Fabrizio Bianchi 
  
Samuele Mongodi 
  
On minimal kernels and Levi currents on weakly complete complex manifolds

Keywords: Mathematics Subject Classification. 32C40, 32E05, 32U10. 1

A complex manifold X is weakly complete if it admits a continuous plurisubharmonic exhaustion function φ. The minimal kernels Σ k X , k ∈ [0, ∞] (the loci where are all C k plurisubharmonic exhaustion functions fail to be strictly plurisubharmonic), introduced by Slodkowski-Tomassini, and the Levi currents, introduced by Sibony, are both concepts aimed at measuring how far X is from being Stein. We compare these notions, prove that all Levi currents are supported by all the Σ k X 's, and give sufficient conditions for points in Σ k X to be in the support of some Levi current.

When X is a surface and φ can be chosen analytic, building on previous work by the second author, Slodkowski, and Tomassini, we prove the existence of a Levi current precisely supported on Σ ∞ X , and give a classification of Levi currents on X. In particular, unless X is a modification of a Stein space, every point in X is in the support of some Levi current.

Introduction

Given an abstract (and possibly very complicated) manifold, a natural question is whether it is possible to see it as a subset of a simpler space. In the real category, a fundamental theorem by Nash states that this is always possible, and in a very strong sense: every Riemannian manifold can be isometrically embedded in some R N . When moving to the complex category, we can then ask the following natural question: is it possible to embed any complex manifold in some C N , by means of a holomorphic map? We call Stein a manifold for which the above holds true. This time, the rigidity of holomorphic functions readily provides negative examples: for instance, the maximum principle implies that any holomorphic map on a compact complex manifold must be constant, and thus the manifold cannot be Stein. A central question is then to understand when a given complex manifold is Stein. More specifically, given a dimension n, one would like to understand the obstructions for an n-dimensional manifold to be Stein.

A major advance in this direction was provided by Grauert [START_REF] Grauert | On Levi's problem and the imbedding of real-analytic manifolds[END_REF]: a complex manifold is Stein if and only if it admits a C 2 strictly plurisubharmonic (psh for short) exhaustion function. The C 2 assumption was relaxed to C 0 by Narasimhan [START_REF] Narasimhan | The Levi problem for complex spaces[END_REF][START_REF]The Levi problem for complex spaces II[END_REF]. In view of these results, it is natural to tackle the question by studying the positive cone Psh 0 e (X) of all continuous psh exhaustion functions on X (or more generally the cone Psh k e (X) := Psh 0 e (X) ∩ C k for some k ∈ [0, ∞], and in particular to find obstructions for them to be strictly psh. As a rough idea, such obstructions must correspond to the presence of some sets in X along which all continuous psh functions must necessarily be pluriharmonic. As a prototypical example, the blow-up of a point and its corresponding exceptional divisor give precisely this kind of obstruction.

A precise study of this kind of phenomena was started by Slodkowski and Tomassini in [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF] in the setting of weakly complete complex manifolds, i.e., manifolds admitting a continuous psh exhaustion function. A crucial definition is the following: for k ∈ [0, ∞] the minimal kernel of a manifold X (with respect to Psh k e ) is

(1) Σ k X := {x ∈ X : i∂∂u is degenerate at x ∀u ∈ Psh k e (X)}, i.e., the subset of X where no element of Psh k e can be strictly psh. A key result of [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF] is that, whenever Psh k e (X) is not empty, there actually exists a function φ 0 ∈ Psh k e (X) (called minimal ) which fails to be strictly psh precisely on the minimal kernel Σ k X . Moreover, the minimal kernels are local maximum sets (see Definition 3.1). Some finer properties are also established (some requiring at least the C 2 regularity, see for instance [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]Theorem 3.9]). Observe that the Σ k X 's are increasing in k, but it is not known whether equalities should occur in general, see for instance [START_REF]Pseudoconcave decompositions in complex manifolds[END_REF]Section 5.10].

