
HAL Id: hal-03134259
https://hal.science/hal-03134259v1

Preprint submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast real and complex root-finding methods for
well-conditioned polynomials

Guillaume Moroz

To cite this version:
Guillaume Moroz. Fast real and complex root-finding methods for well-conditioned polynomials. 2021.
�hal-03134259�

https://hal.science/hal-03134259v1
https://hal.archives-ouvertes.fr

Fast real and complex root-finding methods for
well-conditioned polynomials

Guillaume Moroz
guillaume.moroz@inria.fr

Université de Lorraine, CNRS, Inria, LORIA

Villers-lès-Nancy, France

ABSTRACT

Given a polynomial ? of degree 3 and a bound ^ on a condition

number of ? , we present the �rst root-�nding algorithms that re-

turn all its real and complex roots with a number of bit operations

quasi-linear in 3 log2 (^). More precisely, several condition num-

bers can be de�ned depending on the norm chosen on the coe�-

cients of the polynomial. Let ? (G) = ∑3
:=0

0:G
:
=

∑3
:=0

√(3
:

)
1:G

: .

We call the condition number associated with a perturbation of

the 0: the hyperbolic condition number ^ℎ , and the one associated

with a perturbation of the 1: the elliptic condition number ^4 . For

each of these condition numbers, we present algorithms that �nd

the real and the complex roots of? in$
(
3 log2 (3^) polylog(log(3^))

)
bit operations.

Our algorithms are well suited for random polynomials since ^ℎ
(resp. ^4) is bounded by a polynomial in 3 with high probability if

the 0: (resp. the 1:) are independent, centered Gaussian variables

of variance 1.

KEYWORDS

Polynomial equation, Root �nding, Condition numbers, Real roots,

Complex roots

1 INTRODUCTION

The problem of �nding all the real or complex solutions of a poly-

nomial equation ? (I) = 0 has been extensively investigated, both

in theory and in practice. If ? is a polynomial of degree 3 with

integer coe�cients of bit size bounded by g , the state-of-the-art

methods to �nd the real or complex roots of ? require a number of

bit operations in$ (32(3+g) polylog(3g)) [2, 28]. In the case where
the polynomial is well-conditioned, the best methods in the state

of the art also require at least a quadratic number of bit operations

to �nd its roots. By well-conditioned, we mean that the variation

of the roots of ? with respect to the variation of its coe�cients is

small ([7, chapter 12], [8, chapter 14] and references therein).

For ill-conditioned polynomials, the distance between two roots

can as small as 2−3g . Pan considered optimal an algorithm that

used $ (3) arithmetic operations, where the number of bit opera-

tion for each arithmetic operation is in $ (3g), and in this sense,

he provided a near-optimal algorithm. On the other hand, when a

polynomial is well-conditioned, the distance between two roots is

not exponentially small in 3 .

Random polynomials are well-conditioned with a high proba-

bility. More precisely, let ? (G) be a polynomial of degree 3 where

each of its coe�cients is a Gaussian random variable of variance(3
:

)
. There exist constants � > 1 and � > 1 such that the so-called

elliptic condition number (see De�nition 1.1) is lower than =� with

probability higher than 1− 1/=� [10]. A similar result was proven

for the so-called hyperbolic condition number when the variance

is 1 [13]. Moreover, the distribution of the roots of polynomials

with random coe�cients is well understood ([14] and references

therein). Thus it makes sense to provide algorithms that performs

better than the general case for random polynomials and for well-

conditioned polynomial.

Provided that we know a bound ^ on a condition number of ? ,

we will show that it is indeed possible to �nd all the roots of ? with

a number of operations quasi-linear in 3 and polynomial in log(^).
Even though a condition number was not explicitly used, the

analysis of root-�nding methods for well-conditioned polynomi-

als started with Smale [32] who studied the probability of failure

of the Newton method. The Newton method is one of the most fa-

mous iterative method, that converges quadratically toward a sin-

gle root Z of ? provided that the initial point is close enough to Z ([7,

chapter 8], [12, chapter 3], [8, chapter 15] and references therein).

It was later shown that it is even possible to construct a set (3
of 3 log2 (3) points such that for all polynomials ? and each root

Z of ? , there exists a point in (3 such that the Newton iteration

eventually converges toward Z [19]. Explicit bounds polynomial

in the condition number were derived and improved for multivari-

ate polynomial system of equations, based notably on homotopy

methods ([3, 9, 11, 25] among others). One drawback of those ap-

proaches is that they require to evaluate ? on at least 3 points,

which leads to a number of arithmetic operations at least quadratic

in 3 . Some methods based on modi�ed Newton operators, such as

the Weierstrass method ([4] and references therein) or the Aberth-

Ehrlich method [16] were implemented with success, notably in

the software MPSolve [5, 6].

For general polynomials, including ill-conditioned ones, fast nu-

merical factorization is the �rst approach to provide the state of the

art bound in $ (32(3 + g) polylog(3g)) [28]. However this method

is di�cult to implement.

Another family of methods that are e�cient in practice are the

subdivisionmethods. The idea is to subdivide recursively a domain

that contains the roots of ? in subdomains, and to reject or accept

the subdomains according to criteria that guarantee that a subdo-

main contains one or zero root. For real roots, the criteria that one

may use are notably the Descartes’ rule of signs ([29] and refer-

ences therein), the Budan’s theorem [17, 31, 36], or the Sturm’s

theorem [1] among others. For complex roots, one may use Pel-

let’s test [2] or Cauchy’s integral theorem [20, 21] among others.

Combining subdivision approaches with Newton iterations allows

to match the complexity bound of Pan’s algorithm for real [30].

Subdivision methods are more commonly implemented, notably

Guillaume Moroz

in the software ANewDsc [24], SLV [35], the package RootFinding

in Maple [26], the package real_roots in sage [34], Ccluster [22]

among others.

We can also mention approaches based on the computation of

the eigenvalues of the companionmatrix associated to ? [27]. These

approach has the advantage of being numerically stable in many

cases [15]. These methods are implemented notably in Matlab [33]

and numpy [18].

1.0.1 Contribution. Focusing on univariate polynomial equations,

we develop new algorithms that are for the �rst time polynomial in

the logarithmof a condition number, and quasi-linear in the degree.

Our approaches work for two classical condition numbers that we

de�ne here for G in the interval [0, 1] and for I in the complex unit

disk � (0, 1).
Following the theory of condition number associated to the root-

�nding problem [8, chapter 14 and 16], we introduce the following

de�nitions.

De�nition 1.1. Given the polynomial ? (G) =
∑3
:=0

0:G
:

=∑3
:=0

√(3
:

)
1:G

: , let 5 (C) = cos3 (C)? (tan(C)). The real hyperbolic

condition number associated to ? is:

^R
ℎ
(?) = max

G ∈[0,1]
min

(
‖0‖1
|? (G) | ,

3 ‖0‖1
|? ′(G) |

)

The real elliptic condition number associated to ? is:

^R4 (?) = max
C ∈[0, c4]

min

(
‖1‖2
| 5 (C) | ,

√
3 ‖1‖2
| 5 ′(C) |

)

For ? (I) with I in the unit disk, letting ?\ (G) = ? (G48\),
we de�ne the complex hyperbolic and the complex elliptic con-

dition numbers as ^C
ℎ
(?) = max\ ∈[0,2c] ^

R

ℎ
(?\) and ^C4 (?) =

max\ ∈[0,2c] ^
R
4 (?\) respectively.

