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Given a polynomial of degree and a bound on a condition number of , we present the rst root-nding algorithms that return all its real and complex roots with a number of bit operations quasi-linear in log 2 ( ). More precisely, several condition numbers can be de ned depending on the norm chosen on the coecients of the polynomial. Let ( )

We call the condition number associated with a perturbation of the the hyperbolic condition number ℎ , and the one associated with a perturbation of the the elliptic condition number . For each of these condition numbers, we present algorithms that nd the real and the complex roots of in log 2 ( ) polylog(log( )) bit operations.

Our algorithms are well suited for random polynomials since ℎ (resp. ) is bounded by a polynomial in with high probability if the (resp. the ) are independent, centered Gaussian variables of variance 1.

INTRODUCTION

The problem of nding all the real or complex solutions of a polynomial equation ( ) = 0 has been extensively investigated, both in theory and in practice. If is a polynomial of degree with integer coe cients of bit size bounded by , the state-of-the-art methods to nd the real or complex roots of require a number of bit operations in ( 2 ( + ) polylog( )) [START_REF] Becker | A nearoptimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration[END_REF][START_REF] Victor | Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-nding[END_REF]. In the case where the polynomial is well-conditioned, the best methods in the state of the art also require at least a quadratic number of bit operations to nd its roots. By well-conditioned, we mean that the variation of the roots of with respect to the variation of its coe cients is small ( [7, chapter 12], [8, chapter 14] and references therein).

For ill-conditioned polynomials, the distance between two roots can as small as 2 -. Pan considered optimal an algorithm that used ( ) arithmetic operations, where the number of bit operation for each arithmetic operation is in ( ), and in this sense, he provided a near-optimal algorithm. On the other hand, when a polynomial is well-conditioned, the distance between two roots is not exponentially small in .

Random polynomials are well-conditioned with a high probability. More precisely, let ( ) be a polynomial of degree where each of its coe cients is a Gaussian random variable of variance . There exist constants > 1 and > 1 such that the so-called elliptic condition number (see De nition 1.1) is lower than with probability higher than 1 -1/ [START_REF] Cucker | A numerical algorithm for zero counting. III: Randomization and condition[END_REF]. A similar result was proven for the so-called hyperbolic condition number when the variance is 1 [START_REF] Do | Real roots of random polynomials: expectation and repulsion[END_REF]. Moreover, the distribution of the roots of polynomials with random coe cients is well understood ( [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF] and references therein). Thus it makes sense to provide algorithms that performs better than the general case for random polynomials and for wellconditioned polynomial.

Provided that we know a bound on a condition number of , we will show that it is indeed possible to nd all the roots of with a number of operations quasi-linear in and polynomial in log( ).

Even though a condition number was not explicitly used, the analysis of root-nding methods for well-conditioned polynomials started with Smale [START_REF] Smale | The fundamental theorem of algebra and complexity theory[END_REF] who studied the probability of failure of the Newton method. The Newton method is one of the most famous iterative method, that converges quadratically toward a single root of provided that the initial point is close enough to ( [7, chapter 8], [12, chapter 3], [8, chapter 15] and references therein). It was later shown that it is even possible to construct a set of log 2 ( ) points such that for all polynomials and each root of , there exists a point in such that the Newton iteration eventually converges toward [START_REF] Hubbard | How to nd all roots of complex polynomials by Newton's method[END_REF]. Explicit bounds polynomial in the condition number were derived and improved for multivariate polynomial system of equations, based notably on homotopy methods ([3, 9, 11, 25] among others). One drawback of those approaches is that they require to evaluate on at least points, which leads to a number of arithmetic operations at least quadratic in . Some methods based on modi ed Newton operators, such as the Weierstrass method ( [START_REF] Bini | Inverse power and Durand-Kerner iterations for univariate polynomial root-nding[END_REF] and references therein) or the Aberth-Ehrlich method [START_REF] Ehrlich | A Modi ed Newton Method for Polynomials[END_REF] were implemented with success, notably in the software MPSolve [START_REF] Bini | Design, analysis, and implementation of a multiprecision polynomial root nder[END_REF][START_REF] Bini | Solving secular and polynomial equations: A multiprecision algorithm[END_REF].

For general polynomials, including ill-conditioned ones, fast numerical factorization is the rst approach to provide the state of the art bound in ( 2 ( + ) polylog( )) [START_REF] Victor | Univariate Polynomials: Nearly Optimal Algorithms for Numerical Factorization and Root-nding[END_REF]. However this method is di cult to implement.

