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Construction and update of an online ensemble score involving linear 

discriminant analysis and logistic regression 

The present aim is to update, upon arrival of new learning data, the parameters of a score 

constructed with an ensemble method involving linear discriminant analysis and logistic 

regression in an online setting, without the need to store all of the previously obtained data. 

Poisson bootstrap and stochastic approximation processes were used with online 

standardized data to avoid numerical explosions, the convergence of which has been 

established theoretically. This empirical convergence of online ensemble scores to a 

reference “batch” score was studied on five different datasets from which data streams were 

simulated, comparing six different processes to construct the online scores. For each score, 

50 replications using a total of 10N observations (N being the size of the dataset) were 

performed to assess the convergence and the stability of the method, computing the mean 

and standard deviation of a convergence criterion. A complementary study using 100N 

observations was also performed. All tested processes on all datasets converged after N 

iterations, except for one process on one dataset. The best processes were averaged 

processes using online standardized data and a piecewise constant step-size. 

Keywords: Learning for big data, stochastic approximation, medicine, ensemble method, 

online score. 

1 Introduction 

When considering the problem of predicting the values of a dependent variable 𝑦, whether 

continuous (in the case of regression) or categorical (in the case of classification), from observed 

variables 𝑥1, . . . , 𝑥𝑝, which are themselves continuous or categorical, many different predictors can 

be constructed to address this problem. The principle of ensemble methods is to construct a set of 

“basic” individual predictors (using classical methods) whose predictions are then aggregated by 

average or by vote. Provided that the individual predictors are relatively good and sufficiently 

different from each other, ensemble methods generally yield more stable predictors than individual 

predictors [1]. 
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This set of individual predictors can be constructed through different means, used separately or in 

combination, in order to obtain differences between them. Various types of regressions or rules of 

classification can be used as well as different samples (e.g. bootstrap), different variable selection 

methods (random, stepwise selection, shrinkage methods, etc.) or more generally by introducing a 

random element in the construction of predictors. Bagging [2], boosting [3], random forests [1] or 

Random Generalized Linear Models (RGLM) [4] are examples of ensemble methods. Another 

method for constructing an ensemble score in seven steps was recently proposed in Duarte et al. 

[5] and will be used as a reference in this article: 

1. Selection of 𝑛1 classification rules. 

2. Generation of 𝑛2 bootstrap samples which are the same as for the 𝑛1 rules. 

3. Choice of  𝑛3 modalities of random selection of variables. For each bootstrap sample, 

selection of 𝑚 variables according to these modalities.  

4. Selection of 𝑚∗ variables among 𝑚 by a classical method (stepwise, shrinkage, etc.). 

5. For each classification rule, construction of the 𝑛2𝑛3 predictors corresponding to the 

bootstrap sample and the selected variables. 

6. For each classification rule, aggregation of predictors into an intermediate score. 

7. Aggregation of the 𝑛1 intermediate scores from the previous step by averaging or vote. 

Herein, we consider the case where y is a binary variable and the classification rules are linear 

discriminant analysis and logistic regression. 

In a context of online data, i.e. a flow of data arriving continuously, one wishes to be able to update 

such an ensemble score when new data becomes available, without having to store all of the 

previously obtained data and performing the entire analysis. To achieve this goal, several stochastic 
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approximation processes which have been previously studied theoretically can be used together 

and will be detailed in Section 2.  

However, the theoretical guarantees of convergence already demonstrated for this type of process 

provide little information on the practical choices to be made in order to obtain the best 

performances: e.g. “classical” or averaged processes, continuously decreasing step-size or not, etc. 

Therefore, to complete this study, Section 3 is dedicated to the empirical testing of this online score 

on several datasets, using several stochastic approximation processes for each classifier and 

comparing the accuracy of the estimations. 