In [START_REF]Weakly complete complex surfaces[END_REF][START_REF]Some properties of Grauert type surfaces[END_REF], the second author, Slodkowski, and Tomassini showed that, if X has complex dimension 2 and Psh ∞ e contains at least one real analytic function, the minimal kernel is either a union of countably many compact (and negative) curves or equal to the whole manifold, by giving a full classification of the possible structures that such a manifold can present. An important point here is that, although in general the minimal kernel does not have a priori an analytic structure, however its intersection with any level of a psh exhaustion function does (at least in dimension 2).

In [START_REF]Levi problem in complex manifolds[END_REF], Sibony introduced the notion of Levi current (see Definition 2.1), which is related to the (non-)existence of strictly psh functions on a complex manifold and thus to the problem of determining whether a given manifold is Stein, see also [START_REF] Ohsawa | Bounded psh functions and pseudoconvexity in Kähler manifold[END_REF][START_REF] Sibony | Pfaff systems, currents and hulls[END_REF][START_REF]Pseudoconvex domains with smooth boundary in projective spaces[END_REF]. Extremal Levi-currents are supported on sets where all continuous psh functions are constant. In the case of infinitesimally homogeneous manifolds, a foliation is constructed and linked to the obstructions to Steinness.

Our goal here is to compare these two approaches, and in particular to use the notion of Levi current on X to study the analytic structure of the minimal kernels Σ k X . In order to do this, let us denote by Psh k , for 0 ≤ k ≤ ∞, the cone of C k psh function on X and define the distribution E k in T X as (2)

E k := {(x, v) ∈ T X : (dϕ) x (v) = 0 ∀ϕ ∈ Psh k (X)}.
A distribution is a subset of T X whose intersection with T x X is a (real) vector subspace of the latter for every x ∈ X. In general, E k will not be a subbundle of T X, as dim E k x is not constant; however it is a closed subset of T X, hence the function x → dim E k x is upper semicontinuous.

The following is our main result.

Theorem 1.1. Let X be a weakly complete complex manifold and T a Levi current on X. Denote by Σ k X the minimal kernels of X and by F the union of the supports of all Levi currents on X. Then F ⊆ Σ k X for all k ≥ 0 and (1) if T has compact support K T , then K T is a local maximum set;

(2) if K is a local maximum set, then there exists a Levi current supported on K.

In particular, K ∩ F = ∅.

Moreover, if X is a surface, φ ∈ C k a psh exhaustion function, and Y a regular connected component of a level set {φ = c},

(3) if 4 ≤ k ≤ ∞ and U ⊆ Σ k
X is an open set in Y and there exists x ∈ U such that dim E k x = 2, then X is a union of compact complex curves. In particular,

F = Σ k X = X; (4) if 2 ≤ k ≤ ∞ and Y ⊆ Σ k X , then there exists c < c such that the connected component of φ -1 ([c , c]) containing Y is contained in F . In particular, Y ⊆ F .
Moreover, given any psh function u ∈ Psh 0 (X), any Levi current T can be naturally disintegrated as T = T c dµ, where µ is a positive measure on R and T c is a Levi current supported on {u = c}, see Corollary 2.3. This in particular gives examples of Levi currents for which Item (1) applies. Notice that, whenever two level sets of u, v ∈ Psh 0 (X) do not coincide, this allows to further refine the description of the extremal Levi current. This motivates the definition (2) of the distributions E k .

It follows from [START_REF]Weakly complete complex surfaces[END_REF][START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF] that, when k ≥ 2, for any level set Y of an exhaustion function φ ∈ Psh 0 e , the set Σ k X ∩ Y is a local maximum set (or empty), see Lemma 3.4. Hence Item (2) applies for instance to such sets. Finally, the manifold X = C × P 1 provides an example where the Items (3) and (4) apply.

Remark 1.2. It would be interesting to know if the equality holds in Item (2) (and in particular for the intersections between levels sets of a psh exhaustion function and the minimal kernel). Namely if, for any point in a local maximum set K, there exists a Levi current T such that x ∈ spt T .