Another family of methods that are e cient in practice are the subdivision methods. The idea is to subdivide recursively a domain that contains the roots of in subdomains, and to reject or accept the subdomains according to criteria that guarantee that a subdomain contains one or zero root. For real roots, the criteria that one may use are notably the Descartes' rule of signs ([29] and references therein), the Budan's theorem [START_REF] Akritas | Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots[END_REF][START_REF] Sharma | Complexity of real root isolation using continued fractions[END_REF][START_REF] Tsigaridas | Univariate Polynomial Real Root Isolation: Continued Fractions Revisited[END_REF], or the Sturm's theorem [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF] among others. For complex roots, one may use Pellet's test [START_REF] Becker | A nearoptimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration[END_REF] or Cauchy's integral theorem [START_REF] Imbach | New Practical Advances in Polynomial Root Clustering[END_REF][START_REF] Imbach | New Progress in Univariate Polynomial Root Finding[END_REF] among others. Combining subdivision approaches with Newton iterations allows to match the complexity bound of Pan's algorithm for real [START_REF] Sagralo | Computing real roots of real polynomials[END_REF]. Subdivision methods are more commonly implemented, notably in the software ANewDsc [START_REF] Kobel | Computing Real Roots of Real Polynomials ... and Now For Real![END_REF], SLV [START_REF] Tsigaridas | SLV: A Software for Real Root Isolation[END_REF], the package RootFinding in Maple [26], the package real_roots in sage [START_REF]SageMath, the Sage Mathematics Software System (Version 9.2[END_REF], Ccluster [START_REF] Imbach | Implementation of a Near-Optimal Complex Root Clustering Algorithm[END_REF] among others.

We can also mention approaches based on the computation of the eigenvalues of the companion matrix associated to [START_REF] Moler | Cleve's corner: ROOTS-Of Polynomials[END_REF]. These approach has the advantage of being numerically stable in many cases [START_REF] Edelman | Polynomial roots from companion matrix eigenvalues[END_REF]. These methods are implemented notably in Matlab [33] and numpy [START_REF] Harris | Array programming with NumPy[END_REF].

1.0.1 Contribution. Focusing on univariate polynomial equations, we develop new algorithms that are for the rst time polynomial in the logarithm of a condition number, and quasi-linear in the degree. Our approaches work for two classical condition numbers that we de ne here for in the interval [0, 1] and for in the complex unit disk (0, 1).

Following the theory of condition number associated to the rootnding problem [8, chapter 14 and 16], we introduce the following de nitions.

De nition 1.1. Given the polynomial ( ) = =0 = =0
, let ( ) = cos ( ) (tan( )). The real hyperbolic condition number associated to is:

R ℎ ( ) = max ∈[0,1] min 1 | ( )| , 1 | ′ ( )|
The real elliptic condition number associated to is:

R ( ) = max ∈[0, 4 ] min 2 | ( )| , √ 2 | ′ ( )|
For ( ) with in the unit disk, letting ( ) = ( ), we de ne the complex hyperbolic and the complex elliptic condition numbers as

C ℎ ( ) = max ∈[0,2 ] R ℎ ( ) and C ( ) = max ∈[0,2 ]
R ( ) respectively.

The justi cation for the name hyperbolic and elliptic comes from the fact that when the are independent, centered Gaussian variables of variance 1, then the density of the root distribution in [0, 1] converges to 1/( (1 -2 )) when converges to in nity. Similarly, when the are independent, centered Gaussian variables of variance 1, then the root distribution has density √ /( (1 + 2 )) [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF].

Remark that by symmetry of the weights we consider in front of the coe cients, we can reduce the problem of nding all the roots in R or in C to the problem of all nding all the roots in [0, 1] and C respectively, through the changes of variable ↦ →and ↦ → 1/ . For our algorithms, we consider polynomials with bit-stream coe cients, where the rst bits can be accessed in ( ) bit operations. Our output is a list of approximate zero as introduced by Smale [START_REF] Smale | The fundamental theorem of algebra and complexity theory[END_REF], in the sense that for any point 0 returned by our algorithm, the sequence +1 = -( )/ ′ ( ) converges quadratically toward its associated root of . We can now state our main result.

T 1.2. Let ( ) be a polynomial of degree , with bitstreams coe cients.

There exist two algorithms that nds all its real roots in the interval [0, 1] in ( log 2 ( ) polylog(log( ))) with = R ℎ ( ) and = R ( ) respectively.

Type Domain

Elliptic [0, 1] (0, 1) [0, 1] (0, 1) ( ) sin ( ) cos -( ) ℎ( ) tan( ) log 2 ( ) (log( / )) ( / ) 1 2 +4 1 ( / )
Eq. (1) Eq. (2) Eq. (3) Eq. ( 4)

Table 1: Values for the initialisation of the variables in Step of Algorithm 1

There exist two algorithms that nds all its complex roots in the unit disk in ( log 2 ( ) polylog(log( ))) with = C ℎ ( ) and = C ( ) respectively.

