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PCP-nets and voting rules: some observations
Hénoı̈k Willot and Sébastien Destercke and Sylvain Lagrue1

Abstract. PCP-nets can be seen as a compact representation of a
probability distribution over CP-nets. Based on this property, we can
interpret each CP-net represented in the PCP-net as a voter, with an
associated probability/weight in the population, voting on the space
of all the outcomes. We can then see various inference problems
in CP-nets, and particularly recommendation, as a voting problem.
This paper is a reflection on such queries. In particular, it is usual to
determine the result of a recommendation query as the top-outcome
having highest probability, which can be assimilated as the result of
a plurality vote. In this paper, we will see that PCP-nets also suffer
from usual problems met in voting rules, and we will make a first
discussion on the use of alternative classical voting methods such as
the Borda rule.

1 Introduction

Preferences are ubiquitous in our everyday life, be it to make light
or impactful decisions. Imagine, for instance being in a vacation
camp where activities are proposed and coaches are available on
demand for you. The vacation company needs you to express your
choices over these activities and the available coaches to plan your
stay depending on the weather, the time, etc. Note that while this
decision and preferences probably have little impact on you, they may
have a huge impact for the company in the long run.

Modelling such preferences and making recommendations from
such models is an old topic, for which many proposals have been
made. Among them are the CP-nets introduced by Boutilier et al. [3].
Due to their graphical nature, CP-nets have the advantage of being
compact over the ranked alternatives and easily understandable. Since
then, extensions able to cope with uncertainty, such as probabilistic
[1, 4] or incomplete CP-nets [6] have been proposed.

In this paper, we focus on the probabilistic extension of PCP-net,
and discuss in particular inference rules proposed in the past. More
precisely, we link them to voting rules, and criticize them on this
basis. It also leads us to a preliminary investigation on how inference
mechanisms based on other voting rules, such as Borda’s, can be
applied to PCP-net. Note that linking PCP-net to voting rules is also
quite in-line with their interpretation as models of preference of a
population of users.

Sections 2 and 3 give respectively a refresher on both CP-nets
and their probabilistic extension. Section 4, the core of the paper,
shows that PCP-nets are subject to Condorcet-style paradoxes, and
investigate the application of the Borda rule to this model, contrasting
it with the classical inference method that can be assimilated to a
plurality rule.
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2 CP-nets: a brief reminder

We consider a set V of n variables . Each variable X ∈ V has its
own finite domain DX. We call an outcome a full assignment o ∈
O = ×X∈VDX. We will denote by DQ = ×X∈QDX the domain
corresponding to a subset Q ⊆ V of variables. We will also denote by
oQ the values of an outcome restricted on Q.

Definition 1 (Preference rule). A preference rule �X is a total or-
der (reflexive, antisymmetric and transitive binary relation) over the
domain DX of a variable X ∈ V . The preference rule �X

q can be
conditioned by a value q of DQ, with Q ⊆ V \X.

Definition 2 (Conditional Preference Network). A CP-net is a graph-
ical representation of preferences working under the ceteris paribus
assumption, all other things being equal. A CP-net X is defined by a
directed graph G = (V, E) and a conditional preference table (CP-
table) for each X ∈ V . An edge from a variable X to a variable Y of
V means that the preferences over DY are conditioned by the values
of DX. For a variable X, we denote by PA(X) ⊆ V \X its parents,
and by pa(X) a specific instance of these parents. The CP-table of X
is the set of preference rules �X

pa(X) specified for each pa(X).

In this paper, we only consider graphs G that are acyclic, as those
considerably simplify the model and ensure its consistency. Also,
PCP-nets are usually defined over acyclic graphs. We also consider
that preference rules are strict preferences, as no indifference in the
CP-tables ensures that CP-nets have a unique best outcome (Boutilier
[3]).

Example 1. We have the choice between 2 activities, Tennis and
Frisbee, and two coaches, Bob and Alice. I prefer unconditionally
playing Frisbee over Tennis, and I prefer playing Tennis with Bob
and Frisbee with Alice. This preference can be summarised by the
following CP-net :

Activity

Coach

CP-table of Activity
Frisbee > Tennis

CP-table of Coach
Frisbee: Alice > Bob
Tennis: Bob > Alice

Figure 1: Simple CP-net for vacation activities

Definition 3 (Order on outcomes). Given a fixed CP-net N, we can
use N to create a partial order �N on O. CP-nets works under the
ceteris paribus assumption. That is, when two outcomes o, o′ differ
only on one variable X, o �N o′ iff oX >X

oPA(X)
o′X, with the pair



(oX, o
′
X) called a worsening flip (swapping value oX for o′X worsen

the outcome).
Two arbitrary outcomes o1, o2 are then such that o1 �N o2 only

if a sequence of worsening flips from o1 to o2 exists, i.e. a transitive
chain of preference rules >X

oPA(X)
starting with o1 and ending with

o2. If it is not possible to find such a sequence between o1 and o2, the
two outcomes are not comparable, resulting in �N being a partial
order.

