Fast real and complex root-finding methods for well-conditioned polynomials

Guillaume Moroz

To cite this version:
Guillaume Moroz. Fast real and complex root-finding methods for well-conditioned polynomials. 2021. hal-03134259

HAL Id: hal-03134259
https://hal.science/hal-03134259
Preprint submitted on 8 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fast real and complex root-finding methods for well-conditioned polynomials

Guillaume Moroz

guillaume.moroz@inria.fr

Université de Lorraine, CNRS, Inria, LORIA

Villers-lès-Nancy, France

ABSTRACT

Given a polynomial p of degree d and a bound κ on a condition number of p, we present the first root-finding algorithms that return all its real and complex roots with a number of bit operations quasi-linear in $d \log^2(\kappa)$. More precisely, several condition numbers can be defined depending on the norm chosen on the coefficients of the polynomial. Let $p(x) = \sum_{k=0}^d a_k x^k = \sum_{k=0}^d \sqrt{d_k} b_k x^k$.

We call the condition number associated with a perturbation of the a_k the hyperbolic condition number κ_h, and the one associated with a perturbation of the b_k the elliptic condition number κ_e. For each of these condition numbers, we present algorithms that find the real and the complex roots of p in $O\left(d \log^2(d \kappa) \polylog(\log(d \kappa))\right)$ bit operations.

Our algorithms are well suited for random polynomials since κ_h (resp. κ_e) is bounded by a polynomial in d with high probability if the a_k (resp. the b_k) are independent, centered Gaussian variables of variance 1.

KEYWORDS

Polynomial equation, Root finding, Condition numbers, Real roots, Complex roots

1 INTRODUCTION

The problem of finding all the real or complex solutions of a polynomial equation $p(z) = 0$ has been extensively investigated, both in theory and in practice. If p is a polynomial of degree d with integer coefficients of bit size bounded by τ, the state-of-the-art methods to find the real or complex roots of p require a number of bit operations in $O(d^2(d + \tau) \polylog(d \tau))$ [2, 28]. In the case where the polynomial is well-conditioned, the best methods in the state of the art also require at least a quadratic number of bit operations to find its roots. By well-conditioned, we mean that the variation of the roots of p with respect to the variation of its coefficients is small ([7, chapter 12], [8, chapter 14] and references therein).

For ill-conditioned polynomials, the distance between two roots can as small as 2^{-dr}. Pan considered optimal an algorithm that used $O(d \tau)$ arithmetic operations, where the number of bit operation for each arithmetic operation is in $O(\tau d)$, and in this sense, he provided a near-optimal algorithm. On the other hand, when a polynomial is well-conditioned, the distance between two roots is not exponentially small in d.

Random polynomials are well-conditioned with a high probability. More precisely, let $p(x)$ be a polynomial of degree d where each of its coefficients is a Gaussian random variable of variance d_k. There exist constants $A > 1$ and $B > 1$ such that the so-called elliptic condition number (see Definition 1.1) is lower than n^d with probability higher than $1 - 1/n^B$ [10]. A similar result was proven for the so-called hyperbolic condition number when the variance is 1 [13]. Moreover, the distribution of the roots of polynomials with random coefficients is well understood ([14] and references therein). Thus it makes sense to provide algorithms that performs better than the general case for random polynomials and for well-conditioned polynomial.

Provided that we know a bound κ on a condition number of p, we will show that it is indeed possible to find all the roots of p with a number of operations quasi-linear in d and polynomial in $\log(\kappa)$.

Even though a condition number was not explicitly used, the analysis of root-finding methods for well-conditioned polynomials started with Smale [32] who studied the probability of failure of the Newton method. The Newton method is one of the most famous iterative method, that converges quadratically toward a single root ζ of p provided that the initial point is close enough to ζ ([7, chapter 8], [12, chapter 3], [8, chapter 15] and references therein).

It was later shown that it is even possible to construct a set S_d of $d \log^2(d)$ points such that for all polynomials p and each root ζ of p, there exists a point in S_d such that the Newton iteration eventually converges toward ζ [19]. Explicit bounds polynomial in the condition number were derived and improved for multivariate polynomial system of equations, based notably on homotopy methods ([3, 9, 11, 25] among others). One drawback of those approaches is that they require to evaluate p on at least d points, which leads to a number of arithmetic operations at least quadratic in d. Some methods based on modified Newton operators, such as the Weierstrass method ([4] and references therein) or the Aberth-Ehrlich method [16] were implemented with success, notably in the software MPSolve [5, 6].

For general polynomials, including ill-conditioned ones, fast numerical factorization is the first approach to provide the state of the art bound in $O(d^2(d + \tau) \polylog(d \tau))$ [28]. However this method is difficult to implement.

Another family of methods that are efficient in practice are the subdivision methods. The idea is to subdivide recursively a domain that contains the roots of p in subdomains, and to reject or accept the subdomains according to criteria that guarantee that a subdomain contains one or zero root. For real roots, the criteria that can be used are notably the Descartes’ rule of signs ([29] and references therein), the Budan’s theorem [17, 31, 36], or the Sturm’s theorem [1] among others. For complex roots, one may use Pellet’s test [2] or Cauchy’s integral theorem [20, 21] among others. Combining subdivision approaches with Newton iterations allows to match the complexity bound of Pan’s algorithm for real [30]. Subdivision methods are more commonly implemented, notably
in the software ANewDsc [24], SLV [35], the package RootFinding in Maple [26], the package real_roots in sage [34], Ccluster [22] among others.

We can also mention approaches based on the computation of the eigenvalues of the companion matrix associated to p [27]. These approach has the advantage of being numerically stable in many cases [15]. These methods are implemented notably in Matlab [33] and numpy [18].

1.0.1 Contribution. Focusing on univariate polynomial equations, we develop new algorithms that are for the first time polynomial in the logarithm of a condition number, and quasi-linear in the degree. Our approaches work for two classical condition numbers that we define here for p in the interval $[0, 1]$ and for x in the complex unit disk $D(0, 1)$.

Following the theory of condition number associated to the root-finding problem [8, chapter 14 and 16], we introduce the following numbers as condition numbers associated to p.