The main idea of our algorithms is to approximate with a piecewise polynomial function, where each polynomial has a degree in (log( )). This is achieved by partitioning the interval [0, 1] and the unit disk following the distribution of the roots. Then using Kantorovich's theory, we show that a good enough approximation the roots of the piecewise polynomial is a set of approximated roots associated to all the roots of . Our method is summarized in Algorithm 1.

For the correctness of Algorithm 1, we prove in key Lemma 2.1 that if a polynomial of small degree is su ciently close to a series , then the problem of nding the root of can be reduced to the problem of nding the roots of . Then in Section 3.4 and 4.4, we show that the piecewise polynomials that we construct in Algorithm 1 satisfy the assumptions of Lemma 2.1.

For the bound on the number of bit operations, the main steps that we need to analyse in Algorithm 1 are Step and Step . In

Step we need to solve =0 polynomials of degree . Using a classical algorithm with the state-of-the-art complexity ([28, Theorem 2.1.1] and [START_REF] Becker | A nearoptimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration[END_REF]), we can nd all the roots in the unit disk of each polynomial with an error bounded by 2 -, and with a number of bit operations in ( 3 polylog( )). Then, since is in (log( )) and the sum of the is in ( /log( )) in all cases (see Table 1), we conclude that the bound on the number of bit operations to perform Step is in ( log 2 ( ) polylog(log( ))).

In Step , if we perform the loop as written in Algorithm 1, this leads to a number of operations quadratic in . Instead, in Section 3.5 and 4.5, we show how we can modify Step such that the number of bit operations for this step is in ( log 2 ( ) polylog(log( ))).

First we will prove in Section 2 that we can reduce the rootnding problem to the problem of nding the roots of a smaller degree polynomial. Then in Section 3 and 4, we will prove the correctness and bound the complexity of Algorithm 1 for polynomials with small hyperbolic condition number and small elliptic condition number respectively. Finally in Section 5, we will discuss open questions related to our approach.

Algorithm 1 Root-nding algorithm

Input:

: list of + 1 coe cients : type of the monomial weight ( or ℎ ) : bound on the condition number (see De nition 1.1)

Output:

: list of the approximate roots of the function

=0 [ ] if is ℎ =0 [ ] if is
A. Initialization Variables depending on (see Table 1):

← list of + 1 monomial functions ℎ ← a scale function ← list of real numbers, centers of disks ← list of real number, radii of disks ← list of integers ← ⌈10 log 2 ( )⌉ ← list of -th roots of unity for 0 ≤ ≤ do [ ] ← list of the -th roots of unity ← empty list B. Evaluation for 0 ≤ < and 0 ≤ < do for 0 ≤ < do [ , , ] ← =0 [ ] [ ] ( [ ] + [ ] [ ]) [ , ] up to precision 2 -

C. Interpolation and root-nding

for 0 ≤ < do for 0 ≤ < do ← polynomial such that ( [ ]) = [ , , ] for all with coe cients up to precision 2 - ← roots of up to precision 2 - for 0 ≤ < size of do Append ℎ( [ ] + [ ] [ ]) [ , ] to return 2 PRELIMINARIES 2.

Notations

Given a polynomial or an analytic series , we will denote by ′ and ′′ the derivative and the second derivative of , and by ( ) the -th derivative of . Given a vector , we will denote by 1 , 2 and

∞ the classical norm 1, 2 and in nity of . The transpose of is denoted by and its conjugate transpose by and if is another vector, • denotes their scalar product. For a matrix , we denote by the induced norm sup ≠0 / .

For a polynomial ( )

= =0 = =0
, we denote by 1 the norm 1 of the vector ( ), and by the norm 2 of the vector ( ).

Finally, we will denote by the interval [0, 1], by the unit disk, and by ( , ) the complex disk of radius centered at .

Roots of approximated polynomial

Based on Kantorovich's theory, we show that if a polynomial and a series have coe cients close enough, then the roots of the polynomial are in the basin of quadratic convergence of the roots of the series.

We state the following theorem for complex roots in the unit disk (0, 1) ⊂ C. Remark that in the case where and have real coe cients, it holds for their real roots in the interval

[0, 1] ⊂ R L 2.1. Let ( ) = ∞ =0
be an analytic series with radius of convergence greater than 1. Assume that there exist > 0, > 32, > 1 and an integer > 2 log 2 ( 2 ) such that for all point in the unit disk:

• | ( )| ≤ /( 2 ) implies | ′ ( )| > / , • | ′′ ( )| < • for all > we have | | ≤ /2 . Let ( ) = =0
be a polynomial of degree such that for all

0 ≤ ≤ we have | -| ≤ /2 .
Then, for each root of in the unit disk, has no other root in ( , 1/( 2)) and has a root in the disk ( , 1/( 16)). Moreover, if has a root in the unit disk, then has a root in the disk ( , 1/( 16)).