2 Theoretical construction and update of an online ensemble score 

In order to be able to update online the ensemble score defined in [5] based on linear discriminant 

analysis and logistic regression, each bootstrap sample and each predictor must be updated when 

new data arrives [6]. Once the predictors are updated, the intermediate scores and the resulting final 

ensemble score are obtained using the same aggregation rules as for the offline ensemble method. 

2.1 Updating the bootstrap samples 

Starting from a sample size of 𝑛, the usual construction of a bootstrap sample consists in drawing 

at random with replacement n elements of the sample. In the case of a data stream, the Poisson 

bootstrap method proposed by Oza and Russell [7] can be used to update a bootstrap sample: for 

any new data, for each bootstrap sample 𝑏𝑖(𝑖 = 1, … , 𝑛2), a realization 𝑘𝑖 of a random variable 

under a Poisson law with parameter 1 is simulated, and the new data is added 𝑘𝑖 times to sample 

𝑏𝑖. This new data can then be used to update the predictors defined using sample 𝑏𝑖. 
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2.2 Updating the predictors 

Recursive stochastic approximation algorithms which take into account a mini-batch of new data 

at each step can be used to update the predictors. Such algorithms have been developed to estimate 

linear [8] or logistic [9] regression parameters, or to estimate the class centers in unsupervised 

classification [10] or the principal components of a factor analysis [11]. These algorithms do not 

require storing data and can, within a fixed timeframe, process more data than offline methods. 

Stochastic approximation algorithms able to update predictors obtained by linear discriminant 

analysis (LDA, equivalent to linear regression in the case of a binary dependent variable) and 

logistic regression (LR) are described below. 

2.2.1 Updating logistic and linear regressions using a mini-batch of observations at each 

step 

Note that all stochastic approximation algorithms described in this section use an online 

standardization of the data. Indeed, in practical applications, an inadequate choice of step-size of 

these processes or the presence of heterogeneous data or outliers can lead to numerical explosion 

issues in the non-asymptotic phase of the stochastic approximation process. To avoid numerical 

explosions in the presence of heterogeneous data, an online standardization of the data is proposed 

[8,9]; in the case of a data stream, the moments of the regression variables are a priori not known, 

but can be estimated online in order to perform the standardization. However, in this instance, the 

convergence of the stochastic approximation process is not ensured by classical theorems and was 

therefore proven in [8] in the case of linear regression, and in [9] in the case of logistic regression. 

Moreover, a too rapid decrease in step-size may reduce the speed of convergence in the non-

asymptotic phase of the process. For this reason, following [12], the use of a decreasing piecewise 

constant step-size has been tested in [9].  
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Consider first the case of logistic regression. Let 𝑆 be a random variable taking its values in {0,1} 

and 𝑅 = (𝑅1 ⋯ 𝑅𝑝 1)′ with 𝑅1, … , 𝑅𝑝 being random variables taking values in ℝ, 𝑚 =

(𝐸[𝑅1] … 𝐸[𝑅𝑝]0)′, 𝑅𝑐 = 𝑅 − 𝑚, 𝜎𝑘 the standard deviation of 𝑅𝑘, 𝛤 the diagonal square matrix 

with diagonal elements 
1

𝜎1 , … ,
1

𝜎𝑝 , 1, 𝑍 = 𝛤𝑅𝑐 the standardized 𝑅 vector, 𝜃 (𝑝 + 1,1) the vector of 

parameters and ℎ(𝑢) =
𝑒𝑢

1+𝑒𝑢. The vector 𝜃 is the unique solution of the system of equations 

𝔼 [𝛻𝑥ln (
1+𝑒𝑍′𝑥

𝑒𝑍′𝑥𝑆
)] = 0, and thus of 

𝔼[𝑍(ℎ(𝑍′𝑥) − 𝑆)] = 0. (1)

Let ((𝑅𝑛, 𝑆𝑛), 𝑛 ≥ 1) denote an i.i.d. sample of (𝑅, 𝑆) and for 𝑘 ∈ {1, … , 𝑝}, 𝑅𝑛