Definition 1.1. Given the polynomial $p(x) = \sum_{k=0}^{d} a_k x^k = \sum_{k=0}^{d} \sqrt[k]{b_k} x^k$, let $f(t) = \cos^d(t)p(\tan(t))$. The real hyperbolic condition number associated to p is:

$$\kappa_h^R(p) = \max_{x \in [0, 1]} \min_{\|a\|_1, \|d\|_1} \left(\frac{\|a\|_1}{\|p(x)\|} \right)$$

The real elliptic condition number associated to p is:

$$\kappa_e^R(p) = \max_{t \in [0, \frac{\pi}{2}]} \min_{\|b\|_2, \|f(t)\|} \left(\frac{\sqrt{\|b\|_2}}{|f(t)|} \right)$$

For $p(z)$ with z in the unit disk, letting $p_\theta(x) = p(xe^{i\theta})$, we define the complex hyperbolic and the complex elliptic condition numbers as $\kappa_h^C(p) = \max_{\theta \in [0, 2\pi]} \kappa_h^R(p_\theta)$ and $\kappa_e^C(p) = \max_{\theta \in [0, 2\pi]} \kappa_e^R(p_\theta)$ respectively.

The justification for the name hyperbolic and elliptic comes from the fact that when the a_k are independent, centered Gaussian variables of variance 1, then the density of the root distribution in $[0, 1]$ converges to $1/(\pi(1 - t^2))$ when d converges to infinity. Similarly, when the b_k are independent, centered Gaussian variables of variance 1, then the root distribution has density $\sqrt{\pi}/(\pi(1 + t^2))$ [14].

Remark that by symmetry of the weights we consider in front of the coefficients, we can reduce the problem of finding all the roots in \mathbb{R} or in \mathbb{C} to the problem of finding all the roots in $[0, 1]$ and \mathbb{C} respectively, through the changes of variable $x \mapsto -x$ and $x \mapsto 1/x$.

For our algorithms, we consider polynomials with bit-stream coefficients, where the first k bits can be accessed in $O(k)$ bit operations. Our output is a list of approximate zero as introduced by Smale [32], in the sense that for any point z_0 returned by our algorithm, the sequence $z_{k+1} = z_k - p(z_k)/p'(z_k)$ converges quadratically toward its associated root of p. We can now state our main result.

Theorem 1.2. Let $p(x)$ be a polynomial of degree d, with bit-streams coefficients.

There exist two algorithms that finds all its real roots in the interval $[0, 1]$ in $O(d \log^2 d \log d \log(\log d))$ with $\kappa = \kappa_h^R(p)$ and $\kappa = \kappa_e^R(p)$ respectively.

<table>
<thead>
<tr>
<th>Type</th>
<th>Hyperbolic</th>
<th>Elliptic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>$[0, 1]$</td>
<td>$D(0, 1)$</td>
</tr>
<tr>
<td>$v_k(x)$</td>
<td>x^k</td>
<td>$\left(\frac{\pi}{k}\right) \sin^k(x) \cos^{d-k}(x)$</td>
</tr>
<tr>
<td>$h(x)$</td>
<td>x</td>
<td>$\tan(x)$</td>
</tr>
<tr>
<td>τ</td>
<td>$\log_2(d)$</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>$O(\log(d))$</td>
<td>$O(\sqrt{d})$</td>
</tr>
<tr>
<td>M_n</td>
<td>1</td>
<td>2^{m+n}</td>
</tr>
<tr>
<td>T</td>
<td>Eq. (1)</td>
<td>Eq. (2)</td>
</tr>
</tbody>
</table>

Table 1: Values for the initialisation of the variables in Step A of Algorithm 1

There exist two algorithms that finds all its complex roots in the unit disk in $O(d \log^2 d \log \log(\log d))$ with $\kappa = \kappa_h^R(p)$ and $\kappa = \kappa_e^R(p)$ respectively.

The main idea of our algorithms is to approximate p with a piecewise polynomial function, where each polynomial has a degree in $O(\log(d))$. This is achieved by partitioning the interval $[0, 1]$ and the unit disk following the distribution of the roots. Then using Kantorovich’s theory, we show that a good enough approximation of the roots of the piecewise polynomial is a set of approximated roots associated to all the roots of p. Our method is summarized in Algorithm 1.

For the correctness of Algorithm 1, we prove in key Lemma 2.1 that if a polynomial g of small degree is sufficiently close to a series f, then the problem of finding the root of f can be reduced to the problem of finding the roots of g. Then in Section 3.4 and 4.4, we show that the piecewise polynomials that we construct in Algorithm 1 satisfy the assumptions of Lemma 2.1.

For the bound on the number of bit operations, the main steps that we need to analyse in Algorithm 1 are Step B and Step C. In Step C we need to solve $\sum_{r=0}^{N} M_n$ polynomials of degree P. Using a classical algorithm with the state-of-the-art complexity ([28, Theorem 2.1.1] and [2]), we can find all the roots in the unit disk of each polynomial with an error bounded by 2^{-P}, and with a number of bit operations in $O(P^3 \log \log(\log d))$. Then, since P is in $O(\log(d))$ and the sum of the M_n is in $O(d(\log(\log d)))$ in all cases (see Table 1), we conclude that the bound on the number of bit operations to perform Step C is in $O(d \log^2 d \log \log(\log d))$.

In Step B, if we perform the loop as written in Algorithm 1, this leads to a number of operations quadratic in d. Instead, in Section 3.5 and 4.5, we show how we can modify Step B such that the number of bit operations for this step is in $O(d \log^2 d \log \log(\log d))$.