P

. First, let be a root of in the unit disk. Then

| ( )| = | ( ) -( )| ≤ +1 2 + 2 ≤ +2 2
using the bounds on the di erence of the coe cients of and . In particular, with the lower bound on , we have ≥ log 2 ( ) + /2 and ≥ 20 since 2 ≥ 2 10 . This implies that | ( ) . Thus, 2 ≤ 1/16 ≤ 1. Using Kantorovich's theory [12, Theorem 88], this ensures that has a root in ( , 2 ) which implies that has a root in the disk ( , 1/( 16)). Moreover, using Kantorovich's theory again [12, Theorem 88], since 2 ≤ 2 , this implies that is the only root of in the disk ( , 1/(2 )).

≤ ( + 2)/2 ≤ /( 2 ) • ( + 2)/2 ( /2) ≤ /(32 2 ).
Reciprocally, let be a root of in the unit disk. Then

| ( )| = | ( ) -( )| ≤ +2 2
using the bounds on the di erence of the coe cients of and . Similarly | ′ ( ) -′ ( )| ≤ ( +1)

2 +1 + +2 2 ≤ ( +2) 2 2 +1
. And for all ∈ we have also

| ′′ ( ) -′′ ( )| ≤ +2 3 /2 -1 + ( 2 + 3 + 4)/2 ≤ ( +3) 3 3•2 .
This implies that: Moreover, /(2 ) ≤ 4.1 2 ( + 2)/2 ≤ 4.1( + 2)/2 /2 ≤ 1/8 for ≥ 19, which is the case since 2 ≥ 2 10 . In this case, using Kantorovich's theory again [12, Theorem 88], 2 ≤ / ≤ 1 ensures that has a root in ( , 2 ). Moreover, since /(2 ) ≤ 1/8, this implies that 2 ≤ /2 and has a root in the disk ( , /2). In particular, is the only root of in the disk ( , /2), which implies that ∈ ( , 1/( 16)) and thus ∈ ( , 1/( 16)).

| ( )| ≤ + 2 2 | ′ ( )| ≥ / - ( + 2) 2 /2 2 
| ′′ ( )| ≤ + ( + 3) 3 /3 2 

HYPERBOLIC CASE

In this section we consider the polynomial ( ) = =0 , over the interval [0, 1] and over the complex unit disk (0, 1).

Bound on the coe cients

For a complex number and a real number , we de ne the polynomial , ( ) = ( + ). L 3.1. Let > 0 be a real and a complex number in (0, 1) such that either 2 ≤ 1-| |, or ≤ /(2 ). Let be the coe cients of in , ( ). For all > :

| | ≤ 1 2 1 P .
We distinguish 2 cases. For the case where 2

≤ 1 - | |, the coe cient of in , is = = | | - ≤ 1 2 = | | -(1 -| |) ≤ 1 /2 . Then, for the case ≤ /(2 ) we have = = | | - ≤ 1 . Using the inequality ! ≥ √ 2 ( / ) we get ≤ 1 √ 2 ( / ) . Which implies, for all > that ≤ 1 ( /(2 )) ≤ 1 /2 .

Piecewise polynomials over [0, 1]

Let ( ) -1 =0 and ( ) -1 =0 be the sequences:

= 1 - 2 3 1 3 = 1 3 1 3 if 0 ≤ < -1 1 - if = -1 (1) 
where

= ⌈log 3 4 ⌉ is chosen such that -1 ≤ 2 . Remark that the union of the intervals [ -, + ] is the interval [0, 1].
Finally, for 0 ≤ < , Lemma 3.1 implies that the coe cients polynomial ( + ) satisfy ≤ 1 /2 for all > .

3.3 Piecewise polynomials over (0, 1)

In this section, we de ne a set of disks that cover the disks unit disk of radius 1 centered at 0, while their centers and radii still satisfy the conditions of Lemma 3.1.

Let ( ) =0 be the sequence:

= 1 -1 2 if 0 ≤ < 1 if =
Then for 0 ≤ < , let = 1 2 ( + +1 ) and = 3 4 ( +1 -), such that ( ) -1 =0 and ( ) -1 =0 are the sequences:

= 1 -3 4 1 2 if 0 ≤ ≤ -2 1 -1 2 1 2 if = -1 = 3 8 1 2 if 0 ≤ ≤ -2 3 4 1 2 if = -1 (2) 
where = ⌈log 2 3

⌉ is chosen such that -1 ≤ 2 .

Let = 2 2 min ( +4, +2) . The following lemma shows that the union of the disks ( , ) for 0 ≤ < and 0 ≤ < 2 min( +4, +2) contains the disk (0, 1). L 3.2. The disk of center and radius covers a sector of angle 2 2 min ( +4, +2) of the ring between the concentric circles centered at 0 of radii and +1 .