𝑘
 denote the average 

of the sample (𝑅1
𝑘, … , 𝑅𝑛

𝑘) of 𝑅𝑘 and (𝑉𝑛
𝑘)2 =

1

𝑛
∑ (𝑅𝑖

𝑘 − 𝑅𝑛

𝑘
)

2
𝑛
𝑖=1  its variance (both computed 

recursively), 𝑅𝑛 the vector (𝑅𝑛

1
⋯ 𝑅𝑛

𝑝
 0)′ and 𝛤𝑛 the diagonal matrix with diagonal elements 

1

√
𝑛

𝑛−1
𝑉𝑛

1
, … ,

1

√
𝑛

𝑛−1
𝑉𝑛

𝑝
, 1. 

Assume that a mini-batch of 𝑚𝑛 new observatons (𝑅𝑖, 𝑆𝑖) constituting an i.i.d sample of (𝑅, 𝑆) is 

taken into account at step 𝑛. Denote 𝑀𝑛 = ∑ 𝑚𝑖
𝑛
𝑖=1  and 𝐼𝑛 = {𝑀𝑛−1 + 1, … , 𝑀𝑛}. Define for  𝑗 ∈

𝐼𝑛, 𝑍̃𝑗 = 𝛤𝑀𝑛−1
(𝑅𝑗 − 𝑅𝑀𝑛−1

) the vector 𝑅𝑗 standardized with respect to estimations of the means 

and variances of the components of 𝑅 at step 𝑛 − 1. Recursively define the stochastic 

approximation process (𝑋𝑛, 𝑛 ≥ 1) and the averaged process (𝑋𝑛, 𝑛 ≥ 1): 

𝑋𝑛+1 = 𝑋𝑛 − 𝑎𝑛

1

𝑚𝑛
∑ 𝑍̃𝑗

𝑗∈𝐼𝑛

(ℎ(𝑍̃𝑗
′𝑋𝑛) − 𝑆𝑗) (2) 
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𝑋𝑛+1 =
1

𝑛 + 1
∑ 𝑋𝑖

𝑛+1

𝑖=1

= 𝑋𝑛 −
1

𝑛 + 1
(𝑋𝑛 − 𝑋𝑛+1). (3) 

In the case of linear regression, the same type of process is used in [8] taking ℎ(𝑢) = 𝑢. 

Assume: 

   (H1a) There is no affine relation between the components of 𝑅. 

   (H1b) The moments of order 4 of 𝑅 exist. 

   (H2a) 𝑎𝑛 > 0, ∑ 𝑎𝑛
∞
𝑛=1 = ∞, ∑

𝑎𝑛

√𝑛
∞
𝑛=1 < ∞, ∑ 𝑎𝑛

2∞
𝑛=1 < ∞. 

Theorem. Under H1a, H1b and H2a, (𝑋𝑛, 𝑛 ≥ 1) and (𝑋𝑛, 𝑛 ≥ 1) converge almost surely to 𝜃. 

The proof of convergence is detailed in [8] in the case of linear regression and in [9] in the case of 

logistic regression. In these articles, these processes were compared to others (with or without 

online standardization, and with or without averaging) on real or simulated data. Empirical results 

showed the interest of using online standardization of the data to avoid numerical explosions as 

well as the better performance of averaged processes using a piecewise constant step-size (see 

Section 3). 

2.2.2 Updating linear regression using all observations up to the current step 

Recursively define the stochastic approximation processes (𝑋𝑛, 𝑛 ≥ 1) and (𝑋𝑛, 𝑛 ≥ 1): 

𝑋𝑛+1 = 𝑋𝑛 − 𝑎𝑛

1

𝑀𝑛
∑ ∑ 𝑍̃𝑗

𝑗∈𝐼𝑖

𝑛

𝑖=1

(𝑍̃𝑗
′𝑋𝑛 − 𝑆𝑗), 𝑍̃𝑗 = 𝛤𝑀𝑛

(𝑅𝑗 − 𝑅𝑀𝑛
) (4) 
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𝑋𝑛+1 =
1

𝑛 + 1
∑ 𝑋𝑖

𝑛+1

𝑖=1

= 𝑋𝑛 −
1

𝑛 + 1
(𝑋𝑛 − 𝑋𝑛+1). (5) 