The paper is organized as follows. In Section 2 we recall the definition of Levi currents and the properties that we will need in the sequel. In Section 3 we prove Items (1) and (2) of Theorem 1.1. The first item is established for Σ k X ∩ {φ 0 = c 0 } (where c 0 is an attained value for a continuous minimal function φ 0 and k ≥ 2) in [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]Theorem 3.6], and is actually a consequence of [START_REF] Sibony | Pfaff systems, currents and hulls[END_REF]Theorem 3.1], where it is proved through an integration by parts, see also [START_REF]Levi problem in complex manifolds[END_REF]Proposition 4.2] for an analogous statement for F . We give here a different proof by means of a characterization of the local maximum property due to Slodkowski [START_REF] Slodkowski | Local maximum property and q-plurisubharmonic functions in uniform algebras[END_REF] which allows to bypass the use of Brebermann functions and Jensen measures as in [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]. In Section 4 we study the relation between the minimal kernels Σ k X and distributions in the tangent bundle T X given by directions satisfying some degeneracy condition. This leads to the proof of Item (3). The proof of Theorem 1.1 is completed in Section 5, where we establish Item (4). In Section 6 we consider the case where X is a surface and the exhaustion function in Theorem 1.1 can be chosen analytic. By exploting the main result in [START_REF]Weakly complete complex surfaces[END_REF], we deduce a classification of Levi currents in this case. hospitality, and excellent work conditions. This project also received funding from the I-SITE ULNE (ANR-16-IDEX-0004 ULNE), the LabEx CEMPI (ANR-11-LABX-0007-01) and from the CNRS program PEPS JCJC 2019.

Levi currents on complex manifolds

In this section we recall the definition of Levi current and give the properties that we need in the sequel. These results are essentially contained in [START_REF]Levi problem in complex manifolds[END_REF]Section 4] and [21, Section 3], we sketch here the proofs for completeness. We let X be any complex manifold and we denote by Psh 0 (X) the space of continuous plurisubharmonic functions on X.

Definition 2.1 (Sibony [20]). A current T on X is called Levi current if (1) T is non zero; (2) T is of bidimension (1, 1); (3) T is positive; (4) i∂∂T = 0; (5) T ∧ i∂∂u = 0 for all u ∈ Psh 0 (X). A Levi current T is extremal if T = T 1 = T 2 whenever T = (T 1 + T 2 )/2 for T 1 , T 2 Levi currents.
Lemma 2.2. Take u ∈ Psh 0 (X) and let T be a Levi current. The currents T ∧ ∂u , T ∧ ∂u , and T ∧ ∂u ∧ ∂u are all well defined and vanish identically on X.

Proof. The currents in the statement are well defined when u is smooth, and the arguments from [2, Section 2] and [START_REF]Levi problem in complex manifolds[END_REF]Section 4] prove the good definition for u ∈ Psh 0 (X). If u ∈ Psh 0 (X), then also exp(u) ∈ Psh 0 (X). So, by Definition 2.1 of Levi current, T ∧ i∂∂ exp(u) vanishes identically. Hence, we have

0 = exp(u)T ∧ i∂∂u + i exp(u)T ∧ ∂u ∧ ∂u .
Given that T ∧ i∂∂u = 0, we conclude that T ∧ ∂u ∧ ∂u = 0. This gives the last identity. We prove now the first one, the proof for the second one is similar. Since T is positive, for any (0, 1)-form α by Cauchy-Schwarz's inequality we get

| T, ∂u ∧ α | 2 ≤ c T, ∂u ∧ ∂u • T, α ∧ ᾱ
where c is a constant independent of T, u, and α. Since the first factor in the RHS is zero by the first part of the proof, the assertion follows.

By a standard disintegration procedure, we obtain the following consequence.

Corollary 2.3. Suppose T is a Levi current and u ∈ Psh 0 (X); then there exists a measure µ on R and a collection of currents

T c , c ∈ R such that • T c is supported on Y c = {x ∈ X : u(x) = c} for all c ∈ R; • T c is non zero for µ-almost every c ∈ R; • whenever T c = 0, T c is a Levi current;
• for every 2-form α on X we have

T, α = R T c , α dµ(c) .
Moreover, if u ∈ Psh 1 (X) and c is a regular value for u, then T c = j * S c , where j is the inclusion of Y c in X and S c a current on the real manifold Y c .