Definition 4 (Optimization query). The optimization query, or out-
come optimization, determine which outcome is the best outcome
among the ranking defined by the CP-net N. We denote the resulting
outcome o by opt(N).

Example 2. If we come back to the CP-net of example 1, we can
build a complete ranking outcomes, we obtain: (Frisbee, Alice) �
(Frisbee, Bob) � (Tennis, Bob) � (Tennis, Alice). The result of the
optimization query is (Frisbee, Alice).

In this paper we only consider strict total orders for preference
rules, i.e. all the values of the domain are ordered and there is no
indifference. We also only consider complete CP-nets, all preference
rules are total orders known for every value of the parents.

3 PCP-nets
Probabilistic CP-net [1, 4] have emerged in an attempt to take into
account ill-known preferences to be able to answer the question ”what
is the probability of having o preferred to o′ for an unknown agent
?”. To handle ill-known preferences, coming from lack or noisy infor-
mation or multi-agent preferences, each preference statement is now
associated with a probability into a Probabilistic CP-table.

Definition 5. (Probabilistic CP-net) A PCP-net N is defined by a
directed graph G = (V, E) and a conditional (local) probabilistic
preference table (PCP-table) for each X ∈ V . A PCP-table on X is
a conditional probability p(|PA(X)) defined over L(X), the set of
linear ordering on X.

If we consider a CP-net N (with specified CP-tables) that has the
same graphical structure as a PCP-net N , we will say that it is N -
compatible. We can associate to it a probability such that

pN (N) =
∏
X∈V

∏
PA(X)

p(�X
pa(X) |pa(X))

with�X
pa(X) the preference on X for N. By abuse of notation, we will

also denote by N ∈ N the fact that N isN -compatible.
If we associate to each CP-net N its partial order, pN can then

be seen as a probability distribution over partial orders, with pN (N)
that can be understood as the weight of �N, e.g., the number of
voters/agents giving �N as preferences, or the probability that �N

represents the true preference of a single agent.

Example 3. Let’s get back to our vacation’s activities plan. You came
with friends and you have to give the preferences for the whole group
to the company. After consultation with the group you concluded
that Frisbee is preferred over Tennis for 80% of the group. For the
Frisbee activity, Alice is preferred to Bob with a probability of 60%
and playing Tennis with Bob is preferred in 90% of the time. We obtain
the PCP-net in figure 2.

Remark The CP-net N of Figure 1 is induced by the PCP-netN
pictured in Figure 2. Its probability is pN (N) = 0.8 ∗ 0.6 ∗ 0.9 =
0.432.

Activity

Coach

PCP-table of Activity P
Frisbee > Tennis 0.8
Tennis > Frisbee 0.2

PCP-table of Coach P

Frisbee:
Alice > Bob 0.6
Bob > Alice 0.4

Tennis:
Bob > Alice 0.9
Alice > Bob 0.1

Figure 2: PCP-net of the group for vacation activities

4 PCP-nets and voting rules

Seeing PCP-nets as weights over rankings or voters, we discuss some
problems of classical PCP-nets inference tools through the lens of
voting rules.

4.1 PCP-nets and Condorcet paradox

A first remark is that, if one focus on pairwise preferences, PCP-
nets are likely to be prone to Condorcet paradox. The dominance
probability pN (o � o′) =

∑
N∈N ,o�No′ pN (N) of a pair (o, o′)

is indeed such that it can create cycles, in the sense that we can
find a sequence o1, . . . , oc such that pN (oi � oi+1) > 0.5 for
i ∈ 1, . . . , c− 1 and pN (oc � o1) > 0.5.

The next trivial example shows that this paradox may occur for
more complex CP-nets.

Example 4. Let A be a variable over DA = {a1, a2, a3} and con-
sider the trivial PCP-net of Figure 3.