P

. Consider the ring between the circles of radii and +1 and let be the angle of the sector covered by the disk ( , ). Using classical trigonometric formula we have 2 = 2 + 2 +1 -2 +1 cos 2 , and we also have = 3 2 ( +1 -), which implies:

sin 2 = 1 - ( 2 + 2 +1 -2 ) 2 4 2 2 +1 = 2 2 ( 2 + 2 +1 ) -( 2 +1 -2 ) 2 4 2 2 +1 = 9 8 ( +1 -) 2 2 +1 (1 + 2 +1 2 ) - 1 4 ( ( +1 -)( +1 + ) +1 ) 2 = +1 - 2 +1 9 2 (1 + 2 +1 
2 ) -( +1 + 1) 2

A variation analysis shows that for 1 ≤ ≤ 2, the expression 9 2 (1 + 2 ) -(1 + ) 2 is greater or equal to 5. Moreover, +1 - 2 +1 is greater than 1 2 +3 if < -1 and greater than 1

2 +1 if = -1, such that: 2 ≥ sin 2 ≥ √ 5 2 min( +3, +1) ≥ 2 2 min( +5, +3)
Remark that like for the real case, for 0 ≤ < , Lemma 3.1 implies that the coe cients polynomial ( + ) satisfy ≤ 1 /2 for all > .

Approximation properties

We show in this section that the polynomials computed in Algorithm 1 computes the correct approximate roots of . For that, we show that with the parameters chosen in the algorithm, Lemma 2.1 applies correctly and thus, the approximate truncated polynomials that we use return the correct roots. We focus on the complex case. The real case can be proven with similar arguments.

Let ≥ 6 be a real number, let ∈ (0, 1) and > 0 such that either 2 ≤ 1 -| | or ≤ /(2 ). Moreover, assume that ≥ /(6 ). Denote by , ( ) the polynomial ( + ) and denote by its coe cients. For the second derivative of ′′ , ( ), remark rst that | + | ≤ | | + ≤ 1 + /(2 ). Thus, for all 0 ≤ ≤ , we have

| + | ≤ (1 + /(2 )) ≤ /(2 ) ≤ 2 . Thus, | ′′ , ( )| ≤ 2 | ′′ ( + )| ≤ 1 2 . Finally, for > , | | ≤
1 /2 using Lemma 3.1.

Complexity to evaluate

We focus now on the complexity of Step in Algorithm 1. We modify the algorithm to be able to bound correctly the number of bit operations of this step.

The following lemma rst shows how to evaluate quickly the points near the unit circle. L 3.4. Let > 0 be a real number and > 0 be an integers such that ≤ 64 / . Given a complex number such that | | ≤ 1 + / and an integer > 0, it is possible to compute the values ( 2 / ) for 0 ≤ < with an absolute error lower than 1 /2 and with a number of bit operations in ( / ( + + log( )) 2 • polylog( + log( ))).

P

. For any 0 ≤ ≤ , remark that | | ≤ (1+log(2) / ) ≤ 2 . Using fast algorithms, we can compute in quasi-linear time the rst digits of the result of arithmetic operations [START_REF] Von | Modern Computer Algebra[END_REF]. Thus, we can evaluate the rst + + 2 log( ) digits of with a number of bit operations in ( , , ) = (( + + log( )) polylog( + log( ))). This allows us notably to evaluate ( ) with an error lower than 1 /2 in ( ( , , )) bit operations. For in ( / ), we want to evaluate on the -th roots of unity. We start by computing the polynomial ( ) = ( ) mod -1 of degree -1 with a number of bit operations in ( ( , , )). Then we can use the fast Fourier transform to evaluate ( 2 / ) for 0 ≤ < in ( / log( ) ( , , )) bit operations.

Then we show how the points in the disks ( , ) that satisfy | | ≤ 1 -1/2 and can be evaluated more e ciently. L 3.5. Let be a positive integer and > 0 be an integers such that ≤ 2 +4 . Given a complex number such that | | ≤ 1 -1/2 and an integer > 0, it is possible to compute the values ( 2 / ) for 0 ≤ < with an absolute error lower than 1 /2 and with a number of bit operations in (2 ( +log( )) 2 • polylog( )).

P

. First, remark that | | ≤ -/2 . In particular, for > log(2) 2 , we have | | ≤ 1/2 . Let be the polynomial truncated to the degree = ⌈log(2) 2 ⌉. Each for ≤ can be computed with an error less than 1/2 and with a number of bit operations in ( ) = ( polylog( )). The polynomial ( ) = ( ) mod -1 can be computed with a number of bit operations in ( 2 ( )). Then, using the fast Fourier transform approach, we can compute ( 2 / ) with a number of bit operations in (2 log( ) ( )).