Notice that T c needs not be extremal, as it is easily seen considering X = C × P 1 .

Remark 2.4. Suppose now that X is weakly complete and let φ be a psh exhaustion function. By Corollary 2.3, every Levi current is obtained by averaging Levi currents which are supported on the level sets of φ; as the latter is an exhaustion of X, its level sets are compact, so every Levi current on X is an integral average of compactly supported Levi currents, i.e., positive currents of bidimension (1, 1) which are ∂∂-closed and compactly supported.

Corollary 2.5. If T is a Levi current and u ∈ Psh 1 (X), then the vector field associated to T is tangent to the kernel of ∂u∧∂u, whenever the latter is non-zero (and the former is defined). Moreover, if there exists v ∈ Psh 0 (X) which is strictly plurisubharmonic at a point x ∈ X, then x ∈ spt T for any Levi current T .

Proof. The first statement is equivalent to T ∧ ∂u ∧ ∂u = 0, hence follows from Lemma 2.2. Suppose now that we have v ∈ Psh 0 (X) which is strictly psh at x and a Levi current T . First, by Richberg [START_REF] Richberg | Stetige streng pseudokonvexe Funktionen[END_REF]Satz 4.3] we can assume that v is C ∞ and strictly psh near x. Then, if ρ ∈ C ∞ 0 (X) is supported in a neighbourhood of x where v is strictly psh and ρ C 2 is small enough, then also v + ρ is psh. In particular, we can choose ρ i , 1 ≤ i ≤ 2n such that the ker(∂(v + ρ i ) ∧ ∂(v + ρ i )) x are independent (over R). This property holds true in a neighbourhood of x. Hence, as the vector field associated to T (on a full measure subset of the support T for the mass measure) should belong to all these subspaces, the only possibility is that x ∈ spt T . This concludes the proof.

Lemma 2.6. Let T be a Levi current such that K = spt T is compact. If u is defined and plurisubharmonic in an open neighbourhood V of K and strictly plurisubharmonic at x ∈ V , then x ∈ spt T .

Proof. Let V

V be an open neighbourhood of K containing x. Let χ ∈ C ∞ 0 (V ) be such that χ| V ≡ 1, then χu is defined on X and psh on V . As spt T ⊆ V , also spt(T ∧ i∂∂u) ⊆ V , so T ∧ i∂∂u is positive; moreover, as T is a Levi current, we have i∂∂T = 0, hence 0 = i∂∂T, u = T, i∂∂u = T ∧ i∂∂u, 1 . Therefore, T ∧ i∂∂u = 0 as a (positive) measure.

Since (i∂∂u) x > 0, this happens in a neighbourhood of x, so T ∧ i∂∂u is strictly positive in a neighbourhood of x unless T is zero there. This gives x ∈ spt T and concludes the proof.

Lemma 2.7. Suppose that a current T satisfies requests 1 -4 of Definition 2.1 and T has compact support. Then T is a Levi current.

Proof. Given that T is compactly supported, so are uT , T ∧ ∂u, T ∧ ∂u, and T ∧ i∂∂u for all u ∈ Psh 0 (X). Moreover, as T is positive and u is psh, T ∧ i∂∂u is a positive measure on X; therefore, it is zero if and only if T ∧ i∂∂u, 1 = 0. Notice that, by Stokes' theorem, we have i∂∂(uT ), 1 = 0 , hence 0 = -i∂∂u ∧ T, 1 + ui∂∂T, 1 + i∂(∂u ∧ T ), 1 -i∂(∂u ∧ T ), 1 .

We have i∂∂T = 0 by hypothesis, while i∂(∂u ∧ T ), 1 and i∂(∂u ∧ T ), 1 vanish by another application of Stokes' theorem. Therefore T ∧ i∂∂u = 0, that is, T is a Levi current.