The justi�cation for the name hyperbolic and elliptic comes from

the fact that when the 0: are independent, centered Gaussian vari-

ables of variance 1, then the density of the root distribution in [0, 1]
converges to 1/(c (1− C2)) when 3 converges to in�nity. Similarly,

when the 1: are independent, centered Gaussian variables of vari-

ance 1, then the root distribution has density
√
=/(c (1 + C2)) [14].

Remark that by symmetry of the weights we consider in front

of the coe�cients, we can reduce the problem of �nding all the

roots in R or in C to the problem of all �nding all the roots in [0, 1]
and C respectively, through the changes of variable G ↦→ −G and

G ↦→ 1/G .
For our algorithms, we consider polynomials with bit-stream

coe�cients, where the �rst : bits can be accessed in $ (:) bit op-
erations. Our output is a list of approximate zero as introduced by

Smale [32], in the sense that for any point I0 returned by our algo-

rithm, the sequence I:+1 = I: − ? (I:)/? ′(I:) converges quadrat-
ically toward its associated root of ? . We can now state our main

result.

Theorem 1.2. Let ? (G) be a polynomial of degree 3 , with bit-

streams coe�cients.

There exist two algorithms that �nds all its real roots in the inter-

val [0, 1] in $ (3 log2 (3^) polylog(log(3^))) with ^ = ^R
ℎ
(?) and

^ = ^R4 (?) respectively.

Type

Domain

Hyperbolic Elliptic

[0, 1] � (0, 1) [0, 1] � (0, 1)
E: (G) G:

(3
:

)
sin: (G) cos3−: (G)

ℎ(G) G tan(G)
g log2 (3^)
$ (log(3/g)) $ (

√
3/g)

"= 1 2=+4 1 $ (
√
3/g)

W
Eq. (1) Eq. (2) Eq. (3) Eq. (4)

d

Table 1: Values for the initialisation of the variables in Step�

of Algorithm 1

There exist two algorithms that �nds all its complex roots in the

unit disk in $ (3 log2 (3^) polylog(log(3^))) with ^ = ^C
ℎ
(?) and

^ = ^C4 (?) respectively.

The main idea of our algorithms is to approximate ? with a

piecewise polynomial function, where each polynomial has a de-

gree in $ (log(3^)). This is achieved by partitioning the interval

[0, 1] and the unit disk following the distribution of the roots. Then
using Kantorovich’s theory, we show that a good enough approx-

imation the roots of the piecewise polynomial is a set of approxi-

mated roots associated to all the roots of ? . Our method is summa-

rized in Algorithm 1.

For the correctness of Algorithm 1, we prove in key Lemma 2.1

that if a polynomial 6 of small degree is su�ciently close to a se-

ries 5 , then the problem of �nding the root of 5 can be reduced to

the problem of �nding the roots of 6. Then in Section 3.4 and 4.4,

we show that the piecewise polynomials that we construct in Al-

gorithm 1 satisfy the assumptions of Lemma 2.1.

For the bound on the number of bit operations, the main steps

that we need to analyse in Algorithm 1 are Step � and Step � . In

Step� we need to solve
∑#
==0"= polynomials of degree % . Using a

classical algorithm with the state-of-the-art complexity ([28, Theo-

rem 2.1.1] and [2]), we can �nd all the roots in the unit disk of each

polynomial with an error bounded by 2−% , and with a number of

bit operations in$ (%3 polylog(%)). Then, since % is in$ (log(3^))
and the sum of the"= is in$ (3/log(3^)) in all cases (see Table 1),

we conclude that the bound on the number of bit operations to

perform Step � is in $ (3 log2 (3^) polylog(log(3^))).
In Step �, if we perform the loop as written in Algorithm 1,

this leads to a number of operations quadratic in 3 . Instead, in Sec-

tion 3.5 and 4.5, we show how we can modify Step � such that the

number of bit operations for this step is in$ (3 log2 (3^) polylog(log(3^))).
First we will prove in Section 2 that we can reduce the root-

�nding problem to the problem of �nding the roots of a smaller

degree polynomial. Then in Section 3 and 4, we will prove the cor-

rectness and bound the complexity of Algorithm 1 for polynomials

with small hyperbolic condition number and small elliptic condi-

tion number respectively. Finally in Section 5, we will discuss open

questions related to our approach.

Fast real and complex root-finding methods for well-conditioned polynomials

Algorithm 1 Root-�nding algorithm

Input: 2: list of 3 + 1 coe�cients

C : type of themonomial weight (4;;8?C82 orℎ~?4A1>;82)

^: bound on the condition number (see De�nition 1.1)

Output: A4BD;C : list of the approximate roots of the function{∑3
:=0

2 [:]G: if C is ℎ~?4A1>;82∑3
:=0

2 [:]
√(3

:

)
G: if C is 4;;8?C82

A. Initialization

Variables depending on C (see Table 1):

E ← list of 3 + 1 monomial functions

ℎ ← a scale function

W ← list of # real numbers, centers of disks

d ← list of # real number, radii of disks

" ← list of # integers

% ← ⌈10 log2 (3^)⌉
F ← list of %-th roots of unity

for 0 ≤ = ≤ # do

I [=] ← list of the"=-th roots of unity

A4BD;C ← empty list

B. Evaluation

for 0 ≤ = < # and 0 ≤ ? < % do

for 0 ≤< < "= do

4 [<,=, ?] ← ∑3
:=0

2 [:]E [:] (W [=] + d [=]F [?])I [=,<]:

up to precision ‖2‖2−%

C. Interpolation and root-�nding

for 0 ≤ = < # do

for 0 ≤< < "= do

6← polynomial such that 6(F [?]) = 4 [<,=, ?] for all ?
with coe�cients up to precision ‖2‖2−%

B ← roots of 6 up to precision ‖2‖2−%
for 0 ≤ : < size of B do

Append ℎ(W [=] + d [=]B [:])I [=,<] to A4BD;C

return A4BD;C

2 PRELIMINARIES

2.1 Notations

Given a polynomial or an analytic series 5 , we will denote by 5 ′

and 5 ′′ the derivative and the second derivative of 5 , and by 5 (:)

the :-th derivative of 5 . Given a vector E , we will denote by ‖E ‖1,
‖E ‖2 and ‖E ‖∞ the classical norm 1, 2 and in�nity of E . The trans-

pose of E is denoted by E) and its conjugate transpose by E� and if

F is another vector, E� ·F denotes their scalar product. For a matrix

�, we denote by ‖�‖: the induced norm supG≠0 ‖�G ‖:/‖G ‖: .
For a polynomial ? (G) = ∑3

:=0
0:G

:
=

∑3
:=0

√(3
:

)
1:G

: , we de-

note by ‖? ‖1 the norm 1 of the vector (0:), and by ‖? ‖, the norm

2 of the vector (1:).
Finally, we will denote by � the interval [0, 1], by* the unit disk,

and by � (W, d) the complex disk of radius d centered at W .