First we will prove in Section 2 that we can reduce the root-finding problem to the problem of finding the roots of a smaller degree polynomial. Then in Section 3 and 4, we will prove the correctness and bound the complexity of Algorithm 1 for polynomials with small hyperbolic condition number and small elliptic condition number respectively. Finally in Section 5, we will discuss open questions related to our approach.
Fast real and complex root-finding methods for well-conditioned polynomials

Algorithm 1 Root-finding algorithm

Input: c: list of $d+1$ coefficients t: type of the monomial weight (elliptic or hyperbolic) κ: bound on the condition number (see Definition 1.1)

Output: \mathbf{result}: list of the approximate roots of the function
$$\begin{cases} \sum_{k=0}^{d} c[k] x^k & \text{if } t \text{ is hyperbolic} \\ \sum_{k=0}^{d} c[k] (q[k] x) & \text{if } t \text{ is elliptic} \end{cases}$$

A. Initialization

Variables depending on t (see Table 1): v ← list of $d+1$ monomial functions h ← a scale function y ← list of N real numbers, centers of disks ρ ← list of N real number, radii of disks M ← list of N integers P ← $[10 \log_{10}(d)]$ w ← list of P-th roots of unity

for $0 \leq n \leq N$ do $z[n] ←$ list of the M_n-th roots of unity

$\mathbf{result} ←$ empty list

B. Evaluation

for $0 \leq n < N$ and $0 \leq p < P$ do

for $0 \leq m < M_n$ do

$e[m,n,p] ← \sum_{k=0}^{d} c[k] (y[n] + \rho[n] w[p]) z[m,n] k$ up to precision $\|c\|2^{-P}$

C. Interpolation and root-finding

for $0 \leq n < N$ do

for $0 \leq m < M_n$ do

$g ←$ polynomial such that $g(w[p]) = e[m,n,p]$ for all p

with coefficients up to precision $\|c\|2^{-P}$

$s ←$ roots of g up to precision $\|c\|2^{-P}$

for $0 \leq k < k$ size of s do

Append $h(y[n] + \rho[n] s[k]) z[m,n]$ to \mathbf{result}

return \mathbf{result}

2. PRELIMINARIES

2.1 Notations

Given a polynomial or an analytic series f, we will denote by f' and f'' the derivative and the second derivative of f, and by $f^{(k)}$ the k-th derivative of f. Given a vector v, we will denote by $\|v\|_1$, $\|v\|_2$ and $\|v\|_\infty$ the classical norm 1, 2 and infinity of v. The transpose of v is denoted by Tv and its conjugate transpose by Hv and if w is another vector, $v^H w$ denotes their scalar product. For a matrix A, we denote by $\|A\|_F$ the induced norm $\sup_{x \neq 0} \|Ax\|_k / \|x\|_k$.

For a polynomial $p(x) = \sum_{k=0}^{d} a_k x^k = \sum_{k=0}^{d} (b_k x) x^k$, we denote by $\|p\|_1$ the norm 1 of the vector (a_k), and by $\|p\|_W$ the norm 2 of the vector (b_k).

Finally, we will denote by I the interval $[0, 1]$, by U the unit disk, and by $D(y, \rho)$ the complex disk of radius ρ centered at y.

2.2 Roots of approximated polynomial

Based on Kantorovich’s theory, we show that if a polynomial and a series have coefficients close enough, then the roots of the polynomial are in the basin of quadratic convergence of the roots of the series.

We state the following theorem for complex roots in the unit disk $D(0, 1) \subset \mathbb{C}$. Remark that in the case where f and g have real coefficients, it holds for their real roots in the interval $[0, 1] \subset \mathbb{R}$.

Lemma 2.1. Let $f(z) = \sum_{k=0}^{m} a_k z^k$ be an analytic series with radius of convergence greater than 1. Assume that there exist $c > 0$, $\kappa > 32$, $s > 1$ and an integer $m > 2 \log_{2}(s\kappa^2)$ such that for all point z in the unit disk:

- $|f'(z)| < c \kappa$,
- $|f''(z)| < c \kappa$.

Let $g(z) = \sum_{k=0}^{m} g_k z^k$ be a polynomial of degree m such that for all $0 \leq k \leq m$ we have $|g_k| \leq c / 2^k$.

Then, for each root ζ of f in the unit disk, f has no other root in $D(\zeta^2, 2 \kappa s)$ and g has a root in the disk $D(\zeta^2, 1/16 s \kappa)$.

Proof. Let η be a root of g in the unit disk. Then $|f(\eta)| = |f(\eta) - g(\eta)| \leq c \kappa^2 + c s \kappa$ using the bounds on the difference of the coefficients of f and g. In particular, with the lower bound on m, we have $m \geq \log_{2}(s\kappa) + m/2$ and $m \geq 20$ since $\kappa^2 s \kappa \geq 2^{10}$. This implies that $|f'(\eta)| \leq 2 c m + 2 / s \kappa^2 \leq c (s \kappa^2) (m + 2) / s \kappa^2 \leq 2 / (32 s \kappa^2)$. This implies that $|f''(\eta)| \geq c / \kappa$. In turn, we have $\beta = |f''(\eta)|/|f'(\eta)| \leq 1 / (32 s \kappa^2)$, and $K = \max_{z \in U} \left(|f'''(z)|/|f''(z)|\right) \leq s \kappa^2$. Thus, $2 \beta K \leq 1/16 \leq 1$. Using Kantorovich’s theory [12, Theorem 88], this ensures that f has a root in $D(\eta, 2 \beta)$ which implies that f has a root in the disk $D(m, 1/16 s \kappa)$.

Reciprocally, let ζ be a root of f in the unit disk. Then $|g(\zeta)| = |g(\zeta) - f(\zeta)| \leq c \kappa^2 + c / \kappa\kappa^2$ using the bounds on the difference of the coefficients of f and g. Similarly $|g'(\zeta) - f'(\zeta)| \leq c (m + 2) / 2m + c / 2m^2$. And for all $z \in U$ we have also $|g''(z) - f''(z)| \leq c (m + 3) / 3 2m^2 + c (m + 2) / 2m + c / 2m^2$.

This implies that:

- $|g(\zeta)| \leq c (m + 2) / 2m$,
- $|g'(\zeta)| \leq c \kappa - c (m + 2) / 2m$,
- $|g''(\zeta)| \leq c (m + 3) / 3 2m^2$.

In particular, with the lower bound on m, we have $m \geq \log_{2}(s\kappa) + m/2$ and $m \geq 20$, which implies $|g''(\zeta)| \geq c / 2 \kappa$ and $|g''(\zeta)| \leq c (m + 4) / 2m$. Such that $\beta = |g'(\zeta)|/|g''(\zeta)| \leq (m + 2) / 2m + c / 2m^2$ and $K = \max_{z \in U} \left(|g'''(z)|/|g''(z)|\right) \leq (s + 1/40) \kappa \leq 4.1 / 2s \kappa$.

Let $r = 1/(4 \kappa s)$. Using Kantorovich’s theory [12, Theorem 85] this implies that ζ is the unique root of f in the disk $D(\zeta, r)$.