Local maximum sets

We establish here Items (1) and ( 2) of Theorem 1.1. We recall the following definition, see also [24, Section 2] and [START_REF] Rossi | The local maximum modulus principle[END_REF]. Definition 3.1. Let X be a complex manifold and K ⊂ X be compact. We say that K is a local maximum set if every x ∈ K has a neighbourhood U with the following property: for every compact set K ⊂ U and every function ψ which is strictly psh in a neighbourhood of K , we have max

K∩K ψ = max K∩bK ψ.
Proposition 3.2. Suppose that X is weakly complete. If T is a Levi current with compact support, then spt T is a local maximum set.

Proof. Suppose that K := spt T is not a local maximum set. By [22, Proposition 2.3] there exist x ∈ K, a neighbourhood B of x, with local coordinates z with origin in x, such that B ≡ {z ∈ C n : z < 1}, and ψ : B → R strictly psh with ψ(x) = 0 and ψ(y) ≤ -z(y) 2 for all y ∈ K ∩ B. Up to replacing ψ by an element of a continuous approximating sequence, we can directly assume that ψ is continuous. By taking a possibly smaller ball a x, we can also assume that -z(y) 2 -/8 ≤ ψ(y) on K. Set A := {y ∈ B : z(y) 2 > 3/4} and V = {y ∈ B : |ψ(y) + z(y) 2 | < /4}.

By the continuity of ψ and the bounds above, V is an open subset of B containing K. Consider u ∈ Psh 0 (X) such that u(x) = -/4 and sup B |u| < /2 (this function exists because of the assumption on X). Since K ∩ B ⊂ V , there also exists χ ∈ C ∞ 0 (X) be such that χ| K ≡ 1 and spt χ ∩ B ⊂ V . Define the function v :

X → R as v = χ max{u, ψ} on B, χu on X \ B.
We claim that v = χu on A. Indeed, for every p ∈ spt χ ∩ A, we have that p ∈ V , and so ψ(p) < -3 /4 + /4 = -/2. Hence, ψ(p) < u(p) and v(p) = (χu)(p). By construction, v coincides with ψ in a neighbourhood of x. It follows that v is psh in a neighbourhood of K and strictly psh in x. Therefore, we have x ∈ spt T by Lemma 2.6. This gives a contradiction with the choice of x ∈ K and completes the proof.

Proposition 3.3. Let K ⊂ X be a local maximum set. There exists a Levi current T such that spt T ⊆ K.

Proof. By [START_REF]Pseudoconvex domains with smooth boundary in projective spaces[END_REF]Theorem 3.1] (see also [START_REF]Levi problem in complex manifolds[END_REF]Section 4]) and Lemma 2.7, if there are no Levi currents supported on K, there exists a smooth strictly psh function u on some open neighbourhood U of K. By slightly perturbing u, for every x 0 ∈ K we can construct 2n continuous strictly psh functions on some neighbourhood K ⊂ U ⊆ U such that du 1 , . . . , du 2n are linearly independent at x 0 . This implies that, in a neighbourhood of x 0 , we have

{u 1 = u 1 (x 0 )} ∩ . . . {u 2n = u 2n (x 0 )} = {x 0 }.
By [START_REF]Pseudoconcave decompositions in complex manifolds[END_REF]Corollary 1.11] and [START_REF] Slodkowski | Local maximum property and q-plurisubharmonic functions in uniform algebras[END_REF]Theorem 4.2], for every family of continuous psh functions on U there exists a local maximum set K ⊆ K with the property that all functions of the family are constant on K . Choosing a point x 0 ∈ K , the previous paragraph gives that x 0 is isolated in K . This is a contradiction, and the proof is complete.

We conclude the section with the following result, that we will need to prove Item (3) of Theorem 1.1. Lemma 3.4. Let X be a weakly complete complex surface and Y a regular level for a C 0 exhaustion function φ. Then, for all k ≥ 2, Σ k X ∩ Y is a local maximum set and, for all local maximum sets K ⊆ Σ k X , K is foliated by holomorphic discs, i.e., it is locally a union of disjoint holomorphic discs.

Proof. The intersection Σ k X ∩ Y is a local maximum set by [START_REF]Weakly complete complex surfaces[END_REF]Theorem 3.2]. As observed in [9, Proposition 3.5], the proof of the lemma is then essentially given in [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]Lemma 4.1], see in particular the Assertion in the proof of that lemma.