Note that 
1

𝑀𝑛
∑ ∑ 𝑍̃𝑗𝑗∈𝐼𝑖

𝑛
𝑖=1 𝑍̃𝑗

′ = 𝛤𝑀𝑛
(

1

𝑀𝑛
∑ ∑ 𝑅𝑗𝑗∈𝐼𝑖

𝑛
𝑖=1 𝑅𝑗

′ − 𝑅𝑀𝑛
𝑅𝑀𝑛

′
) 𝛤𝑀𝑛

 and 
1

𝑀𝑛
∑ ∑ 𝑍̃𝑗𝑗∈𝐼𝑖

𝑛
𝑖=1 𝑆𝑗 =

𝛤𝑀𝑛
(

1

𝑀𝑛
∑ ∑ 𝑅𝑗𝑗∈𝐼𝑖

𝑛
𝑖=1 𝑆𝑗 − 𝑅𝑀𝑛

𝑆𝑀𝑛
) 𝛤𝑀𝑛

, 𝑆𝑀𝑛
=

1

𝑀𝑛
∑ 𝑆𝑖

𝑀𝑛
𝑖=1 . Thus, the updating does not 

necessitate storing previous data since all empirical means and variances can be recursively 

computed. The same type of process would not be possible without storing the data for logistic 

regression, since in this case, 𝑍̃𝑗 in 𝑍̃𝑗ℎ(𝑍̃𝑗
′𝑋𝑛) should be updated for all 𝑗. 

Denote by 𝜆𝑚𝑎𝑥 the largest eigenvalue of the covariance matrix of 𝑅. Assume: 

   (H2b) (𝑎𝑛 = 𝑎 <
1

𝜆𝑚𝑎𝑥
) or (𝑎𝑛 → 0, ∑ 𝑎𝑛

∞
1 = ∞). 

Theorem. Under H1a, H1b and H2b, (𝑋𝑛, 𝑛 ≥ 1) and (𝑋𝑛, 𝑛 ≥ 1) converge almost surely to 𝜃. 

This theorem was also proven in [8].  Empirical results again showed the interest of using online 

standardization of the data as well as all observations up to the current step to avoid numerical 

explosions and to increase the speed of convergence. 

It is therefore possible to use the processes described in this section to update the predictors by 

linear discriminant analysis and logistic regression in the ensemble score, taking into account the 

sample of new data generated by the Poisson bootstrap at each step for each predictor. 
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3 Empirical study of convergence 

3.1 Material and methods 

3.1.1 Datasets 

Four datasets available on the Internet and one dataset derived from the EPHESUS study [13] were 

used, all of which have previously been utilized to test the performance of stochastic approximation 

processes with online standardized data in the case of online linear regression [8] and online logistic 

regression [9]. The Twonorm, Ringnorm, Quantum and Adult datasets are commonly used to test 

classification methods. Twonorm and Ringnorm, introduced by Breiman [14], contain simulated 

data with homogeneous variables. Quantum contains observed “clean” data, without outliers and 

with most of its variables on a similar scale. Adult and HOSPHF30D contain observed data with 

outliers, as well as heterogeneous variables of different types and scales. A summary of these 

datasets is provided in Table 1. 

Table 1. Description of the datasets 

Dataset Na N pa p Source 

Twonorm 7400 7400 20 20 www.cs.toronto.edu/~delve/data/datasets.html 

Ringnorm 7400 7400 20 20 www.cs.toronto.edu/~delve/data/datasets.html 

Quantum 50000 15798 78 12 derived from www.osmot.cs.cornell.edu/kddcup 

Adult2 45222 45222 14 38 derived from www.cs.toronto.edu/~delve/data/datasets.html 

HOSPHF30D 21382 21382 29 13 derived from EPHESUS study 
Na: number of available observations; N: number of selected observations; pa: number of available parameters; p: number 

of selected parameters. 