Moreover, $|f'(2r)| \leq 4 \kappa s \kappa^2 (m + 2) / 2m + c (m + 2) / 2m^2 \leq 1/8$ for $m \geq 19$, which is the case since $\kappa^2 \kappa^2 \geq 2^{10}$. In this case, using
Kantorovich’s theory again [12, Theorem 88], $2\beta K \leq \beta r \leq 1$ ensures that g has a root in $D(\zeta, 2\beta)$. Moreover, since $1/(2r) \leq 1/8$, this implies that $2\beta \leq r/2$ and g has a root in the disk $D(\zeta, r/2)$. In particular, ζ is the only root of f in the disk $D(\eta, r/2)$, which implies that $\zeta \in D(\eta, 1/(16\pi))$ and thus $\eta \in D(\zeta, 1/(16\pi))$.

3 HYPERBOLIC CASE

In this section we consider the polynomial $p(x) = \sum_{k=0}^{d} a_k x^k$, over the interval $[0, 1]$ and over the complex unit disk $D(0,1)$.

3.1 Bound on the coefficients

For a complex number γ and a real number ρ, we define the polynomial $p_{\rho}(\gamma, x) = p(\gamma + \rho x)$.

Lemma 3.1. Let $\rho > 0$ be a real and γ a complex number in $D(0,1)$ such that either $2\rho \leq 1 - |\gamma|$, or $\rho \leq \tau/(2ed)$. Let c_k be the coefficients of x^k in $p_{\rho}(\gamma, x)$. For all $k > \tau$:

$$|c_k| \leq \frac{1}{2^k} \|p\|_1$$

Proof. We distinguish 2 cases. For the case where $2\rho \leq 1 - |\gamma|$, the coefficient of x^k in $p_{\rho}(\gamma, x)$ is $c_k = \sum_{i=0}^{d} a_i j^{|i-k|} \rho^{|i-k|}$.

Then, for the case $\rho \leq \tau/(2ed)$, we have $c_k = \sum_{i=0}^{d} a_i j^{|i-k|} \rho^{|i-k|} \leq \rho^{|k|} \|p\|_1$. Using the inequality $k! \leq \sqrt{2 \pi k} (k/e)^k$ we get $c_k \leq \|p\|_1 (\tau/(2d))^k \leq \|p\|_1/2^k$.

3.2 Piecewise polynomials over $[0, 1]$

Let γ_n^{N-1} and ρ_n^{N-1} be the sequences:

$$\gamma_n = 1 - \frac{2}{3^N}, \quad \rho_n = \begin{cases} \frac{1}{2} & \text{if } 0 \leq n < N - 1 \\ 1 - \gamma_n & \text{if } n = N - 1 \end{cases}$$

where $N = \lceil \log_2 \left(\frac{\pi d}{\tau} \right) \rceil$ is chosen such that $\rho_{N-1} \leq \frac{\tau}{2ed}$. Remark that the union of the intervals $[\gamma_n - \rho_n, \gamma_n + \rho_n]$ is the interval $[0, 1]$.

Finally, for $0 \leq n < N$, Lemma 3.1 implies that the coefficients c_k polynomial $p(\gamma_n + t\rho_n)$ satisfy $c_k \leq \|p\|_1/2^k$ for all $k > \tau$.

3.3 Piecewise polynomials over $D(0,1)$

In this section, we define a set of disks that cover the disks unit disk of radius 1 centered at 0, while their centers and radii still satisfy the conditions of Lemma 3.1.

Let r_n^{N} be the sequence:

$$r_n = \begin{cases} 1 - \frac{1}{3^n} & \text{if } 0 \leq n < N \\ 1 & \text{if } n = N \end{cases}$$

Then for $0 \leq n < N$, let $\gamma_n = \frac{1}{2}(r_n + r_{n+1})$ and $\rho_n = \frac{1}{2}(r_{n+1} - r_n)$, such that $(\gamma_n)_{n=0}^{N-1}$ and $(\rho_n)_{n=0}^{N-1}$ are the sequences:

$$\gamma_n = \begin{cases} 1 - \frac{1}{3^n} & \text{if } 0 \leq n \leq N - 2 \\ 1 - \frac{1}{2} & \text{if } n = N - 1 \end{cases}$$

$$\rho_n = \begin{cases} \frac{1}{2} & \text{if } 0 \leq n \leq N - 2 \\ \frac{1}{2} & \text{if } n = N - 1 \end{cases}$$

where $N = \lceil \log_2 \left(\frac{\pi d}{\tau} \right) \rceil$ is chosen such that $\gamma_{N-1} \leq \frac{\tau}{2ed}$.

Let $\omega_n = \frac{2\pi}{2\min(n(N+1), N+1)}$. The following lemma shows that the union of the disks $D(\gamma_n, \rho_n)$ for $0 \leq n < N$ and $0 \leq m < 2\min(n+N, N+1)$ contains the disk $D(0,1)$.

Lemma 3.2. The disk of center γ_n and radius ρ_n covers a sector of angle $\frac{2\pi}{2\min(n(N+1), N+1)}$ of the ring between the concentric circles centered at 0 of radii r_n and r_{n+1}.

Proof. Consider the ring between the circles of radii r_n and r_{n+1} and let α_n be the angle of the sector covered by the disk $D(\gamma_n, \rho_n)$. Using classical trigonometric formula we have $r_n = \gamma_n + r_{n+1} - 2\gamma_n r_{n+1} \cos(\frac{\alpha_n}{2})$, and we also have $\rho_n = \frac{1}{2}(r_{n+1} - r_n)$, which implies:

$$\sin\left(\frac{\alpha_n}{2}\right) = \sqrt{1 - \frac{(r_n + r_{n+1} - \rho_n)^2}{4\rho_n^2}} = \sqrt{\frac{2\rho_n^2(r_n + r_{n+1}) - (r_n^2 + r_{n+1})}{4\rho_n^2}} = \sqrt{\frac{9(r_{n+1} - r_n)^2}{8r_n}} = \frac{9}{4r_n} - \frac{1}{\sqrt{r_n}}$$

A variation analysis shows that for $1 \leq x \leq 2$, the expression $\frac{1}{2}(1 + x^2) - (1 + x)^2$ is greater or equal to 5. Moreover, $\frac{9}{4r_n}$ is greater than $\frac{1}{2\min(3, N+1)}$ if $n < N - 1$ and greater than $\frac{1}{2\min(2, N)}$ if $n = N - 1$, such that:

$$\frac{\alpha_n}{2} \geq \sin\left(\frac{\alpha_n}{2}\right) \geq \frac{\sqrt{5}}{2\min(n+3, N+1)} \geq \frac{2\pi}{2\min(n+5, N+3)}$$

Remark that like for the real case, for $0 \leq n < N$, Lemma 3.1 implies that the coefficients c_k polynomial $p(\gamma_n + t\rho_n)$ satisfy $c_k \leq \|p\|_1/2^k$ for all $k > \tau$.