Thus, combining Lemma 3.4 and 3.5, with and in (log( )), in (log( / )), in ( ), = 1/2 +4 , we can compute (( + 2 / ) 2 ℓ/ ) for all 0 ≤ ≤ , 0 ≤ ℓ < and 0 ≤ < with a number of bit operations in ( log 2 ( ) polylog( )).

ELLIPTIC CASE

In this section, we consider the polynomial ( ) = =0 and we de ne the function ( ) = cos ( ) (tan( )). Remark that for ∈ [0, /4], the function tan( ) is a bijection between the roots of in [0, /4] and the roots of in [0, 1]. Moreover, let

( ) =
sin ( ) cos -( ) and let ( ) be the vector map ( 0 ( ), . . . , ( )) . Using the notations of the introduction, the function can be rewritten:

( ) = • ( ) Letting = ( + 1 
-), Edelman and Kostlan [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF] observed that the derivative of satis es the equation ′ ( ) = • ( ), where is the anti-symmetric linear matrix:

= 0 -1 1 0 -2 2 0 -3 . . . . . . . . . -1

-0

This leads to the following relation:

( ) = (0) 
As a corollary, for any point ∈ (0, 1):

( ) ( ) = • (0)

Bound on the derivatives of

For any real , observe that the matrix is orthogonal because is antisymmetric. This allows to prove the following lemma. 

( ) ( ) ! ≤ 2 max(4, 2 / ) 
P . First using norm inequality, we have:

( ) ( ) ≤ 2 (0) 2
For a positive integer , let be the matrix where all the entries of indices ( , ) with ≥ + 2 or ≥ + 2 are replaced by 0. Since is a tridiagonal matrix, and since (0) = (1, 0, • • • , 0) , we can deduce by induction that:

(0) = • • • 1 (0) Let ℎ = +1 2 .
For ≤ ℎ, we can bound the norm of by:

2 ≤ 1 ∞ ≤ ( -1)( + 1 -( -1)) + ( + 1 -) ≤ 2 ( + 1 -)
For > ℎ, we have 2 ≤ + 1. This allows us to deduce that:

1 ! (0) 2 ≤        2 if ≤ +1 2 2 ℎ ℎ ( + 1) -ℎ ℎ! ! otherwise Using the inequality ! ≥ √ 2 we get ≤ 1 √ 2 . Moreover for > ( + 1)/2, observe that ℎ ≤ √ 2 ≤ 2 ℎ ≤ 2 ,
and

( + 1) -ℎ ℎ! ! ≤ 2 -ℎ , such that: 1 ! (0) 2 ≤          2 if ≤ +1 2 4 otherwise

Piecewise polynomials over [0, 1]

Using the bound on the derivative of shown in the previous section we de ned a sequence of disks ( , ) that covers the real segment [0, /4] such that the series ( + ) has the absolute value of its coe cients decreasing exponentially for large enough.

For a real , let = 2 , and for 0 ≤ < let and de ned by:

= (2 + 1) 1 4 = 1 4 (3) 
It is easy to check that the union of the corresponding disks cover the segment [0, /4]. The properties of the series ( , ) will be analysed in Section 4.4.

Piecewise polynomials over (0, 1)

For the complex case, we need to de ne a sequence of disks = ( , ) such that the union of the sets tan( ) covers an angular sector of (0, 1) big enough. For that, we prove the following lemma. 

P

. Using the integral expression of the function atan, remark that atan( + ) = atan(

) + ∫ + = 1 1+ 2 .
In particular, as long as ≤ , we have ( 2 ) ≥ 0, such that | 1 1+ 2 | ≤ 1, which allows us to conclude that | atan( + )atan( )| ≤ | |. Moreover, if ≥ 0 and 2 + 2 ≤ 1 then, 0 ≤ (atan( + )) ≤ /4.

Thus, for any point ∈

, we have atan( ) ∈ , such that ⊂ tan( ).

Thus, we can cover a band of width 1 4 2 with = disks de ned for 0 ≤ < by:

= 1 4 = 1 4 (4) 
This allows us to cover the angular sector of radius ≥ 1 4 2 , and the number of sectors needed to cover the unit disk is = ⌈ / ⌉ ≤ ⌈4 2 ⌉.

Approximation properties

We focus in this section on the complex case. The real case can be proven with similar arguments. For a complex number and a real number , denote by , ( ) the series ( + ) and denote by its coe cients. log (2) . Moreover, Eldeman and Kostlan showed that is similar to the Kac matrix [14, §4.3], and the absolute value of its eigenvalues is lower or equal to , such that 2 ≤ and 2 Thus, the two sequences of disks de ned in Equations ( 3) and (4) cover the interval [0, 1] and the unit disk (0, 1) respectively, and they satisfy the conditions of Lemma 4.3.