The following preprocessing was performed on the data: 

• Twonorm and Ringnorm: no preprocessing. 

• Quantum: a stepwise variable selection (using AIC) was performed on the 6197 

observations without any missing value. The dataset with complete observations for the 12 

selected variables was used. 
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• Adult2: from the Adult dataset, modalities of several categorical variables were merged 

(in order to obtain a larger number of observations for each modality) and all categorical 

variables were then replaced by sets of binary variables, leading to a dataset with 38 

variables. 

• HOSPHF30D: 13 variables were selected using a stepwise selection. 

From each dataset, a data stream was simulated step by step by randomly drawing, with 

replacement, 100 new observations at each step. Online scores were then constructed and updated 

from these data streams. 

3.1.2 Reference batch score 

For each dataset, a batch ensemble score was constructed using an adapted method from Duarte et 

al. [5] with the following parameters: 

1. Two classification rules were used: linear discriminant analysis (LDA) and logistic 

regression (LR). 

2. A total of 100 bootstrap samples were drawn for both rules (i.e. the same samples were 

used by each rule). 

3. All available variables were included. 

4. For each classification rule, the 100 associated predictors were aggregated by arithmetic 

mean and the coefficients subsequently normalized such that the score varied between 0 

and 100 (as described in [5], Subsection 4.4.2) . 

5. The aggregation between the two intermediate scores 𝑆𝐿𝐷𝐴 and 𝑆𝐿𝑅 was achieved by 

arithmetic mean: 𝑆 = 𝜆𝑆𝐿𝐷𝐴 + (1 − 𝜆)𝑆𝐿𝑅 with 𝜆 = 0.5. 
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The score obtained for each dataset was used as a “gold standard” to assess the convergence of the 

tested online processes (Figure 1). 

 

Figure 1. Methodology of construction and update of the online ensemble score 

  



12 

 

 

3.1.3 Tested processes 

Types of processes: Three different types of stochastic processes (𝑋𝑛) were used as defined below. 

• “Classical” stochastic gradient (notation 𝐶_ _ _). At step 𝑛, card 𝐼𝑛 = 𝑚𝑛 observations 

(𝑅𝑗 , 𝑆𝑗) were taken into account and the process was updated recursively: 𝑋𝑛+1 = 𝑋𝑛 −

𝑎𝑛
1

𝑚𝑛
∑ 𝑍̃𝑗𝑗∈𝐼𝑛

(ℎ(𝑍̃𝑗
′𝑋𝑛) − 𝑆𝑗), with 𝑍̃𝑗 the vector of standardized explanatory variables, 

𝑆𝑗 ∈ {0,1}, ℎ(𝑢) = 𝑢 for the LDA, and ℎ(𝑢) =
𝑒𝑢

1+𝑒𝑢 for the LR. 

• “Averaged” stochastic gradient (notation 𝐴_ _ _): 𝑋𝑛+1 =
1

𝑛+1
∑ 𝑋𝑖

𝑛+1
𝑖=1 . 

• Only in the case of the LDA: a process taking into account all of the previous observations 

(𝑅𝑗 , 𝑆𝑗) at each step until the current step, 𝑗 ∈ 𝐼1 ∪ … ∪ 𝐼𝑛 (final mention “all”) [8]: 𝑋𝑛+1 =

𝑋𝑛 − 𝑎𝑛
1

𝑀𝑛
∑ ∑ 𝑍̃𝑗𝑗∈𝐼𝑖

𝑛
𝑖=1 (𝑍̃𝑗

′𝑋𝑛 − 𝑆𝑗), 𝑍̃𝑗 = 𝛤𝑀𝑛
(𝑅𝑗 − 𝑅𝑀𝑛

). 