We point out that [START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]Lemma 4.1] relies on a result by Shcherbina [START_REF] Shcherbina | On the polynomial hull of a graph[END_REF], which holds true only in dimension 2; this is the reason for restricting ourselves to the case of surfaces. it would be interesting to prove (or disprove) a similar statement in higher dimension.

Kernels and tangent directions

In this section we let X be a weakly complete complex manifold of dimension n and assume that Psh k (X) contains at least one exhaustion function φ : X → R for some 2 ≤ k ≤ ∞. Recall that the minimal kernel Σ k X of X is defined as in (1) and the distribution E k of T X as in [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. We consider further the distribution S k of T X given by (3)

S k := {(x, ξ) ∈ T X : ξ ∈ T x X, (i∂∂u) x (ξ, ξ) = 0 ∀u ∈ Psh k (X)} .
Similar objects have already appeared in relation to the study of the Levi problem, see for instance [START_REF] Hirschowitz | Le probleme de Lévi pour les espaces homogenes[END_REF] in the case of homogeneous manifolds and [START_REF] Harz | On defining functions for unbounded pseudoconvex domains[END_REF][START_REF] Slodkowski | Minimal kernels of weakly complete spaces[END_REF]. We also set

E k := {x ∈ X : dim E k x ≥ } and S k 1 := {x ∈ X : dim S k x ≥ 1}. By definition, E k ⊆ E k -1 and E k is closed in E k -1 for all ≥ 1.
Observe moreover that S k is a complex distribution. Remark 4.1. Let T be a Levi current. Then, for almost every point of the support of T (with respect to the mass measure), the vector field associated to T at x belongs to the fibre S k

x of S k at x. Proposition 4.2. We have S k ⊆ E k , and

S k 1 = E k 2 = E k 1 = Σ k X .
Proof. It follows from the definition of

E k that E k 1 = E k 2 . Moreover, if (x, v) ∈ E k , there exists ψ ∈ Psh k (X) such that (dψ) x (v) = 0; then i∂∂ exp(ψ) = exp(ψ)i∂∂ψ + i exp(ψ)∂ψ ∧ ∂ψ ≥ 0, which implies that (i∂∂ exp(ψ)) x (v, v) ≥ exp(ψ(x))|∂ψ x (v)| 2 > 0 and so (x, v) ∈ S k . It follows that S k ⊆ E k .
We now prove that

E k 1 = Σ k X . If x ∈ Σ k X
, then there exists ψ ∈ Psh k e (X) which is strictly psh around x; therefore, given any ρ : X → R smooth with compact support near x, there exists > 0 such that ψ+ ρ is still psh. So, we can construct psh functions of class C k whose differentials span the tangent space at x, which implies that these differentials do not have any nontrivial common kernel in T x X.

So E k x = {0}, hence E k 1 ⊆ Σ k X . On the other hand, if E k x = {0}, given v 1 , .
. . , v 2n ∈ T x X linearly independent, we can choose psh functions ψ ij , i, j = 1, . . . , 2n of class C k and such that (dψ ij ) x (v i + v j ) = 0. Therefore, the function ψ := 2n i,j=1 ψ 2 ij has positive defined Levi form at x. Adding to the exhaustion function φ suitable multiples of ψ, we see that x ∈ Σ k X . This gives

E k 1 ⊇ Σ k X , hence E k 1 = Σ k X .
In order to conclude, we need to prove that S k 1 ⊇ Σ k X . Take x ∈ Σ k X and suppose by contradiction that, for every v ∈ T x X there is ϕ v : X → R which is C k , psh, and such that (dd c ϕ v ) x (v, v) > 0. Then, as above, we can construct a C k function ψ which is strictly psh at x. This gives the desired contradiction and completes the proof.

The following result gives Item (3) of our main Theorem 1.1. Theorem 4.4 (Nishino). Let X be a weakly complete or compact surface that contains an uncountable family F of disjoint connected compact complex curves. Then there exist a Riemann surface R and a meromorphic map h : X → R with compact fibers.