A

PCP-table of A P
a1 > a2 > a3 0.1
a1 > a3 > a2 0.2
a2 > a3 > a1 0.3
a2 > a1 > a3 0.15
a3 > a1 > a2 0.22
a3 > a2 > a1 0.03

Figure 3: PCP-net of the group for vacation activities

After rather simple computations, we get

pN (a1 � a2) = 0.1 + 0.2 + 0.22 = 0.52 > 0.5

pN (a2 � a3) = 0.1 + 0.3 + 0.15 = 0.55 > 0.5

pN (a3 � a1) = 0.3 + 0.22 + 0.03 = 0.55 > 0.5

We obtain a Condorcet cycle between a1, a2 and a3.

Remark 1. This behaviour could have been expected, as it is well
known in the probabilistic literature that statistical preferences (the
fact of stating that X � Y if P (X > Y ) > 0.5) can produce
cycles [5].

Note that other pairwise rule such as unanimity (pN (o � o′) = 1)
have been discussed for incomplete CP-nets [7], yet the one con-
sidered here is a natural definition commonly used in probabilistic
literature [2].



4.2 PCP-nets, plurality and Borda
Usually, as defined in [1], the optimal outcome optN (O) for a PCP-
net is defined as

optN (O) = argmax
o∈O

∑
N∈N ,opt(N)=o

pN (N)

In practice, this means that the optimal outcome is defined as the
one that is preferred by the (weighted) majority of theN -compatible
CP-nets. This is therefore equivalent to the plurality rule.

The plurality rule is certainly one of the simplest voting rule, but
it violates many axioms, in the light of which optN (O) may not
perceived as a good (group) recommendation. Another commonly
used rule is the Borda rule, that for a given voter, assigns the score
ro to an outcome o, where ro is the rank of the outcome (the worst
outcome having rank 1). The recommended outcome is then the one
whose sum of scores over all voters (in our case, all N ∈ N ) is the
highest. A question that ensues is whether the Borda rule applied to
CP-net would provide the same answer as the plurality rule, or suggest
another outcome.

As Borda rule requires a complete total order over the set of candi-
dates, it cannot be directly applied to PCP-nets, as CP-nets generally
induce a partial order. In such cases, we can look for possible win-
ners [10] over all completions of these partial orders in complete
ones. Since computing those is NP-complete, we propose next an
approximate computation.

To deal with the incomparabilities of a CP-net N, we will define
for each outcome a Borda (resp. Borda), approximating in a con-
servative manner the worst (resp. best) rank it can have in the linear
extensions of�N. We will use the following upper-bounding heuristic:
we compute the transitive closure of �N. We then simply define the
following bounds

BordaN(o) = |{o
′ ∈ O : o′ ≺N o}|+ 1

BordaN(o) = |O| − |{o′ ∈ O : o′ �N o}|.

This gives us, for each outcome o and CP-net N, an interval
[BordaN(o), BordaN(o)] and we can then check for possible win-
ners given this information. Given a PCP-netN , we define the associ-
ated lower/upper Borda scores as

BordaN (o) =
∑
N∈N

pN (N)BordaN(o)

BordaN (o) =
∑
N∈N

pN (N)BordaN(o).

Denoting by BordaN = maxo BordaN (o) the maximal obtained
lower bound, we define the approximate set of possible winners as

APossBorda = {o ∈ O : BordaN (o) ≥ BordaN }. (1)

This set is a superset of the set of the exact set of possible win-
ners, as BordaN , BordaN are only lower/upper bounds of the exact
lower/upper Borda scores.

Example 5. To help clients with their choice of activities, the com-
pany now gives the weather report and set two time periods for the
activities. A new activity is also available, Pingpong. The preferences
are now evolving with 4 variables: Time: AM and PM, Weather: Fair
(F) and Rain (R), Activity: Tennis (T), Frisbee (F) and Pingpong (PP),
and Coach: Bob (B) and Alice (A). After consulting with the group,
you determined that, globally, according to the Weather, you will

prefer either to make the Activity in the morning or the afternoon. The
choice of Activity will depend on the Weather and the period of the
Day. The choice of Coach, however, is only linked to the choice of
Activity. We will not express all the preferences and their associated
probabilities as the model start to be complex. This results in the
PCP-net in Figure 4.

Now that the preferences are completely set for the group, the
company can now select the conditions preferred by the group. In
Table 1, we compare the results for the 24 outcomes. In red is the
winner of the plurality vote, and in blue are the outcomes within the
set given by Equation 1 that form a superset of the possible Borda
winners.