In all cases, the explanatory variables were standardized online (notation _𝑆 _ _): the principle and 

practicality of this method to avoid numerical explosions have already been shown [8,9]. Indeed, 

for some datasets (Adult2, HOSPHF30D), processes with raw data led to a numerical explosion, 

contrary to those with online standardized data. 

Step-size choice: Tested step-sizes 𝑎𝑛 were either:  

(i) continuously decreasing: 𝑎𝑛 = 𝑐 (𝑏 + 𝑛)𝛼⁄  (notation _ _ _𝑉);  

(ii) constant: 𝑎𝑛 = 1/𝑝 (with 𝑝 the number of explanatory variables) (notation _ _ _𝐶);  
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(iii) piecewise constant [12]: 𝑎𝑛 = 𝑐 (𝑏 + ⌊
𝑛

𝜏
⌋)𝛼⁄  (⌊. ⌋ being the integer part, 𝜏 the size 

of the level) (notation _ _ _𝑃).  

In all cases, 𝛼 = 2/3 was taken as suggested by Xu [15] in the case of linear regression, 𝑏 = 1 and 

𝑐 = 1. 

Tested processes: Six couples of processes were tested (Table 2). The latter were among those 

which performed best in the studies published for online LDA [8] and for online LR [9], or 

represented “usual” processes frequently used (apart from online data standardization). A total of 

100 new observations were used per step. Each process was applied to each of the streams 

generated from the datasets.  

Table 2. List of the couples of processes studied 

Couple  Process type Step-size Level size  

Use of all 

observations 

until the 

current step 

AS100C-AS100P200 LDA process Averaged Constant - No 

LR process Averaged Piecewise constant 200 No 

AS100Call-AS100P200 LDA process Averaged Constant - Yes 

LR process Averaged Piecewise constant 200 No 

AS100P50-AS100P50 LDA process Averaged Piecewise constant 50 No 

LR process Averaged Piecewise constant 50 No 

AS100P50all-AS100P50 LDA process Averaged Piecewise constant 50 Yes 

LR process Averaged Piecewise constant 50 No 

CS100V-CS100V LDA process Classical Continuously decreasing - No 

LR process Classical Continuously decreasing - No 

CS100Vall-CS100V LDA process Classical Continuously decreasing - Yes 

LR process Classical Continuously decreasing - No 

All processes used online standardized data and 100 new observations per step. 

      

In the notation describing a couple of processes, the first term is for the LDA and the second for 

the LR. For example, AS100Call-AS100P200 denotes the couple formed using an averaged process 

(A) for the LDA with online standardization of the data (S), 100 new observations per step (100), 

constant step-size (C) and taking into account all the observations up to the current step (all); and 

using an averaged process (A) for the LR with online standardization of the data (S), 100 new 
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observations per step (100) and a piecewise constant step-size with levels of size 200 (P200). 

Note that the six couples of processes can be grouped in three pairs. In each pair, for the LDA part, 

one couple of processes uses 100 observations at each step and the other all observations up to the 

current step , the processes for the LR part being the same.  

Convergence criterion: The convergence criterion used was the relative difference of the norms 

∥𝜃𝑏−𝜃̂𝑁∥

∥𝜃𝑏∥
 between the 𝜃𝑏 vector of coefficients obtained for the batch score and the 𝜃𝑁 vector of 

coefficients estimated by a process after 𝑁 iterations, the variables being standardized and the score 

being normalized to vary between 0 and 100 [5]. Convergence was considered to have occurred 

when the value of this criterion was less than the arbitrary threshold of 0.05. Three indicators were 

compared for each couple of processes: the criterion value for the synthetic score 𝑆𝐿𝐷𝐴 obtained by 

aggregating the LDAs, the criterion value for the synthetic score 𝑆𝐿𝑅 obtained by aggregating the 

LRs, and the criterion value for the final score 𝑆. 