Complexity to evaluate

In the elliptic case, evaluating a sequence of points in Step of Algorithm 1 naively would be done roughly in a ( 2 ), or in ( 3/2 ) operations if we use the fast Fourier transforms. In both cases, this would exceed our complexity bound. The main idea in this section is to remark that if we are interested in computing an approximate value of the function = 

P

. Let be an integer, be a real between 0 and 1 and ℓ = max(0, ⌊ -2 log(2) ( + 1)⌋) and = min( , ⌈ + 2 log(2) ( + 1)⌉). Let be the union of the indices 0, . . . , and , . . . , . Using the Hoe ding inequality, we have ) . In particular, this implies that [START_REF] Becker | A nearoptimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration[END_REF]. Thus, letting = | sin 2 ( )|/cosh(2 ), we can use the Hoe ding inequality and deduce:

∈ (1 -) - ≤ 2 • 2 -4( +1
| ∈ sin( ) cos( ) -| 2 ≤ 2 2 ℓ =0 | sin 2 ( ) cos 2( -) ( )|. If = + , we have | cos 2 ( )| + | sin 2 ( )| = cosh
| ∈ sin( ) cos( ) -| ≤ 2 cosh /2 (2 )2 -2( +1)+1
Moreover, comparing the coe cients of the Taylor expansion at 0 of cosh( ) and exp( 2 /2), remark that cosh /2 (2 ) ≤ 2 . In particular, if | | ≤ log(2) / that implies cosh /2 (2 ) ≤ 2 . This allows us to conclude that

| ( ) -= sin ( ) cos -( )| ≤ 2 2 --1 .
Truncating can also be used to evaluate it e ciently on a set of roots of unity using fast Fourier transform, as required for Step of Algorithm 1. L 4.5. Let > 0 be a real number and > 0 be an integers such that ≤ 4 2 / . Given a complex number such that | ( )| ≤ log(2) / , let ( ) = =0 ( ) . Given an integer > 0, it is possible to compute the values ( 2 / ) for 0 ≤ < with an absolute error lower than 2 /2 with a number of bit operations in ( / ( + + log( )) 2 • polylog( + log( ))).

P

. For any 0 ≤ ≤ , and = + , remark that | ( + )| ≤ | cos 2 ( )| + | sin 2 ( )| = cosh /2 (2 ) ≤ 2 . Using fast algorithms, we can compute in quasi-linear time the rst digits of the result of arithmetic operations [START_REF] Von | Modern Computer Algebra[END_REF]. Moreover, using methods such as the FEE method [START_REF] Karatsuba | Fast evaluation of transcendental functions[END_REF], we can also evaluate trigonometric, exponential and factorial functions in quasi-linear time. Thus, we can evaluate the rst + + 2 log( ) digits of ( ) with a number of bit operations in ( , , ) = (( + + log( )) polylog( + log( ))). Using Lemma 4.4, this allows us notably to evaluate (1) with an error lower than 2 /2 in ( √ ( , , )) bit operations after truncating .

Let ( ) be the polynomial of degree 4 √ approximating ( ). For in ( / ), we want to evaluate on the -th roots of unity. We start by computing the polynomial ℎ = mod -1 of degree -1 with a number of bit operations in ( √ ( , , )). Then we can use the fast Fourier transform to evaluate ℎ ( 2 / ) for 0 ≤ < in ( / log( ) ( , , )) bit operations. Thus the total number of bit operations is in

( √ ( √ + log( )) ( , , )) and ( √ ) = ( + ).
Finally, Lemma 4.5 with and in (log( )), in ( / ), in ( ), in ( / ) for all , we can compute all the values in Step of Algorithm 1 with a number of bit operations in ( log 2 ( ) polylog( )).

EXTENSIONS AND OPEN QUESTIONS 5.1 Flat polynomials

A third natural family of polynomials is of the form ( )

= =0 1 √ !
. When converges to in nity, the density of its roots distribution converges to 1/ . Thus, we can de ne a so-called at condition number as follow.

De nition 5.1. Given the polynomial ( )

= =0 1 ! , let ( ) = ( ) -2 /2
. The real at condition number associated to is:

R ( ) = max ∈R min 2 | ( )| , 2 | ′ ( )|
For ( ) with in the unit disk, letting ( ) = ( ), we let C ( ) = max ∈[0,2 ] R ( ) be the complex at condition number associated to .

Considering this new condition number, several natural questions occur. First, remark that the density of the distribution of the roots of at polynomials is close to the density of the distribution of the eigenvalues of random matrices. Whereas it was shown that the expectation of the hyperbolic condition number of the characteristic polynomial of complex standard Gaussian matrices of size is in 2 Ω ( ) , it would be interesting to analyse the at condition number of such characteristic polynomials.

