . . , 2n of class Ck and such that (dψij)x(vi+vj) 6= 0.

Therefore, the function ψ :=
∑2n

i,j=1 ψ
2
ij has positive defined Levi form at x. Adding

to the exhaustion function φ suitable multiples of ψ, we see that x 6∈ Σk
X . This gives

Ek1 ⊇ Σk
X , hence Ek1 = Σk

X .

In order to conclude, we need to prove that Sk1 ⊇ Σk
X . Take x ∈ Σk

X and suppose

by contradiction that, for every v ∈ TxX there is ϕv : X → R which is Ck, psh, and
such that (ddcϕv)x(v, v) > 0. Then, as above, we can construct a Ck function ψ which
is strictly psh at x. This gives the desired contradiction and completes the proof. �

The following result gives Item (3) of our main Theorem 1.1.

Proposition 4.3. Let X be a weakly complete complex surface, φ a Ck, 4 ≤ k ≤ ∞,
exhaustion psh function and Y a regular connected component of a level set {φ = c}
of φ. Suppose that U ⊆ Y is an open set in Y and U ⊆ Σk

X . If there exists x ∈ U
such that dim Ekx = 2, then X is a union of compact complex curves. In particular,
Σk
X = F = X = Ek2 , and Ek3 is contained in a (possibly empty) analytic subset of the

singular levels for φ.

We will need the following theorem by Nishino, see [14, Proposition 9 and Théorème
II] and [11, Section 2.2.1].

Theorem 4.4 (Nishino). Let X be a weakly complete or compact surface that contains
an uncountable family F of disjoint connected compact complex curves. Then there
exist a Riemann surface R and a meromorphic map h : X → R with compact fibers.

Proof of Proposition 4.3. By Theorem 4.4, to prove the first assertion it is enough to
show that X contains uncountably many disjoint compact complex curves.

Since x ∈ U is such that dim Ekx = 2, there exists ψ ∈ Pshke(X) such that (dφ)x
and (dψ)x are linearly independent; hence, the map ψ|Y : Y → R is not constant.
Since k ≥ 4, by Sard’s theorem we can find regular values b for ψ arbitrarily close
to b0 := ψ(x), therefore the sets Cb = {y ∈ Y : ψ(y) = b} intersect the open set
U ⊆ Σk

X .

For any y ∈ Cb∩Σk
X , by Proposition 4.2 we have TyCb = Eky = Sky . Therefore, Cb∩Σk

X
is a complex curve, being a real, smooth 2-dimensional manifold with complex tangent
space. On the other hand, the set Cb \ Σk

X is open in Cb. Let z ∈ Cb be a boundary

point (with respect to Cb); as z ∈ Σk
X , by Lemma 3.4 there is a holomorphic disc
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f : D → X such that f(D) ⊂ Y and f(0) = z. If ζ ∈ D is close enough to 0, then,
setting w = f(ζ), we have w ∈ Σk

X , and (dφ)w and (dψ)w independent. This gives

w ∈ Ek2 \ Ek3 , which in turn implies that Ekw = TwCψ(w). Therefore f(D) coincides

locally with a leaf Cb′ . Hence Cb is contained in Σk
X , so it is a compact complex curve.

As b was taken arbitrarily among the regular values close enough to b0, we find
uncountably many disjoint (since they correspond to distinct values) compact complex
curves in X, as desired.

In order to conclude, we need to prove the final assertion on Ek3 . We proved above
that there exists a meromorphic map h : X → R with compact fibres, where R is
Riemann surface. It is enough to prove that Ek3 ⊆ {h′ = 0}.

Let x ∈ X be such that h′(x) 6= 0. Consider a strictly psh exhaustion function
ψ for R (which we can assume to be C∞ near x by [16]) and the family of functions
F := {ψ + ερ}, where ρ is a smooth function compactly supported near h(x). For
every such ρ, ψ + ερ is still strictly psh for ε sufficiently small. Thus, we can obtain a
set of generators for the tangent space given by differentials at h(x) of psh functions
in F . Pre-composing the corresponding functions with h, we obtain that the space of
differentials at x of psh functions on X has dimension at least 2. Hence, x /∈ Ek3 , and
the proof is complete. �

Remark 4.5. Suppose that X is a surface and Y a regular level for an exhaustion
function φ ∈ Psh0

e(X). Let K ⊆ Y ∩ ΣX be a local maximum set. By Lemma 3.4,
Y and K are foliated by holomorphic discs. For every such disk, its tangent bundle
is exactly the restriction of S. By [1, Theorem 1.4], there exists a ∂∂-closed positive
current of bidimension (1, 1), directed by S, supported in K. By Lemma 2.7, such
current is a Levi current. This gives a different proof of Item (2) when dimX = 2.