3.4 Approximation properties

We show in this section that the polynomials computed in Algorithm 1 computes the correct approximate roots of p. For that, we show that with the parameters chosen in the algorithm, Lemma 2.1 applies correctly and thus, the approximate truncated polynomials that we use return the correct roots. We focus on the complex case. The real case can be proven with similar arguments.
Let \(\tau \geq 6\) be a real number, let \(y \in D(0,1)\) and \(p > 0\) such that either \(2p \leq 1 - |y|\) or \(p \leq \tau/(2\epsilon_d)\). Moreover, assume that \(p \geq \tau/(6\epsilon_d)\). Denote by \(p_{\tau,p}(z)\) the polynomial \(p(y + pz)\) and denote by \(c_k\) its coefficients. For \(z \in U\), \(|p'_{\tau,p}(z)| = p'p'(y + pz)|\) and \(p''_{\tau,p}(z) = p'f''(y + pz)\).

Lemma 3.3. With \(c = ||p||_1\), \(s = rd_{2\tau}\), \(k = k_k(p)\) and \(m = [2\log_2(sk^2)]\), \(p_{\tau,p}\) satisfies all the assumptions of Lemma 2.1.

Proof. First, by definition of \(k_k\), if \(|p_{\tau,p}(z)| = p(y + pz) ≤ c/\epsilon_d\), then \(|p'p'(y + pz)| ≥ c/\epsilon_d\), which implies \(|p'_{\tau,p}(z)| ≥ \epsilon_d/(6\epsilon_k) ≥ c/\epsilon_d\).

For the second derivative of \(p''_{\tau,p}(z)\), remark first that \(|y + pz| ≤ |y| + p ≤ 1 + \tau/(2\epsilon_d)\). Thus, for all \(0 ≤ k ≤ d\), we have \(|y + pz| ≤ (1 + \tau/(2\epsilon_d))d ≤ \epsilon_d/(2\epsilon_k) ≤ 2\epsilon_d\). Thus, \(|p'_{\tau,p}(z)| ≤ \epsilon_d^2||p''(y + pz)| ≤ ||p||_1/\epsilon_d^{2\epsilon_d}\).

Finally, for \(k > r, |c_k| ≤ ||p||_1/\epsilon_d^4\) using Lemma 3.1.

3.5 Complexity to evaluate \(p\)

We focus now on the complexity of Step B in Algorithm 1. We modify the algorithm to be able to bound correctly the number of bit operations of this step.

The following lemma first shows how to evaluate quickly the points near the unit circle.

Lemma 3.4. Let \(\tau > 0\) be a real number and \(N > 0\) be an integer such that \(N ≤ 6\epsilon_d/\tau\). Given a complex number \(z\) such that \(|z| ≤ 1 + \tau/d\) and an integer \(m > 0\), it is possible to compute the \(N\) values \(p(ze^{\pm2\pi k}/N)|\) for \(0 ≤ k ≤ N\) with an absolute error lower than \(||a||z^2/2m\) and with a number of bit operations in \(O(\log(\tau + m + \log(2m)))\).

Proof. For any \(0 ≤ k ≤ d\), remark that \(|\epsilon_k^d| ≤ (14\log(2)\tau/d)^d ≤ \epsilon_d^2\). Using fast algorithms, we can compute in quasi-linear time the first \(n\) digits of the result of arithmetic operations [37]. Thus, we can evaluate the first \(\tau + m + 2\log(m)\) digits of \(\epsilon_k\) with a number of bit operations in \(T(\tau, m, d) = O((\tau + m + \log(2m))\log\log(m + \log(2m)))\). This allows us notably to evaluate \(p(z)\) with an error lower than \(||a||z^2/2m\) in \(O(\log(\tau + m, d))\) bit operations.

For \(N\) in \(O(\log(\tau, m, d))\), we want to evaluate \(p(z)\) on the \(N\)-th roots of unity. We start by computing the polynomial \(q(X) = p(X) \mod X^N - 1\) of degree \(N - 1\) with a number of bit operations in \(O(\log(\tau, m, d))\). We can then use the fast Fourier transform to evaluate \(q(ze^{\pm2\pi k}/N)|\) for \(0 ≤ k ≤ N\) in \(O(\log(\tau, m, d))\) bit operations.

Then we show how the points \(z\) in the disks \(D(y_n, r_n)\) that satisfy \(|z| ≤ 1 + 1/2m\) can be evaluated more efficiently.

Lemma 3.5. Let \(n\) be a positive integer and \(N > 0\) be an integer such that \(N ≤ 2m^{r+4}\). Given a complex number \(z\) such that \(|z| ≤ 1 + 1/2m\) and an integer \(m > 0\), it is possible to compute the \(N\) values \(p(ze^{\pm2\pi k}/N)|\) for \(0 ≤ k ≤ N\) with an absolute error lower than \(||p||z^2/2m\) and with a number of bit operations in \(O(2m\log(2m))\).

Proof. First, remark that \(|\epsilon_k^d| ≤ \epsilon_k^d\). In particular, for \(k > \log(2)m^2\), we have \(|\epsilon_k| ≤ 1/2m\). Let \(\bar{p}\) be the polynomial \(p\) truncated to the degree \(d_n = \log(2)m^2\). Each \(z_k^d\) for \(k ≤ d_n\) can be computed with an error less than \(1/2m\) and with a number of bit operations in \(T(\tau) = O(m \log(2m))\). The polynomial \(q(X) = \bar{p}(X) \mod X^N - 1\) can be computed with a number of bit operations in \(O(2m^2T(\tau))\). Then, using the fast Fourier transform approach, we can compute \(q(ze^{\pm2\pi k}/N)|\) with a number of bit operations in \(O(2m^2 \log(2m))\).