Outcome o pN ,P lur(o)BordaN (o) BordaN (o)
(F,PM,PP,B) 0.135 10.694 16.394
(F,AM,PP,B) 0.0 7.340 11.244
(R,PM,PP,B) 0.0 6.754 10.766
(R,AM,PP,B) 0.140 10.921 14.745
(F,PM,PP,A) 0.045 10.101 16.182
(F,AM,PP,A) 0.0 6.567 11.610
(R,PM,PP,A) 0.0 5.940 11.302
(R,AM,PP,A) 0.047 10.805 14.338
(F,PM,F,B) 0.0 9.614 15.892
(F,AM,F,B) 0.0 8.761 13.266
(R,PM,F,B) 0.0 8.318 12.518
(R,AM,F,B) 0.0 5.193 10.295
(F,PM,F,A) 0.090 12.857 18.644
(F,AM,F,A) 0.0 10.979 17.199
(R,PM,F,A) 0.0 10.584 16.315
(R,AM,F,A) 0.0 7.676 13.238
(F,PM,T,B) 0.054 12.381 18.371
(F,AM,T,B) 0.045 10.918 18.048
(R,PM,T,B) 0.054 10.545 17.221
(R,AM,T,B) 0.010 8.431 13.545
(F,PM,T,A) 0.126 15.295 19.422
(F,AM,T,A) 0.105 13.109 19.181
(R,PM,T,A) 0.126 12.782 18.246
(R,AM,T,A) 0.023 11.003 14.452

Table 1: Results of plurality and Borda vote for PCP-net of Figure 4,
with optN (O) in red, BordaN in bold blue and o ∈ APossBorda

in blue

The first thing we can notice is that the winner of the plurality vote
optN (O) = (R,AM,PP,B) only has a probability equal to 0.140,
which is very low to establish a consensus for the group. Once we
also notice that (R,AM,PP,B) does not belong to the potential winners
of the Borda vote, despite our approximation. This questions even
more the legitimacy of suing plurality to make a recommendation, and
shows that the choice of the decision or voting rule is not without
consequences.

This example is sufficient to show that optN (O) may actually
not be a very good recommendation in terms of compromise. This
shows the interest to investigate alternative rules issued from voting
theory, in particular from the computational perspective (left out in
this preliminary discussion).

5 Discussion and conclusion
In this paper, we have discussed some aspects of classical inference
mechanisms of PCP-nets, interpreting them as elements of voting
rules. This allowed us to expose some potential problems of these
inferences, and to propose a quick (and dirty) approximate Borda
procedure that we compared to usual outcome optimisation. We would



Activity

Coach

Weather

Time

PCP-table of Weather P
Fair (F) > Rain (R) 0.6
Rain (R) > Fair (F) 0.4

PCP-table of Time P

F:
PM > AM 0.75
AM > PM 0.25

R:
AM > PM 0.55
PM > AM 0.45

PCP-table of Activity P

PM,F:
Pingpong (PP)> Tennis (T)> Frisbee (F) 0.4
Tennis (T) > Frisbee (F) > Pingpong (PP) 0.4
Frisbee (F) > Tennis (T) > Pingpong (PP) 0.2

PM,R: Tennis (T) > Frisbee (F) > Pingpong (P) 1
AM,F: Tennis (T) > Frisbee (F) > Pingpong (P) 1

AM,R:
Pingpong (P) > Tennis (T)> Frisbee (F) 0.85
Tennis (T) > Frisbee (F) > Pingpong (P) 0.15

PCP-table of Coach P

PP:
Bob (B) > Alice (A) 0.75
Alice (A) > Bob (B) 0.25

F: Alice (A) > Bob (B) 1

T:
Alice (A) > Bob (B) 0.7
Bob (B) > Alice (A) 0.3

Figure 4: Final PCP-net of the group for vacation activities

like to go further in this direction, and also to link voting rules and
inferences with loss or distance minimization procedures [9]. There
have been some previous attempts to do so [8], but with voting rules
and loss functions that were specific to CP-nets, rather than usual ones
used within social choice theory.

This work can also be seen as a will to bring together PCP-nets
and voting rules in an attempt to answer the optimisation query in
a multi-agent setting represented by the PCP-net itself. The com-
mon conception is to use the plurality vote, but our examples show
that other voting rules can be used and could provide distinct an-
swers. However, it is known [1] that finding the outcome with the
maximal probability can be done in linear time on the variables for
Tree-structured PCP-net, whereas our heuristic requires to build the
partial order over O. We would like to improve this heuristic, as it
only provides an outer-approximation of the set of possible winners.
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