2.2 Roots of approximated polynomial

Based on Kantorovich’s theory, we show that if a polynomial and

a series have coe�cients close enough, then the roots of the poly-

nomial are in the basin of quadratic convergence of the roots of

the series.

We state the following theorem for complex roots in the unit

disk � (0, 1) ⊂ C. Remark that in the case where 5 and 6 have real

coe�cients, it holds for their real roots in the interval [0, 1] ⊂ R

Lemma 2.1. Let 5 (G) = ∑∞
:=0

5:G
: be an analytic series with ra-

dius of convergence greater than 1. Assume that there exist 2 > 0,

^ > 32, B > 1 and an integer< > 2 log2 (B^2) such that for all point

I in the unit disk:

• | 5 (I) | ≤ 2/(B^2) implies | 5 ′(I) | > 2/^ ,
• | 5 ′′(I) | < 2B
• for all : >< we have | 5: | ≤ 2/2: .

Let 6(G) = ∑<
:=0

6:G
: be a polynomial of degree< such that for all

0 ≤ : ≤< we have | 5: − 6: | ≤ 2/2< .

Then, for each root Z of 5 in the unit disk, 5 has no other root

in � (Z , 1/(2B^)) and 6 has a root in the disk � (Z , 1/(16B^)). More-

over, if 6 has a root [in the unit disk, then 5 has a root in the disk

� ([, 1/(16B^)).

Proof. First, let [be a root of 6 in the unit disk. Then | 5 ([) | =
| 5 ([) −6([) | ≤ 2<+12< +

2
2< ≤ 2

<+2
2< using the bounds on the di�er-

ence of the coe�cients of 5 and 6. In particular, with the lower

bound on <, we have < ≥ log2 (^) + </2 and < ≥ 20 since

B^2 ≥ 210. This implies that | 5 ([) ≤ 2 (< + 2)/2< ≤ 2/(B^2) · (< +
2)/2(</2) ≤ 2/(32B^2). This implies that | 5 ′([) | ≥ 2/^ . In turn, we
have V = | 5 ([)/5 ′([) | ≤ 1/(32B^), and = maxI∈* (| 5 ′′(I)/5 ′([) |) ≤
B^ . Thus, 2V ≤ 1/16 ≤ 1. Using Kantorovich’s theory [12, Theo-

rem 88], this ensures that 5 has a root in � ([, 2V) which implies

that 5 has a root in the disk � ([, 1/(16B^)). Moreover, using Kan-

torovich’s theory again [12, Theorem 88], since 2 ≤ 2B^ , this

implies that Z is the only root of 5 in the disk � (Z , 1/(2B^)).
Reciprocally, let Z be a root of 5 in the unit disk. Then |6(Z) | =

|6(Z) − 5 (Z) | ≤ 2<+22< using the bounds on the di�erence of the

coe�cients of 5 and 6. Similarly |6′(Z) − 5 ′(Z) | ≤ 2
< (<+1)
2<+1

+
2<+22< ≤ 2 (<+2)

2

2<+1 . And for all I ∈ * we have also |6′′ (I) − 5 ′′(I) | ≤
2
(<+2

3

)
/2<−1 + 2 (<2 + 3< + 4)/2< ≤ 2 (<+3)

3

3·2< .

This implies that:

|6(Z) | ≤ 2< + 2
2<

|6′(Z) | ≥ 2/^ − 2 (< + 2)
2/2

2<

|6′′(I) | ≤ 2B + 2 (< + 3)
3/3

2<

In particular, with the lower bound on<, we have< ≥ log2 (^) +
</2 and < ≥ 20, which implies |6′(Z) | ≥ 2/(2^) and |6′′(I) | ≤
2 (B + 1/40). Such that V := |6(Z)/6′(Z) | ≤ (< + 2)^/2<−1 and

 := maxI∈* (|6′′(I)/6′(Z) |) ≤ 2(B + 1/40)^ ≤ 4.1/2B^ .
Let A = 1/(4.1B^). Using Kantorovich’s theory [12, Theorem 85]

this implies that Z is the unique root of 5 in the disk � (Z , A).
Moreover, V/(2A) ≤ 4.1B^2 (< +2)/2< ≤ 4.1(< +2)/2</2 ≤ 1/8

for< ≥ 19, which is the case since B^2 ≥ 210. In this case, using

Guillaume Moroz

Kantorovich’s theory again [12, Theorem 88], 2V ≤ V/A ≤ 1

ensures that6 has a root in� (Z , 2V). Moreover, since V/(2A) ≤ 1/8,
this implies that 2V ≤ A/2 and 6 has a root [in the disk � (Z , A/2).
In particular, Z is the only root of 5 in the disk � ([, A/2), which
implies that Z ∈ � ([, 1/(16B^)) and thus [∈ � (Z , 1/(16B^)). �

3 HYPERBOLIC CASE

In this sectionwe consider the polynomial ? (G) = ∑3
:=0

0:G
: , over

the interval [0, 1] and over the complex unit disk � (0, 1).

3.1 Bound on the coe�cients

For a complex number W and a real number d , we de�ne the poly-

nomial ?W,d (G) = ? (W + dG).

Lemma 3.1. Let d > 0 be a real andW a complex number in� (0, 1)
such that either 2d ≤ 1−|W |, or d ≤ g/(243). Let 2: be the coe�cients

of G: in ?W,d (G). For all : > g :

|2: | ≤
1

2:
‖? ‖1

Proof. We distinguish 2 cases. For the case where 2d ≤ 1 −
|W |, the coe�cient of G: in ?W,d is 2: =

∑3
8=:

08
(8
:

)
|W |8−:d: ≤

1
2:

∑3
8=:

08
(8
:

)
|W |8−: (1 − |W |): ≤ ‖? ‖1/2: .

Then, for the case d ≤ g/(243) we have 2: =∑3
8=:

08
(8
:

)
|W |8−:d: ≤ d:

(3
:

)
‖? ‖1. Using the inequality

:! ≥
√
2c: (:/4): we get

(3
:

)
≤ 1√

2c:
(43/:): . Which implies, for

all : > g that 2: ≤ ‖? ‖1 (g/(2:)): ≤ ‖? ‖1/2: . �

3.2 Piecewise polynomials over [0, 1]
Let (W=)#−1==0 and (d=)#−1==0 be the sequences:

W= = 1 − 2

3

1

3=

d= =

{
1
3

1
3= if 0 ≤ = < # − 1

1 − W= if = = # − 1

(1)

where # = ⌈log3
(
443
g

)
⌉ is chosen such that d#−1 ≤ g

243
. Remark

that the union of the intervals [W= − d=,W= + d=] is the interval

[0, 1].
Finally, for 0 ≤ = < # , Lemma 3.1 implies that the coe�cients

2: polynomial ? (W= + Cd=) satisfy 2: ≤ ‖? ‖1/2: for all : > g .