3.1.4 Convergence and stability analyses 

In order to study the empirical convergence of the process, an analysis using a total of 10𝑁 

observations was performed for each couple of processes. Since 100 observations are introduced 

at each step, the number of iterations of the process is N/10. Due to the stochastic nature of the 

processes studied, some variability is expected in the results. In order to evaluate this variability, 

the entire analysis using 10N observations was replicated 50 times for each couple of processes 

and for each dataset. The mean, standard deviation (SD) and relative standard deviation (RSD), 

i.e. the standard deviation divided by the mean, of the criterion values were studied for the 

intermediary and final scores. For each dataset, the average of the criterion values of all couples of 
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processes was also studied. 

For each replication and each dataset, the performance of the couples of processes were ranked 

from the best (lowest relative difference of the norms for the final score 𝑆) to the worst (highest 

relative difference of the norms for 𝑆). Thereafter, the mean rank of each couple and its associated 

standard deviation over the 50 replications were computed, first by dataset, and finally over all 

datasets. 

To study the long-term convergence of the process, a single analysis using 100𝑁 observations was 

performed for each couple of processes. Again, for each dataset, the values of the criterion for the 

intermediary and final scores were studied, and the couples of processes were ranked from the best 

to the worst. The mean rank over all datasets was used to compare the global performance of the 

couples. All analyses were performed with R 3.6.2. 

3.2 Results 

3.2.1 Convergence and stability analysis for 10𝑁 observations 

When replicating each couple of processes 50 times, the mean criterion values were lower than 

0.05 for all couples of processes applied on Twonorm, Ringnorm and Quantum datasets (Table 3). 

However, only three out of six couples of processes converged for Adult2 (AS100C-AS100P200, 

AS100P50all-AS100P50 and AS100Call-AS100P200) as well as for HOSPHF30D (AS100P50-

AS100P50, AS100P50all-AS100P50 and AS100Call-AS100P200). Note that for Twonorm, 

Ringnorm and Quantum, the maximum criterion values (not shown) for all couples of processes 

were always lower than 0.05 (i.e. even the worst performing processes still converged), whereas it 

was not the case for certain couples applied on Adult2 and HOSPHF30D. 
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Table 3. Mean, standard deviation and relative standard deviation of the criterion after 50 replications    

 Twonorm Ringnorm Quantum Adult2 HOSPHF30D 

Mean SD RSD Mean SD RSD Mean SD RSD Mean SD RSD Mean SD RSD 

AS100C-AS100P200 SLDA 0.0042* 0.0007 15.7% 0.0066* 0.0012 18.4% 0.0116* 0.0069 59.8% 0.0542 0.0151 27.9% 0.0669 0.0398 59.5% 

SLR 0.0026* 0.0004 15.2% 0.0074* 0.0014 18.7% 0.0104* 0.0059 56.3% 0.0224* 0.0138 61.9% 0.0488* 0.0375 76.7% 

S 0.0028* 0.0004 14.6% 0.0070* 0.0013 18.6% 0.0108* 0.0064 59.4% 0.0339* 0.0164 48.3% 0.0529 0.0382 72.3% 

AS100Call-AS100P200 SLDA 0.0011* 0.0001 12.3% 0.0016* 0.0003 17.4% 0.0073* 0.0039 53.5% 0.0564 0.0182 32.2% 0.0444* 0.0329 74.1% 

SLR 0.0026* 0.0004 15.2% 0.0074* 0.0014 18.7% 0.0104* 0.0059 56.3% 0.0224* 0.0138 61.9% 0.0488* 0.0375 76.7% 

S 0.0016* 0.0002 14.2% 0.0038* 0.0007 17.5% 0.0075* 0.0039 51.5% 0.0350* 0.0171 48.7% 0.0434* 0.0320 73.7% 

AS100P50-AS100P50 SLDA 0.0079* 0.0012 14.8% 0.0127* 0.0026 20.1% 0.0121* 0.0072 59.8% 1.8030 0.8576 47.6% 0.0670 0.0403 60.1% 