Proof of Proposition 4.3. By Theorem 4.4, to prove the first assertion it is enough to show that X contains uncountably many disjoint compact complex curves.

Since x ∈ U is such that dim E k x = 2, there exists ψ ∈ Psh k e (X) such that (dφ) x and (dψ) x are linearly independent; hence, the map ψ| Y : Y → R is not constant. 

∈ E k 2 \ E k 3 , which in turn implies that E k w = T w C ψ(w) . Therefore f (D) coincides locally with a leaf C b . Hence C b is contained in Σ k
X , so it is a compact complex curve. As b was taken arbitrarily among the regular values close enough to b 0 , we find uncountably many disjoint (since they correspond to distinct values) compact complex curves in X, as desired.

In order to conclude, we need to prove the final assertion on E k 3 . We proved above that there exists a meromorphic map h : X → R with compact fibres, where R is Riemann surface. It is enough to prove that E k 3 ⊆ {h = 0}. Let x ∈ X be such that h (x) = 0. Consider a strictly psh exhaustion function ψ for R (which we can assume to be C ∞ near x by [START_REF] Richberg | Stetige streng pseudokonvexe Funktionen[END_REF]) and the family of functions F := {ψ + ρ}, where ρ is a smooth function compactly supported near h(x). For every such ρ, ψ + ρ is still strictly psh for sufficiently small. Thus, we can obtain a set of generators for the tangent space given by differentials at h(x) of psh functions in F. Pre-composing the corresponding functions with h, we obtain that the space of differentials at x of psh functions on X has dimension at least 2. Hence, x / ∈ E k 3 , and the proof is complete. Remark 4.5. Suppose that X is a surface and Y a regular level for an exhaustion function φ ∈ Psh 0 e (X). Let K ⊆ Y ∩ Σ X be a local maximum set. By Lemma 3.4, Y and K are foliated by holomorphic discs. For every such disk, its tangent bundle is exactly the restriction of S. By [1, Theorem 1.4], there exists a ∂∂-closed positive current of bidimension (1, 1), directed by S, supported in K. By Lemma 2.7, such current is a Levi current. This gives a different proof of Item (2) when dim X = 2.

End of the proof of Theorem 1.1

It follows from Corollary 2.5 (or Lemma 2.6) that spt T ⊆ Σ k X for every Levi current T and all k ≥ 0. Thus, we have F ⊆ Σ k X for all k ≥ 0. Moreover, Items (1), (2), and (3) follow from Propositions 3.2, 3.3, and 4.3, respectively.

Let now Y be a regular connected component of a level set for an exhaustion psh function φ ∈ Psh k e (X) for some k ≥ 2. The remaining item follows from the next proposition. Proof. We assume for simplicity that the level {φ = c} is regular and connected, the argument is similar otherwise. Since k ≥ 2, by [24, Theorem 3.9] there is c < c such that, setting K = {x ∈ X : c ≤ φ(x) ≤ c}, the form (dd c φ) 2 vanishes on the interior of K, hence on K. So, we have K ⊆ Σ k X . Consider the current T given by T := i∂φ ∧ ∂φ.

It is clear that T is a current of bidimension (1, 1), positive and directed by the complex subspace of the tangent of the levels of φ. Moreover, i∂∂T is induced by the form i∂∂(i∂φ ∧ ∂φ) = -(∂∂φ) 2 .

(2) X is proper over a (possibly singular) complex curve;

(3) the connected components of the regular levels of α are foliated with dense complex curves. In the first and second cases, the assertion follows from the characterization of Levi currents given in Section 2. In the third case, a Levi current can be constructed, for instance, by means of [START_REF] Berndtsson | The ∂-equation on a positive current[END_REF]Theorem 1.4]. By proposition 3.2, the support of any Levi current is a local maximum set. By [START_REF] Mongodi | Domains with a continuous exhaustion in weakly complete surfaces[END_REF]Lemma 3.3], a local maximum set contained in a Levi-flat hypersurface must be a union of leaves of the Levi foliation.

Hence, in the third case, any Levi current on a regular level set of the exhaustion function is supported on the whole level set, as all the leaves of the Levi foliation are dense. This in particular applies to extremal Levi currents. The proof is complete.