3.3 Piecewise polynomials over � (0, 1)
In this section, we de�ne a set of disks that cover the disks unit disk

of radius 1 centered at 0, while their centers and radii still satisfy

the conditions of Lemma 3.1.

Let (A=)#==0 be the sequence:

A= =

{
1 − 1

2= if 0 ≤ = < #

1 if = = #

Then for 0 ≤ = < # , let W= =
1
2 (A= + A=+1) and d= =

3
4 (A=+1 − A=),

such that (W=)#−1==0 and (A=)#−1==0 are the sequences:

W= =

{
1 − 3

4
1
2= if 0 ≤ = ≤ # − 2

1 − 1
2

1
2= if = = # − 1

d= =

{
3
8

1
2= if 0 ≤ = ≤ # − 2

3
4

1
2= if = = # − 1

(2)

where # = ⌈log2
(
343
g

)
⌉ is chosen such that W#−1 ≤ g

243
.

Let l= =
2c

2min (=+4,#+2) . The following lemma shows that the

union of the disks � (W=48<l= , d=) for 0 ≤ = < # and 0 ≤ < <

2min(=+4,#+2) contains the disk � (0, 1).

Lemma 3.2. The disk of center W= and radius d= covers a sector of

angle 2c
2min (=+4,#+2) of the ring between the concentric circles centered

at 0 of radii A= and A=+1.

Proof. Consider the ring between the circles of radii A= and

A=+1 and let U= be the angle of the sector covered by the disk

� (W=, d=). Using classical trigonometric formulawe have A2= = W2=+
A2=+1−2W=A=+1 cos

(U=
2

)
, and we also have d= =

3
2 (A=+1−W=), which

implies:

sin
(U=
2

)
=

√√
1 −
(W2= + A2=+1 − d

2
=)2

4W2=A
2
=+1

=

√√
2d2= (W2= + A2=+1) − (A

2
=+1 − W

2
=)2

4W2=A
2
=+1

=

√√√√√√√√√√√
9

8

(A=+1 − W=)2

A2=+1
(1 +

A2=+1
W2=
)

− 1

4
((A=+1 − W=)(A=+1 + W=)

A=+1W=
)2

=
A=+1 − W=
2A=+1

√
9

2
(1 +

A2=+1
W2=
) − (A=+1

W=
+ 1)2

A variation analysis shows that for 1 ≤ G ≤ 2, the expression
9
2 (1 + G2) − (1 + G)2 is greater or equal to 5. Moreover,

A=+1−W=
2A=+1

is

greater than 1
2=+3 if = < # − 1 and greater than 1

2#+1
if = = # − 1,

such that:

U=

2
≥ sin

(U=
2

)
≥

√
5

2min(=+3,#+1) ≥
2c

2min(=+5,#+3)

�

Remark that like for the real case, for 0 ≤ = < # , Lemma 3.1

implies that the coe�cients 2: polynomial ? (W= +Cd=) satisfy 2: ≤
‖? ‖1/2: for all : > g .

3.4 Approximation properties

We show in this section that the polynomials computed in Algo-

rithm 1 computes the correct approximate roots of ? . For that, we

show that with the parameters chosen in the algorithm, Lemma 2.1

applies correctly and thus, the approximate truncated polynomials

that we use return the correct roots. We focus on the complex case.

The real case can be proven with similar arguments.

Fast real and complex root-finding methods for well-conditioned polynomials

Let g ≥ 64 be a real number, let W ∈ � (0, 1) and d > 0 such that

either 2d ≤ 1 − |W | or d ≤ g/(243). Moreover, assume that d ≥
g/(643). Denote by ?W,d (I) the polynomial ? (W + dI) and denote

by 2: its coe�cients. For I ∈ * , |? ′W,d (I) | = d |? ′(W + dI) | and
? ′′W,d (I) = d2 5 ′′ (W + dI).

Lemma 3.3. With 2 = ‖? ‖1, B = g32g , ^ = ^ℎ (?) and < =

⌈2 log2 (B^2)⌉, ?W,d satis�es all the assumptions of Lemma 2.1.

Proof. First, by de�nition of ^ℎ , if |?W,d (I) = ? (W + dI) | ≤ 2/^ ,
then |? ′(W + dI) | ≥ 23/^ , which implies |? ′W,d (I) | ≥ 2g/(64^) ≥
2/^ .

For the second derivative of ? ′′W,d (I), remark �rst that |W + dI | ≤
|W | + d ≤ 1 + g/(243). Thus, for all 0 ≤ : ≤ 3 , we have |W + dI | ≤
(1 + g/(243))3 ≤ 4g/(24) ≤ 2g . Thus, |? ′′W,d (I) | ≤ d2 |? ′′(W + dI) | ≤
‖? ‖1g32g .

Finally, for : > g, |2: | ≤ ‖? ‖1/2: using Lemma 3.1. �

3.5 Complexity to evaluate ?

We focus now on the complexity of Step � in Algorithm 1. We

modify the algorithm to be able to bound correctly the number of

bit operations of this step.

The following lemma �rst shows how to evaluate quickly the

points near the unit circle.

Lemma 3.4. Let g > 0 be a real number and # > 0 be an in-

tegers such that # ≤ 643/g . Given a complex number I such that

|I | ≤ 1 + g/3 and an integer < > 0, it is possible to compute the

values ? (I482c:/#) for 0 ≤ : < # with an absolute error lower

than ‖0‖1/2< and with a number of bit operations in$ (3/g (g +< +
log(3))2 · polylog(< + log(3))).

Proof. For any 0 ≤ : ≤ 3 , remark that |I: | ≤ (1+log(2)g/3)3 ≤
2g . Using fast algorithms, we can compute in quasi-linear time the

�rst = digits of the result of arithmetic operations [37]. Thus, we

can evaluate the �rst g +< + 2 log(3<) digits of I: with a number

of bit operations in) (g,<,3) = $ ((g +< + log(3)) polylog(< +
log(3))). This allows us notably to evaluate ? (I) with an error

lower than ‖0‖1/2< in $ (3) (g,<,3)) bit operations.
For # in $ (3/g), we want to evaluate ? on the # -th roots of

unity.We start by computing the polynomial@(-) = ? (-) mod -#−
1 of degree # −1 with a number of bit operations in$ (3) (g,3,<)).
Then we can use the fast Fourier transform to evaluate @(482c:/#)
for 0 ≤ : < # in $ (3/g log(3)) (g,<,3)) bit operations. �

Then we show how the points I in the disks � (W=, d=) that sat-
isfy |I | ≤ 1 − 1/2= and can be evaluated more e�ciently.

Lemma 3.5. Let = be a positive integer and # > 0 be an in-

tegers such that # ≤ 2=+4. Given a complex number I such that

|I | ≤ 1 − 1/2= and an integer< > 0, it is possible to compute the #

values ? (I482c:/#) for 0 ≤ : < # with an absolute error lower than

‖? ‖1/2< and with a number of bit operations in$ (2= (<+ log(=))2 ·
polylog(<)).