5. End of the proof of Theorem 1.1

It follows from Corollary 2.5 (or Lemma 2.6) that sptT ⊆ Σk
X for every Levi current

T and all k ≥ 0. Thus, we have F ⊆ Σk
X for all k ≥ 0. Moreover, Items (1), (2), and

(3) follow from Propositions 3.2, 3.3, and 4.3, respectively.
Let now Y be a regular connected component of a level set for an exhaustion psh

function φ ∈ Pshke(X) for some k ≥ 2. The remaining item follows from the next
proposition.

Proposition 5.1. If k ≥ 2 and Y ⊆ Σk
X , there exists c′ < c such that the connected

component of φ−1([c′, c]) containing Y is contained in F .

Proof. We assume for simplicity that the level {φ = c} is regular and connected, the
argument is similar otherwise. Since k ≥ 2, by [24, Theorem 3.9] there is c′ < c such
that, setting

K = {x ∈ X : c′ ≤ φ(x) ≤ c},
the form (ddcφ)2 vanishes on the interior of K, hence on K. So, we have K ⊆ Σk

X .
Consider the current T given by

T := i∂φ ∧ ∂φ.
It is clear that T is a current of bidimension (1, 1), positive and directed by the complex
subspace of the tangent of the levels of φ. Moreover, i∂∂T is induced by the form

i∂∂(i∂φ ∧ ∂φ) = −(∂∂φ)2.
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So, i∂∂T vanishes where φ is not strictly psh, hence on Σk
X . Let B be the interior of

K, then the restriction of T to B is a current of bidimension (1, 1), positive, ∂∂-closed
(in B); moreover, given u ∈ Psh0(X), we have that T ∧ ∂∂u = 0 on Σk

X , so T is a Levi
current.

By construction and Lemma 2.2 we have T ∧∂φ = 0, so we can disintegrate T along
the levels of φ, see Corollary 2.3: there exist currents Ts with s ∈ (c′, c), such that, for
α a 2-form with sptα ⊂ B,

〈T, α〉 =

∫ c

c′
〈Ts, α〉 dµ(s) for some measure µ on (c′, c).

Since φ ∈ C2, the measure µ is absolutely continuous with respect to the Lebesgue
measure on (c′, c).

As T is ∂∂-closed in B, so is µ-almost every Ts in B; therefore, for a dense open set
of s ∈ (c′, c), Ts is a positive, ∂∂-closed current of bidimension (1, 1) and

sptTs = {x ∈ X : φ(x) = s}.
The set in the RHS is compact since φ is an exhaustion function. By Lemma 2.7, Ts
is a Levi current.

In conclusion, the level set {x ∈ X : φ(x) = s} is contained in F for almost all
s ∈ (c′, c), so φ−1([c′, c]) ⊆ F , as F is closed. In particular, Y ⊆ F . �

The proof of Theorem 1.1 is complete.

6. Real analytic exhaustion function

A classification of those weakly complete complex surfaces X admitting an analytic
exhaustion function is given in [9]. As a direct consequence, we can get an analogous
complete classification of the possible Levi currents in this setting.

First notice that each exceptional divisor V in X corresponds to an extremal Levi
current given by the current of integration [V ]. Without loss of generality, to simplify
our next statement, we can thus assume that X has no such divisors on the regular
levels of α. The statement for a general X is then a direct consequence.

Theorem 6.1. Let X be a weakly complete complex surface admitting an analytic
exhaustion function α. Assume that X has no exceptional divisors on the regular
levels of α. Then one of the following possibilities hold:

(1) X is Stein (and so, admits no Levi currents);
(2) F = Σ∞X = X = ∪Vi, where all the Vi are (disjoint) connected compact curves,

and all extremal Levi currents are of the form λ[V ′i ] for some positive λ, with
V ′i an irreducible component of some Vi;

(3) F = Σ∞X = X, every regular level Yc of α is foliated by curves Ui, and the
support of any extremal Levi currents on Yc is equal to (a connected component
of) Yc.

Observe also that, although a priori we would only have Σk
X ⊆ Σ∞X for all k ≥ 0,

the above geometric description implies that Σk
X = Σ∞X for all k ≥ 0.

Proof. It follows from [9, Theorem 1.1] that one of the following possibilities holds:

(1) X is a Stein space;
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(2) X is proper over a (possibly singular) complex curve;
(3) the connected components of the regular levels of α are foliated with dense

complex curves.

In the first and second cases, the assertion follows from the characterization of Levi
currents given in Section 2. In the third case, a Levi current can be constructed, for
instance, by means of [1, Theorem 1.4]. By proposition 3.2, the support of any Levi
current is a local maximum set. By [7, Lemma 3.3], a local maximum set contained in
a Levi-flat hypersurface must be a union of leaves of the Levi foliation.

Hence, in the third case, any Levi current on a regular level set of the exhaustion
function is supported on the whole level set, as all the leaves of the Levi foliation are
dense. This in particular applies to extremal Levi currents. The proof is complete. �
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