From an algorithmic point of view, remark that in the at case, considering the vector of function ( ) = ( -2 /2 , -2 /2 , . . . , -2 /2 , . . .), the derivation of is an anti-symmetric operator, as for the elliptic case. Thus, after dealing with boundary conditions, we should be able to derive an algorithm that nd the roots of such polynomials with number of bit operations linear in and polynomial in the logarithm of . Such an algorithm might be well suited to nd the roots of characteristic polynomials.

Multivariate polynomial systems

As mentioned in introduction, the current bound on the number of operation to nd the roots of a multivariate polynomial systems of equations is currently polynomial in its degree and in its condition number. It would be nice to generalize for the multivariate case the tools that we used and developed for the univariate case.

In particular, Lemma 2.1 is based on Kantorovich's theory, where all theorems are valid for multivariate systems. Moreover, the distribution of the roots is also well described for the multivariate case [START_REF] Edelman | How many zeros of a random polynomial are real?[END_REF]. Combining those results as we did for the univariate case could help to improve the state-of-the-art bounds on the problem of nding the roots of multivariate polynomial systems.

Bound on the condition number

Although the algorithm we present here is quasi-linear in the degree of the polynomials and polynomial in the logarithm of its condition number, it requires that a bound on the condition number is given as input. If the bound given as input is to low, the results might be wrong.

On the other hand, in the complex case, using the piecewise polynomial approximation and the error bound that we compute with our algorithm, we can use Kantorovich's theory to check if each root that we compute is indeed associated to a root of the original polynomial. If we get distinct roots, then our result has been validated with a number of bit operations in ( log 2 ( ) polylog(log( ))).

  This implies that | ′ ( )| ≥ / . In turn, we have = | ( )/ ′ ( )| ≤ 1/(32 ), and = max ∈ (| ′′ ( )/ ′ ( )|) ≤

  In particular, with the lower bound on , we have ≥ log 2 ( ) + /2 and ≥ 20, which implies | ′ ( )| ≥ /(2 ) and | ′′ ( )| ≤ ( + 1/40). Such that := | ( )/ ′ ( )| ≤ ( + 2) /2 -1 and := max ∈ (| ′′ ( )/ ′ ( )|) ≤ 2( + 1/40) ≤ 4.1/2 . Let = 1/(4.1 ). Using Kantorovich's theory [12, Theorem 85] this implies that is the unique root of in the disk ( , ).

  For ∈ , | ′ , ( )| = | ′ ( + )| and ′′ , ( ) = 2 ′′ ( + ).

L 3 . 3 .

 33 With = 1 , = 2 , = ℎ ( ) and = ⌈2 log 2 ( 2 )⌉, , satis es all the assumptions of Lemma 2.1. P . First, by de nition of ℎ , if | , ( ) = ( + )| ≤ / , then | ′ ( + )| ≥ / , which implies | ′ , ( )| ≥ /(6 ) ≥ / .

L 4 . 1 .

 41 For any real :

L 4 . 2 .

 42 Let 0 ≤ ≤ /4. If a set of complex disks 1 , . . . , ⊂ C covers the band of points with | ( )| ≤ and 0 ≤ ( ) ≤ /4, then tan( 1 ), . . . , tan( ) covers the angular sector of the unit disk between the angleand .

  For ∈ , | ′ , ( )| = | ′ ( + )| and ′′ , ( ) = 2 ′′ ( + ).

L 4 . 3 . 4 /

 434 Let 0 ≤ ≤ /4 and = 1 ( ) be two real numbers. With = 2 , = 2 , = ( ) and = ⌈2 log 2 ( 2 )⌉, , satis es all the assumptions of Lemma 2.1.

P. 2 • 2 2

 22 First, by de nition of , if | , ( ) = ( + )| ≤ / , then | ′ ( + )| ≥ √ / , which implies | ′ , ( )| ≥ √ / ≥ / . For the second derivative of ′′ , ( ), remark that ′′ ( ) = • (0) = • 2 ( ). Remark that ( + ) = ( ) and ( ) 2 = (cosh 2 ( ) + sinh 2 ( )) /2 = cosh /2 (2 ). Using the inequality cosh( ) ≤ this leads to ( + ) 2 ≤ 2 . With | | ≤ , this leads to | ′′ ,

2 2 ≤

 2 . Finally, for > , | | ≤ 2 /2 using Lemma 4.1.

=0( ) up to 2 / 2 4 .

 224 for a given integer , then we can truncate to use a support of size in ( Given a function ( ) = =0 ( ) and an integer > 0, there exists 0 ≤ ℓ ≤ ≤ such that |ℓ | ≤ 4 √ and ( ) -=0 ( ) ≤ 2 2 --1 .