Proposition 4 . 3 .

 43 Let X be a weakly complete complex surface, φ a C k , 4 ≤ k ≤ ∞, exhaustion psh function and Y a regular connected component of a level set {φ = c} of φ. Suppose that U ⊆ Y is an open set in Y and U ⊆ Σ k X . If there exists x ∈ U such that dim E k x = 2, then X is a union of compact complex curves. In particular, Σ k X = F = X = E k 2 , and E k 3 is contained in a (possibly empty) analytic subset of the singular levels for φ.We will need the following theorem by Nishino, see [14, Proposition 9 and Théorème II] and [11, Section 2.2.1].

  Since k ≥ 4, by Sard's theorem we can find regular values b for ψ arbitrarily close to b 0 := ψ(x), therefore the sets C b = {y ∈ Y : ψ(y) = b} intersect the open set U ⊆ Σ k X . For any y ∈ C b ∩Σ k X , by Proposition 4.2 we have T y C b = E k y = S k y . Therefore, C b ∩Σ k X is a complex curve, being a real, smooth 2-dimensional manifold with complex tangent space. On the other hand, the set C b \ Σ k X is open in C b . Let z ∈ C b be a boundary point (with respect to C b ); as z ∈ Σ k X , by Lemma 3.4 there is a holomorphic disc f : D → X such that f (D) ⊂ Y and f (0) = z. If ζ ∈ D is close enough to 0, then, setting w = f (ζ), we have w ∈ Σ k X , and (dφ) w and (dψ) w independent. This gives w

Proposition 5 . 1 .

 51 If k ≥ 2 and Y ⊆ Σ k X , there exists c < c such that the connected component of φ -1 ([c , c]) containing Y is contained in F .
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So, i∂∂T vanishes where φ is not strictly psh, hence on Σ k X . Let B be the interior of K, then the restriction of T to B is a current of bidimension [START_REF] Berndtsson | The ∂-equation on a positive current[END_REF][START_REF] Berndtsson | The ∂-equation on a positive current[END_REF], positive, ∂∂-closed (in B); moreover, given u ∈ Psh 0 (X), we have that T ∧ ∂∂u = 0 on Σ k X , so T is a Levi current.

By construction and Lemma 2.2 we have T ∧ ∂φ = 0, so we can disintegrate T along the levels of φ, see Corollary 2.3: there exist currents T s with s ∈ (c , c), such that, for α a 2-form with spt α ⊂ B, T, α = c c T s , α dµ(s) for some measure µ on (c , c).

Since φ ∈ C 2 , the measure µ is absolutely continuous with respect to the Lebesgue measure on (c , c).

As

The set in the RHS is compact since φ is an exhaustion function. By Lemma 2.7, T s is a Levi current.

In conclusion, the level set {x ∈ X :

The proof of Theorem 1.1 is complete.

Real analytic exhaustion function

A classification of those weakly complete complex surfaces X admitting an analytic exhaustion function is given in [START_REF]Weakly complete complex surfaces[END_REF]. As a direct consequence, we can get an analogous complete classification of the possible Levi currents in this setting.

First notice that each exceptional divisor V in X corresponds to an extremal Levi current given by the current of integration [V ]. Without loss of generality, to simplify our next statement, we can thus assume that X has no such divisors on the regular levels of α. The statement for a general X is then a direct consequence. Theorem 6.1. Let X be a weakly complete complex surface admitting an analytic exhaustion function α. Assume that X has no exceptional divisors on the regular levels of α. Then one of the following possibilities hold:

(1) X is Stein (and so, admits no Levi currents);

(2) F = Σ ∞ X = X = ∪V i , where all the V i are (disjoint) connected compact curves, and all extremal Levi currents are of the form λ[V i ] for some positive λ, with V i an irreducible component of some Observe also that, although a priori we would only have Σ k X ⊆ Σ ∞ X for all k ≥ 0, the above geometric description implies that Σ k X = Σ ∞ X for all k ≥ 0. Proof. It follows from [9, Theorem 1.1] that one of the following possibilities holds:

(1) X is a Stein space;