Thus, combining Lemma 3.4 and 3.5, with \(m\) and \(r\) in \(O(\log(\tau, m, d))\), \(N\) in \(O(\log(\tau, m, d))\), \(P\) in \(O(\log(\tau, m, d))\), we can compute \(p(\epsilon_k^d z^{\pm2\pi k}/N)|\) for all \(0 ≤ k ≤ N\), \(0 ≤ t ≤ n_m\) and \(0 ≤ k < P\) with a number of bit operations in \(O(\log(\tau, m, d))\).

4 ELLIPTIC CASE

In this section, we consider the polynomial \(p(x) = \sum_{k=0}^{d=\infty} \sqrt{1/k!} b_k x^k\) and we define the function \(f(x) = \cos^d(x)\). Remark that for \(x \in [0, \pi/4]\), the function \(\tan(x)\) is a bijection between the roots of \(f \in [0, \pi/4]\) and the roots of \(p \in [0, \pi/4]\). Moreover, let \(v_k(x) = \sqrt{1/k!} \sin^k(x) \cos^{d-k}(x)\).

Using the notations of the introduction, the function \(f(x)\) can be rewritten:

\[f(x) = bH \cdot v(x) \]

Letting \(a_k = \sqrt{k(d+1-k)}\), Edelman and Kostlan [14] observed that the derivative of \(e\) satisfies the equation \(v'(x) = A \cdot v(x)\), where \(A\) is the anti-symmetric linear matrix:

\[A = \begin{bmatrix} 0 & -a_1 & 0 & \cdots & 0 \\ -a_1 & 0 & -a_2 & \cdots & 0 \\ 0 & -a_2 & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & -a_d \\ -a_d & 0 & \cdots & \cdots & 0 \end{bmatrix} \]

This leads to the following relation:

\[v(x) = e^{A_0} v(0) \]

As a corollary, for any point \(z \in D(0,1)\):

\[f^{(k)}(x) = b \cdot e^{A_k} v(0) \]

4.1 Bound on the derivatives of \(f\)

For any real \(x\), observe that the matrix \(e^{A_k}\) is orthogonal because \(A\) is anti-symmetric. This allows to prove the following lemma.

Lemma 4.1. For any real \(x\):

\[\frac{|f^{(k)}(x)|}{k^k} \leq \|b\|_2 \left(\max(4, 2\sqrt{e/k}) \right)^k \]

Proof. Using norm inequality, we have:

\[f^{(k)}(x) \leq \|b\|_2 \|A^k v(0)\|_2 \]

For a positive integer \(r\), let \(A_r\) be the matrix \(A\) where all the entries of indices \((m, n)\) with \(m \geq r + 2\) or \(n \geq r + 2\) are replaced by 0.

Since \(A\) is a triangular matrix, and since \(v(0) = (1, 0, \cdots, 0)^T\), we can deduce by induction that:

\[A^k v(0) = A_k \cdots A_1 v(0) \]
Let $h = \left\lfloor \frac{d+1}{4} \right\rfloor$. For $r \leq h$, we can bound the norm of A_r by:
\[
\|A_r\|_2 \leq \sqrt{\|A_1\|_2 \|A_1\|_{\infty}} \\
\leq \sqrt{(r-1)(d+1 - (r-1)) + \sqrt{r(d+1 - r)}} \\
\leq 2\sqrt{r(d+1 - r)}
\]
For $r > h$, we have $\|A_r\|_2 \leq d+1$. This allows us to deduce that:
\[
\frac{1}{k!}\|A^k_{\alpha}(0)\|_2 \leq \begin{cases}
\frac{2^k}{\sqrt{d+1}d} & \text{if } k \leq \frac{d+1}{4} \\
2^k & \text{otherwise}
\end{cases}
\]
Using the inequality $k! \geq \sqrt{2\pi k} \left(\frac{e}{k}\right)^k$, we get $\left(\frac{d}{k}\right)^k \leq \frac{1}{\sqrt{2\pi k}} \left(\frac{e}{k}\right)^k$.
Moreover, for $k > (d+1)/2$, observe that $\sqrt{\left(\frac{d}{k}\right)^k} \leq \sqrt{\sqrt{2d}} \leq \sqrt{2d} \leq 2^k$, and $(d+1-k)\frac{d}{k} \leq 2d^k$, such that:
\[
\frac{1}{k!}\|A^k_{\alpha}(0)\|_2 \leq \begin{cases}
\frac{2^{k^2/2}}{k^2} & \text{if } k \leq \frac{d+1}{4} \\
2^k & \text{otherwise}
\end{cases}
\]

4.2 Piecewise polynomials over $[0, 1]$

Using the bound on the derivative of f shown in the previous section we define a sequence of disks $D(n, \rho_n)$ that covers the real segment $[0, \pi/4]$ such that the series $f(y_n + \rho_n z)$ has the absolute value of its coefficients f_k decreasing exponentially for n large enough.

For a real τ, let $N = \left\lceil \frac{\tau}{2\sqrt{\frac{ed}{\pi}}} \right\rceil$, and for $0 \leq n < N$ let y_n and ρ_n defined by:
\[
y_n = (2n + 1)\frac{1}{4}\sqrt{\frac{\tau}{ed}} \\
\rho_n = \frac{1}{4}\sqrt{\frac{\tau}{ed}} \tag{3}
\]

It is easy to check that the union of the corresponding disks cover the segment $[0, \pi/4]$. The properties of the series $f(y_n, \rho_n)$ will be analysed in Section 4.4.

4.3 Piecewise polynomials over $D(0, 1)$

For the complex case, we need to define a sequence of disks $D_n = D(y_n, \rho_n)$ such that the union of the sets $\tan(D_n)$ covers an angular sector of $D(0, 1)$ big enough. For that, we prove the following lemma.

\textbf{Lemma 4.2.} Let $0 \leq \theta \leq \pi/4$. If a set of complex disks $D_1, \ldots, D_k \subset \mathbb{C}$ covers the band B_θ of points z with $|\Im(z)| \leq \theta$ and $0 \leq \Re(z) \leq \pi/4$, then $\tan(D_1), \ldots, \tan(D_k)$ covers the angular sector A_θ of the unit disk between the angle $-\theta$ and θ.