Proof. First, remark that |I: | ≤ 4−:/2= . In particular, for : >

log(2)<2= , we have |I: | ≤ 1/2< . Let ?̃ be the polynomial ? trun-

cated to the degree 3= = ⌈log(2)<2=⌉. Each I: for : ≤ 3= can

be computed with an error less than 1/2< and with a number

of bit operations in) (<) = $ (< polylog(<)). The polynomial

@(-) = ?̃ (-) mod -# − 1 can be computed with a number of

bit operations in $ (<2=) (<)). Then, using the fast Fourier trans-

form approach, we can compute @(I482c:/#) with a number of bit

operations in $ (2= log(#)) (<)). �

Thus, combining Lemma 3.4 and 3.5, with< and g in$ (log(3^)),
in$ (log(3/g)), % in$ (g),"= = 1/2=+4, we can compute ? ((W=+
d=4

82c:/%)482cℓ/"=) for all 0 ≤ = ≤ # , 0 ≤ ℓ < "= and 0 ≤ : < %

with a number of bit operations in $ (3 log2 (3^) polylog(3^)).

4 ELLIPTIC CASE

In this section, we consider the polynomial ? (G) = ∑3
:=0

√(3
:

)
1:G

:

and we de�ne the function 5 (G) = cos3 (G)? (tan(G)). Remark that

for G ∈ [0, c/4], the function tan(G) is a bijection between the

roots of 5 in [0, c/4] and the roots of ? in [0, 1]. Moreover, let

E: (G) =

√(3
:

)
sin: (G) cos3−: (G) and let E (G) be the vector map

(E0 (G), . . . , E3 (G))) . Using the notations of the introduction, the

function 5 can be rewritten:

5 (G) = 1� · E (G)

Letting U: =

√
: (3 + 1 − :), Edelman and Kostlan [14] observed

that the derivative of E satis�es the equation E ′ (G) = �·E (G), where
� is the anti-symmetric linear matrix:

� =

©
«

0 −U1
U1 0 −U2

U2 0 −U3
. . .

. . .
. . .

U3−1 0 −U3
U3 0

ª®®®®®®®®
¬

This leads to the following relation:

E (G) = 4G�E (0)
As a corollary, for any point I ∈ � (0, 1):

5 (:) (I) = 1 · 4I��:E (0)

4.1 Bound on the derivatives of 5

For any real G , observe that the matrix 4G� is orthogonal because

� is antisymmetric. This allows to prove the following lemma.

Lemma 4.1. For any real G :����� 5
(:) (G)
:!

����� ≤ ‖1‖2
(
max(4, 2

√
43/:)

):

Proof. First using norm inequality, we have:���5 (:) (G)��� ≤ ‖1‖2‖�:E (0)‖2
For a positive integer A , let�A be the matrix�where all the entries

of indices (<,=) with< ≥ A + 2 or = ≥ A + 2 are replaced by 0.

Since � is a tridiagonal matrix, and since E (0) = (1, 0, · · · , 0)) ,
we can deduce by induction that:

�:E (0) = �: · · ·�1E (0)

Guillaume Moroz

Let ℎ =

⌊
3+1
2

⌋
. For A ≤ ℎ, we can bound the norm of �A by:

‖�A ‖2 ≤
√
‖�‖1‖�‖∞

≤
√
(A − 1)(3 + 1 − (A − 1)) +

√
A (3 + 1 − A)

≤ 2
√
A (3 + 1 − A)

For A > ℎ, we have ‖�A ‖2 ≤ 3 + 1. This allows us to deduce that:

1

:!
‖�:E (0)‖2 ≤

2:

√(3
:

)
if : ≤ 3+1

2

2ℎ
√(3

ℎ

)
(3 + 1):−ℎ ℎ!

:!
otherwise

Using the inequality :! ≥
√
2c:

(
:
4

):
we get

(3
:

)
≤ 1√

2c:

(
43
:

):
.

Moreover for : > (3 + 1)/2, observe that
√(3

ℎ

)
≤
√
23 ≤ 2ℎ ≤ 2: ,

and (3 + 1):−ℎ ℎ!
:!
≤ 2:−ℎ , such that:

1

:!
‖�:E (0)‖2 ≤

(
2

√
43
:

):
if : ≤ 3+1

2

4: otherwise

�

4.2 Piecewise polynomials over [0, 1]
Using the bound on the derivative of 5 shown in the previous sec-

tion we de�ned a sequence of disks � (W=, d=) that covers the real
segment [0, c/4] such that the series 5 (W= + d=I) has the abso-

lute value of its coe�cients 5: decreasing exponentially for : large

enough.

For a real g , let # =

⌈
c
2

√
43
g

⌉
, and for 0 ≤ = < # let W= and d=

de�ned by:

W= = (2= + 1) 1
4

√
g

43

d= =
1

4

√
g

43

(3)

It is easy to check that the union of the corresponding disks

cover the segment [0, c/4]. The properties of the series 5 (W=, d=)
will be analysed in Section 4.4.

4.3 Piecewise polynomials over � (0, 1)
For the complex case, we need to de�ne a sequence of disks �= =

� (W=, d=) such that the union of the sets tan(�=) covers an angu-

lar sector of � (0, 1) big enough. For that, we prove the following

lemma.

Lemma 4.2. Let 0 ≤ \ ≤ c/4. If a set of complex disks�1, . . . , �: ⊂
C covers the band �\ of points I with |�< (I) | ≤ \ and 0 ≤ '4 (I) ≤
c/4, then tan(�1), . . . , tan(�:) covers the angular sector �\ of the

unit disk between the angle −\ and \ .

Proof. Using the integral expression of the function atan, re-

mark that atan(0 + 81) = atan(0) +
∫ 0+81
I=0

1
1+I23I. In particular, as

long as 1 ≤ 0, we have '4 (I2) ≥ 0, such that | 1
1+I2 | ≤ 1, which

allows us to conclude that | atan(0 + 81) − atan(0) | ≤ |1 |. More-

over, if 0 ≥ 0 and 02 + 12 ≤ 1 then, 0 ≤ '4 (atan(0 + 81)) ≤ c/4.

Thus, for any point I ∈ �\ , we have atan(I) ∈ �\ , such that

�\ ⊂ tan(�\). �

Thus, we can cover a band of width 1
4

√
g
243

with # =

⌈
c

√
43
g

⌉
disks de�ned for 0 ≤ = < # by:

W= = =
1

4

√
g

43

d= =
1

4

√
g

43

(4)

This allows us to cover the angular sector of radius \ ≥ 1
4

√
g
243

,

and the number of sectors needed to cover the unit disk is " =

⌈c/\⌉ ≤ ⌈4c
√

243
g ⌉.

4.4 Approximation properties

We focus in this section on the complex case. The real case can be

proven with similar arguments.