\textbf{Proof.} Using the integral expression of the function atan, remark that $\tan(a + ib) = \frac{\tan(a) + f^{ib}_{\infty}}{1 + f^{ib}_{\infty} \tan(a)}$. In particular, as long as $b \leq a$, we have $\Re(z^2) \geq 0$, such that $\left|\frac{1}{2\pi z^2}\right| \leq 1$, which allows us to conclude that $|\tan(a + ib) - \tan(a)| \leq |b|$. Moreover, if $a \geq 0$ and $a^2 + b^2 \leq 1$ then, $0 \leq \Re(\tan(a + ib)) \leq \pi/4$.

Thus, for any point $z \in A_\theta$, we have $\tan(z) \in B_\theta$, such that $A_\theta \subset \tan(B_\theta)$.

\textbf{Thus}, we can cover a band of width $\frac{\sqrt{\pi}}{4\pi} \sqrt{\frac{1}{ed}}$ with $N = \left\lfloor \frac{\pi}{\sqrt{\frac{1}{ed}}} \right\rfloor$ disks defined for $0 \leq n < N$ by:
\[
y_n = n\frac{1}{4}\sqrt{\frac{\tau}{ed}} \\
\rho_n = \frac{1}{4}\sqrt{\frac{\tau}{ed}} \tag{4}
\]

This allows us to cover the angular sector of radius $\theta \geq \frac{\sqrt{\pi}}{4\pi} \sqrt{\frac{1}{ed}}$ and the number of sectors needed to cover the unit disk is $M = \left\lceil \frac{\pi}{\theta} \right\rceil \leq \left\lfloor 4\pi \sqrt{\frac{1}{ed}} \right\rfloor$.

4.4 Approximation properties

We focus in this section on the complex case. The real case can be proven with similar arguments.

For a complex number y and a real number ρ, denote by $f_{y,\rho}(z)$ the series $f(y + \rho z)$ and denote by f_k its coefficients. For $z \in U$, $|f'_{y,\rho}(z)| = |f(y + \rho z)| = |\rho|f'(y + \rho z)$ and $f''_{y,\rho}(z) = \rho^2f''(y + \rho z)$.

\textbf{Lemma 4.3.} Let $0 \leq y \leq \pi/4$ and $\rho = \frac{1}{2\sqrt{\pi}}\sqrt{\frac{1}{ed}}$ be two real numbers. With $c = \|b\|_2$, $s = \pi d^2$, $k = k_{sc}(f)$ and $m = \lfloor 2\log_2(\pi k^2) \rfloor$, $f_{y,\rho}$ satisfies all the assumptions of Lemma 2.1.

\textbf{Proof.} First, by definition of k_{sc}, if $|f'_{y,\rho}(z)| = |f(y + \rho z)| \leq c/k$, then $|f''(y + \rho z)| \geq c/\pi k$, which implies $|f'_{y,\rho}(z)| \geq c/\sqrt{k}$.

For the second derivative of $f'_{y,\rho}(z)$, remark that $f''(z)$ is a \mathbb{C}^d-linear function, $o(0) = b \cdot A^2e^{i\theta} \cdot o(0) = b \cdot A^2e^{i\theta}$. Remark that $\Re(a + ib) = e^{i\theta}a + \Im(a + ib)$ and $\|o(a + ib)\|_2 = (\cosh^2(b) + \sinh^2(b))d^2/2b$. Using the inequality $\cosh(x) \leq e^x$, this leads to $\|o(a + ib)\|_2 \leq e^{ib^2}$. With $|b| \leq \rho$, this leads to $|f''_{y,\rho}(z)| \leq \rho^2\|b\|_2\|A\|_2^2\log(2)$.

Moreover, Eldemar and Kostlan showed that \Re is similar to the Kac matrix [14, §4.3], and the absolute value of its eigenvalues is lower or equal to d, such that $\|A\|_2 \leq d$ and $\Re^2\|A\|_2^2 \leq rd$.

Finally, for $k > \sqrt{d}$, $|f_k| \leq \|b\|_2/2^k$ using Lemma 4.1.

Thus, the two sequences of disks defined in Equations (3) and (4) cover the interval $[0, 1]$ and the unit disk $D(0, 1)$ respectively, and they satisfy the conditions of Lemma 4.3.

4.5 Complexity to evaluate f

In the elliptic case, evaluating a sequence of points in Step B of Algorithm 1 naively would be done roughly in an $O(d^3)$, or in $O(d^3/2)$ operations if we use the fast Fourier transforms. In both cases, this would exceed our complexity bound. The main idea in this section is to remark that if we are interested in computing an approximate value of the function $f = \sum b_k v_k(z)$ up to $\|b\|_2/2^m$ for a given integer m, then we can truncate f to use a support of size in $O(\sqrt{m})$.

\textbf{Lemma 4.4.} Given a function $f(z) = \sum_{k=0}^d b_k v_k(z)$ and an integer $m > 0$, there exists $0 \leq \ell \leq u \leq d$ such that $b[\ell - u] \leq 4\sqrt{d}m$ and $f(z) - \sum_{k=0}^u b_k v_k(z) \leq \|b\|_22^{-m-1}$.
Proof. Let m be an integer, x be a real between 0 and 1 and $\ell = \max(0, |xd - \sqrt{2} \log(2)(d(m+1))$ and $u = \min(d, |xd + \sqrt{2} \log(2)(d(m+1))$. Let I be the union of the indices $0, \ldots, u, \ldots, d$. Using the Hoeffding inequality, we have $\sum_{k \in I} \left(\frac{d}{2} x^k (1-x)^{d-k} \right) \leq 2 \cdot 2^{-4(m+1)}$. In particular, this implies that $\sum_{k \in I} b_k \sqrt{d} \sin(z)^k \cos(z)^{d-k} \leq \|b\|_2 \frac{2^\ell}{2^\ell} \left| \frac{d}{2} \right| \sin^{2k}(z) \cos^{2(d-k)}(z)$. If $z = a + ib$, we have $|\cos^{2k}(z)| + |\sin^2(z)| = \cosh(2b)$. Thus, letting $x = \sin(z)/\cosh(2b)$, we can use the Hoeffding inequality and deduce:

$$| \sum_{k \in I} b_k \sqrt{d} \sin(z)^k \cos(z)^{d-k} | \leq \|b\|_2 \cosh^{d/2}(2b) z^{-2(m+1)+1}$$

Moreover, comparing the coefficients of the Taylor expansion at 0 of $\cosh(x)$ and $\exp(x^2/2)$, remark that $\cosh^{d/2}(2b) \leq e^{|b|^2}$. In particular, if $|b| \leq \sqrt{\log(2)/d}$, this implies $\cosh^{d/2}(2b) \leq 2^m$. Thus, we can conclude that $|f(z) - \sum_{k \in I} b_k \sin(z)^k \cos(z)^{d-k}(z)| \leq \|b\|_2 2^{-m-1}$. □

Truncating f can also be used to evaluate it efficiently on a set of roots of unity using fast Fourier transform, as required for Step B of Algorithm 1.