For a complex number W and a real number d , denote by 5W,d (I)
the series 5 (W + dI) and denote by 5: its coe�cients. For I ∈ * ,

| 5 ′W,d (I) | = d | 5 ′(W + dI) | and 5 ′′W,d (I) = d2 5 ′′ (W + dI).

Lemma 4.3. Let 0 ≤ W ≤ c/4 and d =
1
4

√
g/(43) be two real num-

bers. With 2 = ‖1‖2, B = g32g , ^ = ^4 (5) and< = ⌈2 log2 (B^2)⌉,
5W,d satis�es all the assumptions of Lemma 2.1.

Proof. First, by de�nition of ^4 , if | 5W,d (I) = 5 (W + dI) | ≤ 2/^ ,
then | 5 ′(W + dI) | ≥ 2

√
3/^ , which implies | 5 ′W,d (I) | ≥ 2

√
g/^ ≥ 2/^ .

For the second derivative of 5 ′′W,d (I), remark that 5 ′′ (I) = 1 ·
�248�I · E (0) = 1 · �2E (I). Remark that E (0 + 81) = 40�E (81) and
‖E (81)‖2 = (cosh2 (1) + sinh2 (1))3/2 = cosh3/2(21). Using the in-

equality cosh(G) ≤ 4
G2

2 this leads to ‖E (0 + 81)‖2 ≤ 431
2
. With

|1 | ≤ d , this leads to | 5 ′′W,d (I) | ≤ d2‖1‖2‖�‖224
log(2)g . Moreover, El-

deman and Kostlan showed that 8� is similar to the Kac matrix [14,

§4.3], and the absolute value of its eigenvalues is lower or equal to

3 , such that ‖�‖2 ≤ 3 and d2‖�‖22 ≤ g3 .
Finally, for : > g, | 5: | ≤ ‖1‖2/2: using Lemma 4.1. �

Thus, the two sequences of disks de�ned in Equations (3) and (4)

cover the interval [0, 1] and the unit disk � (0, 1) respectively, and
they satisfy the conditions of Lemma 4.3.

4.5 Complexity to evaluate 5

In the elliptic case, evaluating a sequence of points in Step � of Al-

gorithm 1 naively would be done roughly in a$ (32), or in$ (33/2)
operations if we use the fast Fourier transforms. In both cases, this

would exceed our complexity bound. The main idea in this sec-

tion is to remark that if we are interested in computing an approx-

imate value of the function 5 =
∑3
:=0

1:E: (I) up to ‖1‖2/2< for a

given integer<, then we can truncate 5 to use a support of size in

$ (
√
3<).

Lemma 4.4. Given a function 5 (I) = ∑3
:=0

1:E: (I) and an inte-

ger< > 0, there exists 0 ≤ ℓ ≤ D ≤ 3 such that |D − ℓ | ≤ 4
√
3< and���5 (I) −∑D

:=0
1:E: (I)

��� ≤ ‖1‖22−<−1.

Fast real and complex root-finding methods for well-conditioned polynomials

Proof. Let < be an integer, G be a real between 0 and

1 and ℓ = max(0, ⌊G3 −
√
2 log(2)3 (< + 1)⌋) and D =

min(3, ⌈G3 +
√
2 log(2)3 (< + 1)⌉). Let � be the union of the

indices 0, . . . , ; and D, . . . , 3 . Using the Hoe�ding inequality,

we have
∑
:∈�

(3
:

)
G: (1 − G)3−: ≤ 2 · 2−4(<+1) . In par-

ticular, this implies that |∑:∈� 1:

√(3
:

)
sin(I): cos(I)3−: |2 ≤

‖1‖22
∑ℓ
:=0

(3
:

)
| sin2: (I) cos2(3−:) (I) |. If I = 0 + 81, we

have | cos2 (I) | + | sin2 (I) | = cosh(21). Thus, letting G =

| sin2 (I) |/cosh(21), we can use the Hoe�ding inequality and de-

duce:

|
∑
:∈�

1:

√(
3

:

)
sin(I): cos(I)3−: | ≤ ‖1‖2 cosh3/2 (21)2−2(<+1)+1

Moreover, comparing the coe�cients of the Taylor

expansion at 0 of cosh(G) and exp(G2/2), remark that

cosh3/2 (21) ≤ 431
2
. In particular, if |1 | ≤

√
log(2)</3 that

implies cosh3/2(21) ≤ 2< . This allows us to conclude that

| 5 (I) −∑D
:=;

1: sin
: (I) cos3−: (I) | ≤ ‖1‖22−<−1. �

Truncating 5 can also be used to evaluate it e�ciently on a set of

roots of unity using fast Fourier transform, as required for Step �

of Algorithm 1.

Lemma 4.5. Let g > 0 be a real number and " > 0 be an inte-

gers such that" ≤ 4c
√
243/g . Given a complex number I such that

|�< (I) | ≤
√
log(2)g/3 , let 5I (l) =

∑3
:=0

1:E: (I)l: . Given an inte-

ger< > 0, it is possible to compute the" values 5I (482c:/") for 0 ≤
: < " with an absolute error lower than ‖1‖2/2< with a number of

bit operations in $ (
√
3/g (g +< + log(3))2 · polylog(< + log(3))).

Proof. For any 0 ≤ : ≤ 3 , and I = 0 + 81, remark that |E: (0 +
81) | ≤ | cos2 (I) | + | sin2 (I) | = cosh3/2 (21) ≤ 2g . Using fast algo-

rithms, we can compute in quasi-linear time the �rst = digits of

the result of arithmetic operations [37]. Moreover, using methods

such as the FEE method [23], we can also evaluate trigonometric,

exponential and factorial functions in quasi-linear time. Thus, we

can evaluate the �rst g +< + 2 log(3<) digits of E: (I) with a num-

ber of bit operations in) (g,<,3) = $ ((g +<+ log(3)) polylog(<+
log(3))). Using Lemma 4.4, this allows us notably to evaluate 5I (1)
with an error lower than ‖1‖2/2< in $ (

√
3<) (g,<,3)) bit opera-

tions after truncating 5I .

Let 6I (l) be the polynomial of degree 4
√
3< approximating

5I (l). For " in $ (
√
3/g), we want to evaluate 6I on the "-th

roots of unity. We start by computing the polynomial ℎI = 6I
mod -" − 1 of degree " − 1 with a number of bit operations in

$ (
√
3<) (g,3,<)). Then we can use the fast Fourier transform to

evaluate ℎI (482c:/") for 0 ≤ : < " in $ (
√
3/g log(3)) (g,<,3))

bit operations. Thus the total number of bit operations is in

$ (
√
3g (
√
<g + log(3))) (g,<,3)) and $ (

√
<g) = $ (g +<). �

Finally, Lemma 4.5 with< and g in $ (log(3^)), # in $ (
√
3/g),

% in $ (g), "= in $ (
√
3/g) for all =, we can compute all the val-

ues in Step � of Algorithm 1 with a number of bit operations in

$ (3 log2 (3^) polylog(3^)).

5 EXTENSIONS AND OPEN QUESTIONS

5.1 Flat polynomials

A third natural family of polynomials is of the form ? (G) =∑3
:=0

1√
:!
2:G

: . When 3 converges to in�nity, the density of its

roots distribution converges to 1/c . Thus, we can de�ne a so-called
�at condition number as follow.

De�nition 5.1. Given the polynomial ? (G) = ∑3
:=0

√
1
:!
2:G

: , let

5 (G) = ? (G)4−G2/2. The real �at condition number associated to ?

is:

^R
5
(?) = max

G ∈R
min

(
‖2‖2
| 5 (G) | ,

‖2‖2
| 5 ′(G) |

)

For ? (I) with I in the unit disk, letting ?\ (G) = ? (G48\), we let
^C
5
(?) = max\ ∈[0,2c] ^R5 (?\) be the complex �at condition number

associated to ? .

Considering this new condition number, several natural ques-

tions occur. First, remark that the density of the distribution of the

roots of �at polynomials is close to the density of the distribution

of the eigenvalues of randommatrices. Whereas it was shown that

the expectation of the hyperbolic condition number of the charac-

teristic polynomial of complex standard Gaussian matrices of size

= is in 2Ω (=) , it would be interesting to analyse the �at condition

number of such characteristic polynomials.

From an algorithmic point of view, remark that in

the �at case, considering the vector of function E (G) =

(4−G2/2, G4−G
2/2, . . . , G:4−G

2/2, . . .), the derivation of E is an

anti-symmetric operator, as for the elliptic case. Thus, after

dealing with boundary conditions, we should be able to derive an

algorithm that �nd the roots of such polynomials with number

of bit operations linear in 3 and polynomial in the logarithm of

^ 5 . Such an algorithm might be well suited to �nd the roots of

characteristic polynomials.

5.2 Multivariate polynomial systems

Asmentioned in introduction, the current bound on the number of

operation to �nd the roots of a multivariate polynomial systems of

equations is currently polynomial in its degree and in its condition

number. It would be nice to generalize for the multivariate case the

tools that we used and developed for the univariate case.

In particular, Lemma 2.1 is based on Kantorovich’s theory,

where all theorems are valid for multivariate systems. Moreover,

the distribution of the roots is also well described for the multivari-

ate case [14]. Combining those results as we did for the univariate

case could help to improve the state-of-the-art bounds on the prob-

lem of �nding the roots of multivariate polynomial systems.

5.3 Bound on the condition number

Although the algorithm we present here is quasi-linear in the de-

gree of the polynomials and polynomial in the logarithm of its con-

dition number, it requires that a bound on the condition number

is given as input. If the bound given as input is to low, the results

might be wrong.

Guillaume Moroz

On the other hand, in the complex case, using the piecewise

polynomial approximation and the error bound that we com-

pute with our algorithm, we can use Kantorovich’s theory to

check if each root that we compute is indeed associated to a

root of the original polynomial. If we get = distinct roots, then

our result has been validated with a number of bit operations in

$ (3 log2 (3^) polylog(log(3^))).

REFERENCES
[1] S. Basu, R. Pollack, and M.-R. Roy. 2006. Algorithms in Real Algebraic

Geometry. Springer Berlin Heidelberg, Berlin, Heidelberg. 351–401 pages.
https://doi.org/10.1007/3-540-33099-2

[2] Ruben Becker, Michael Sagralo�, Vikram Sharma, and Chee Yap. 2018. A near-
optimal subdivision algorithm for complex root isolation based on the Pellet
test and Newton iteration. Journal of Symbolic Computation 86 (2018), 51 – 96.
https://doi.org/10.1016/j.jsc.2017.03.009

[3] Carlos Beltrán and Luis Miguel Pardo. 2011. Fast Linear Homotopy to Find Ap-
proximate Zeros of Polynomial Systems. Foundations of Computational Mathe-
matics 11, 1 (01 Feb 2011), 95–129. https://doi.org/10.1007/s10208-010-9078-9

[4] D.A. Bini, L. Gemignani, and V.Y. Pan. 2004. Inverse power and
Durand-Kerner iterations for univariate polynomial root-�nding.
Computers & Mathematics with Applications 47, 2 (2004), 447–459.
https://doi.org/10.1016/S0898-1221(04)90037-5

[5] Dario Andrea Bini and Giuseppe Fiorentino. 2000. Design, analysis, and imple-
mentation of a multiprecision polynomial root�nder. Numerical Algorithms 23,
2 (01 Jun 2000), 127–173. https://doi.org/10.1023/A:1019199917103

[6] Dario A. Bini and Leonardo Robol. 2014. Solving secular and polynomial equa-
tions: A multiprecision algorithm. J. Comput. Appl. Math. 272 (2014), 276–292.
https://doi.org/10.1016/j.cam.2013.04.037

[7] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1998. Complex-
ity and Real Computation. Springer New York, New York, NY. 153–168 pages.
https://doi.org/10.1007/978-1-4612-0701-6

[8] Peter Bürgisser and Felipe Cucker. 2013. Condition: The Geometry of
Numerical Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-38896-5

[9] Felipe Cucker, Teresa Krick, GregorioMalajovich, and MarioWschebor. 2008. A
numerical algorithm for zero counting, I: Complexity and accuracy. Journal of
Complexity 24, 5 (2008), 582–605. https://doi.org/10.1016/j.jco.2008.03.001

[10] Felipe Cucker, Teresa Krick, Gregorio Malajovich, and Mario Wschebor.
2012. A numerical algorithm for zero counting. III: Randomization
and condition. Advances in Applied Mathematics 48, 1 (2012), 215–248.
https://doi.org/10.1016/j.aam.2011.07.001

[11] Felipe Cucker and Steve Smale. 1999. Complexity Estimates Depending
on Condition and Round-o� Error. J. ACM 46, 1 (Jan. 1999), 113–184.
https://doi.org/10.1145/300515.300519

[12] J.P. Dedieu. 2006. Points �xes, zéros et la méthode de New-
ton. Springer Berlin Heidelberg, Berlin, Heidelberg. 75–110 pages.
https://doi.org/10.1007/3-540-37660-7

[13] Yen Do, Hoi Nguyen, and Van Vu. 2015. Real roots of random polynomi-
als: expectation and repulsion. Proceedings of the London Mathematical
Society 111, 6 (2015), 1231–1260. https://doi.org/10.1112/plms/pdv055
arXiv:https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/pdv055

[14] Alan Edelman and Eric Kostlan. 1995. How many zeros of a ran-
dom polynomial are real? Bull. Amer. Math. Soc. 32, 1 (1995), 1–37.
https://doi.org/10.1090/S0273-0979-1995-00571-9

[15] Alan Edelman and H Murakami. 1995. Polynomial roots from com-
panion matrix eigenvalues. Math. Comp. 64, 210 (1995), 763–776.
https://doi.org/10.1090/S0025-5718-1995-1262279-2

[16] L. W. Ehrlich. 1967. A Modi�ed Newton Method for Polynomials. Commun.
ACM 10, 2 (Feb. 1967), 107–108. https://doi.org/10.1145/363067.363115

[17] Akritas A. G., Strzebonski A. W., and Vigklas P. S. 2008. Improving the Per-
formance of the Continued Fractions Method Using New Bounds of Positive
Roots. Nonlinear Analysis: Modelling and Control 13, 3 (Jul. 2008), 265–279.
https://doi.org/10.15388/NA.2008.13.3.14557

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, et al. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[19] John Hubbard, Dierk Schleicher, and Scott Sutherland. 2001. How to �nd all
roots of complex polynomials by Newton’s method. Inventiones mathematicae
146, 1 (01 Oct 2001), 1–33. https://doi.org/10.1007/s002220100149

[20] Rémi Imbach and Victor Y. Pan. 2020. New Practical Advances in Polyno-
mial Root Clustering. In Mathematical Aspects of Computer and Information Sci-
ences, Daniel Slamanig, Elias Tsigaridas, and Zafeirakis Zafeirakopoulos (Eds.).
Springer International Publishing, Cham, 122–137.