Lemma 4.5. Let $\tau > 0$ be a real number and $M > 0$ be an integers such that $M \leq 4\tau \sqrt{2ed/t}$. Given a complex number z such that $|\Im(z)| \leq \sqrt{\log(2)/\tau}$, let $\tau = \sum_{k=0}^{d} \frac{a_k}{k!} \cdot |z|^k$. Given an integer $m > 0$, it is possible to compute the M values $\tau = \sum_{k=0}^{d} \frac{a_k}{k!} \cdot |z|^k$. For $0 \leq k < M$ with an absolute error lower than $\|b\|_2 2^m$ with a number of bit operations in $O(\sqrt{\tau} (m + \log(d))^2 \cdot \polylog(m + \log(d)))$.

Proof. For any $0 \leq k \leq d$, and $z = a + ib$, remark that $|a_k(a + ib)| \leq |\cos(z)| + |\sin(z)| = \cosh^{d/2}(2b) \leq 2^\tau$. Using fast algorithms, we can compute in quasi-linear time the first n digits of the result of arithmetical operations [37]. Moreover, using methods such as the FEE method [23], we can also evaluate trigonometric, exponential and factorial functions in quasi-linear time. Thus, we can evaluate the first $x + m + 2 \log(dm)$ digits of a_k with a number of bit operations in $O(\tau + m + \log(d)) = O(\tau + m + \log(d))$. Using Lemma 4.4, this allows us notably to evaluate $f(z)$ with an error lower than $\|b\|_2 2^m$ in $O(\sqrt{\tau} (m + \log(d)))$ bit operations after truncating f.

Let $g_k(x)$ be the polynomial of degree $4\sqrt{\tau}d$ approximating $f(z)$. For M in $O(\sqrt{\tau} (m + \log(d)))$, we want to evaluate $g_k(x)$ mod $X^M - 1$ of degree $M - 1$ with a number of bit operations in $O(\sqrt{\tau} (m + \log(d))T(\tau, m, d))$. Then we can use the fast Fourier transform to evaluate $h_k(x^{2k}/M)$ for $0 \leq k < M$ in $O(\sqrt{\tau} (m + \log(d))$ bit operations. Thus the total number of bit operations is in $O(\sqrt{\tau} (m + \log(d))T(\tau, m, d))$ and $O(\sqrt{\tau} (m + \log(d)) = O(\tau + m)$. □

Finally, Lemma 4.5 with m and τ in $O(\log(dk))$, N in $O(\sqrt{\tau})$, P in $O(\tau)$, M_k in $O(\sqrt{\tau})$ for all n, we can compute all the values in Step B of Algorithm 1 with a number of bit operations in $O(d \log^2(dk) \polylog(dk))$.

5 Extensions and open questions

5.1 Flat polynomials

A third natural family of polynomials is of the form $p(x) = \sum_{k=0}^{d} c_k x^k$. When d converges to infinity, the density of its roots distribution converges to $1/\pi$. Thus, we can define a so-called flat condition number as follow.

Definition 5.1. Given the polynomial $p(x) = \sum_{k=0}^{d} c_k x^k$, let $f(x) = p(x) e^{-x^2/2}$. The real flat condition number associated to p is:

$$\kappa_f^R(p) = \min_{x \in \mathbb{R}} \frac{\|c\|_2}{\|f(x)\|} = \frac{\|c\|_2}{\|f(x)\|}$$

For $p(z)$ with z in the unit disk, letting $p_\theta(x) = p(x e^{i\theta})$, we let $\kappa_f^R(p)(\theta)$ be the complex flat condition number associated to p.

Considering this new condition number, several natural questions occur. First, remark that the density of the distribution of the roots of flat polynomials is close to the density of the distribution of the eigenvalues of random matrices. Whereas it was shown that the expectation of the hyperbolic condition number of the characteristic polynomial of complex standard Gaussian matrices of size n is in $2 \log(n)$, it would be interesting to analyse the flat condition number of such characteristic polynomials.

From an algorithmic point of view, remark that in the flat case, considering the vector of function $u(x) = (e^{-x^2/2}, xe^{-x^2/2}, \ldots, x^k e^{-x^2/2}, \ldots)$, the derivation of u is an anti-symmetric operator, as for the elliptic case. Thus, after dealing with boundary conditions, we should be able to derive an algorithm that find the roots of such polynomials with number of bit operations linear in d and polynomial in the logarithm of κ_f. Such an algorithm might be well suited to find the roots of characteristic polynomials.

5.2 Multivariate polynomial systems

As mentioned in introduction, the current bound on the number of operation to find a roots of a multivariate polynomial systems of equations is currently polynomial in its degree and in its condition number. It would be nice to generalize for the multivariate case the tools that we used and developed for the univariate case.

In particular, Lemma 2.1 is based on Kantorovich’s theory, where all theorems are valid for multivariate systems. Moreover, the distribution of the roots is also well described for the multivariate case [14]. Combining those results as we did for the univariate case could help to improve the state-of-the-art bounds on the problem of finding the roots of multivariate polynomial systems.

5.3 Bound on the condition number

Although the algorithm we present here is quasi-linear in the degree of the polynomials and polynomial in the logarithm of its condition number, it requires that a bound on the condition number is given as input. If the bound given as input is to low, the results might be wrong.
On the other hand, in the complex case, using the piecewise polynomial approximation and the error bound case, we can check Kantorovich’s theory to check if each root that we compute is indeed associated to a root of the original polynomial. If we get n distinct roots, then our result has been validated with a number of bit operations in O(\log^2(n) \log(\log(n)))

REFERENCES