[21] Rémi Imbach and Victor Y. Pan. 2020. New Progress in Univariate
Polynomial Root Finding. In Proceedings of the 45th International Sympo-
sium on Symbolic and Algebraic Computation (Kalamata, Greece) (ISSAC
’20). Association for Computing Machinery, New York, NY, USA, 249–256.
https://doi.org/10.1145/3373207.3404063

[22] Rémi Imbach, Victor Y. Pan, and Chee Yap. 2018. Implementation of a Near-
Optimal Complex Root Clustering Algorithm. InMathematical Software – ICMS
2018, James H. Davenport, Manuel Kauers, George Labahn, and Josef Urban
(Eds.). Springer International Publishing, Cham, 235–244.

[23] E. A. Karatsuba. 1991. Fast evaluation of transcendental functions. Probl. Inf.
Transm. 27, 4 (1991), 339–360.

[24] Alexander Kobel, Fabrice Rouillier, and Michael Sagralo�. 2016. Computing Real
Roots of Real Polynomials ... and Now For Real!. In Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation (Waterloo, ON,
Canada) (ISSAC ’16). Association for ComputingMachinery, NewYork, NY, USA,
303–310. https://doi.org/10.1145/2930889.2930937

[25] Pierre Lairez. 2017. A Deterministic Algorithm to Compute Approxi-
mate Roots of Polynomial Systems in Polynomial Average Time. Foun-
dations of Computational Mathematics 17, 5 (01 Oct 2017), 1265–1292.
https://doi.org/10.1007/s10208-016-9319-7

[26] Maplesoft. 2019. Maple. Waterloo Maple Inc.., Waterloo, Ontario.
https://www.maplesoft.com

[27] CleveMoler. 1991. Cleve’s corner: ROOTS–Of Polynomials, That Is. , 6–7 pages.
[28] Victor Y. Pan. 2002. Univariate Polynomials: Nearly Optimal Algorithms for

Numerical Factorization and Root-�nding. Journal of Symbolic Computation 33,
5 (2002), 701–733. https://doi.org/10.1006/jsco.2002.0531

[29] Fabrice Rouillier and Paul Zimmermann. 2004. E�cient isolation of
polynomial’s real roots. J. Comput. Appl. Math. 162, 1 (2004), 33–50.
https://doi.org/10.1016/j.cam.2003.08.015 Proceedings of the International Con-
ference on Linear Algebra and Arithmetic 2001.

[30] Michael Sagralo� and Kurt Mehlhorn. 2016. Computing real roots of
real polynomials. Journal of Symbolic Computation 73 (2016), 46–86.
https://doi.org/10.1016/j.jsc.2015.03.004

[31] Vikram Sharma. 2008. Complexity of real root isolation using con-
tinued fractions. Theoretical Computer Science 409, 2 (2008), 292–310.
https://doi.org/10.1016/j.tcs.2008.09.017 Symbolic-Numerical Computations.

[32] Steve Smale. 1981. The fundamental theorem of algebra and com-
plexity theory. Bull. Amer. Math. Soc. (N.S.) 4, 1 (01 1981), 1–36.
https://projecteuclid.org:443/euclid.bams/1183547848

[33] The MathWorks Inc. 2020. version 9.9 (R2020b). The MathWorks Inc.
https://www.mathworks.com.

[34] The Sage Developers. 2020. SageMath, the Sage Mathematics Software System
(Version 9.2). https://www.sagemath.org.

[35] Elias Tsigaridas. 2016. SLV: A Software for Real Root Isola-
tion. ACM Commun. Comput. Algebra 50, 3 (Nov. 2016), 117–120.
https://doi.org/10.1145/3015306.3015317

[36] Elias P. Tsigaridas and Ioannis Z. Emiris. 2006. Univariate Polynomial Real
Root Isolation: Continued Fractions Revisited. In Algorithms – ESA 2006, Yossi
Azar and Thomas Erlebach (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 817–828.

[37] Joachim von zur Gathen and Jürgen Gerhard. 2013. Modern Com-
puter Algebra (3 ed.). Cambridge University Press, Cambridge, U.K.
https://doi.org/10.1017/CBO9781139856065

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1007/s10208-010-9078-9
https://doi.org/10.1016/S0898-1221(04)90037-5
https://doi.org/10.1023/A:1019199917103
https://doi.org/10.1016/j.cam.2013.04.037
https://doi.org/10.1007/978-1-4612-0701-6
https://doi.org/10.1007/978-3-642-38896-5
https://doi.org/10.1016/j.jco.2008.03.001
https://doi.org/10.1016/j.aam.2011.07.001
https://doi.org/10.1145/300515.300519
https://doi.org/10.1007/3-540-37660-7
https://doi.org/10.1112/plms/pdv055
https://arxiv.org/abs/https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/pdv055
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1090/S0025-5718-1995-1262279-2
https://doi.org/10.1145/363067.363115
https://doi.org/10.15388/NA.2008.13.3.14557
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s002220100149
https://doi.org/10.1145/3373207.3404063
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.1007/s10208-016-9319-7
https://www.maplesoft.com
https://doi.org/10.1006/jsco.2002.0531
https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/10.1016/j.jsc.2015.03.004
https://doi.org/10.1016/j.tcs.2008.09.017
https://projecteuclid.org:443/euclid.bams/1183547848
https://doi.org/10.1145/3015306.3015317
https://doi.org/10.1017/CBO9781139856065

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Roots of approximated polynomial

	3 Hyperbolic case
	3.1 Bound on the coefficients
	3.2 Piecewise polynomials over [0,1]
	3.3 Piecewise polynomials over D(0,1)
	3.4 Approximation properties
	3.5 Complexity to evaluate p

	4 Elliptic case
	4.1 Bound on the derivatives of f
	4.2 Piecewise polynomials over [0,1]
	4.3 Piecewise polynomials over D(0,1)
	4.4 Approximation properties
	4.5 Complexity to evaluate f

	5 Extensions and open questions
	5.1 Flat polynomials
	5.2 Multivariate polynomial systems
	5.3 Bound on the condition number

	References