SLR 0.0021* 0.0002 12.0% 0.0046* 0.0008 17.7% 0.0091* 0.0054 59.3% 0.0371* 0.0179 48.2% 0.0458* 0.0319 69.8% 

S 0.0042* 0.0006 13.4% 0.0080* 0.0016 20.0% 0.0101* 0.0063 62.4% 1.1174 0.5210 46.6% 0.0493* 0.0360 72.9% 

AS100P50all-AS100P50 SLDA 0.0011* 0.0001 12.3% 0.0016* 0.0003 17.5% 0.0073* 0.0039 53.6% 0.0175* 0.0099 56.8% 0.0444* 0.0329 74.4% 

SLR 0.0021* 0.0002 12.0% 0.0046* 0.0008 17.7% 0.0091* 0.0054 59.3% 0.0371* 0.0179 48.2% 0.0458* 0.0319 69.8% 

S 0.0014* 0.0002 12.1% 0.0027* 0.0005 17.1% 0.0071* 0.0037 52.1% 0.0205* 0.0123 59.7% 0.0434* 0.0287 66.1% 

CS100V-CS100V SLDA 0.0021* 0.0004 17.6% 0.0033* 0.0005 16.6% 0.0206* 0.0122 59.3% 0.0910 0.0305 33.6% 0.0912 0.0624 68.4% 

SLR 0.0045* 0.0003 7.5% 0.0016* 0.0003 16.3% 0.0382* 0.0044 11.5% 0.2329 0.0233 10.0% 0.1499 0.0353 23.5% 

S 0.0026* 0.0003 10.3% 0.0022* 0.0004 16.5% 0.0240* 0.0075 31.3% 0.0554 0.0114 20.6% 0.0918 0.0506 55.1% 

CS100Vall-CS100V SLDA 0.0012* 0.0002 13.3% 0.0016* 0.0003 17.8% 0.0074* 0.0038 51.4% 0.0978 0.0204 20.8% 0.0438* 0.0322 73.7% 

SLR 0.0045* 0.0003 7.5% 0.0016* 0.0003 16.3% 0.0382* 0.0044 11.5% 0.2329 0.0233 10.0% 0.1499 0.0353 23.5% 

S 0.0024* 0.0002 9.9% 0.0016* 0.0003 17.3% 0.0206* 0.0039 19.0% 0.0536 0.0087 16.2% 0.0855 0.0371 43.4% 

Average (for S scores) 0.0025 0.0003 12.4% 0.0042 0.0008 17.8% 0.0133 0.0053 45.9% 0.2193 0.0978 40.0% 0.0610 0.0371 63.9% 

* denotes criteria values < 0.05. 

SD: standard deviation ; RSD: relative standard deviation 

Table 4. Mean (SD) rank of the processes across the 50 replications, by dataset and overall (ordered by overall rank)    

Dataset Twonorm Ringnorm Quantum Adult2 HOSPHF30D Overall 

AS100P50all-AS100P50 1.04 (0.20) 3.00 (0.00) 1.68 (0.98) 1.40 (0.81) 2.54 (1.62) 1.93 (1.17) 

AS100Call-AS100P200 1.96 (0.20) 4.00 (0.00) 2.10 (0.84) 2.90 (1.15) 2.52 (1.27) 2.70 (1.12) 

CS100Vall-CS100V 3.40 (0.61) 1.06 (0.24) 5.24 (0.56) 4.08 (1.01) 4.60 (1.63) 3.68 (1.72) 

AS100C-AS100P200 4.42 (0.81) 5.06 (0.24) 3.64 (1.03) 2.56 (1.05) 3.56 (1.43) 3.85 (1.30) 

CS100V-CS100V 4.18 (0.66) 1.94 (0.24) 5.58 (0.70) 4.06 (0.98) 4.66 (1.62) 4.08 (1.53) 

AS100P50-AS100P50 6.00 (0.00) 5.94 (0.24) 2.76 (0.94) 6.00 (0.00) 3.12 (1.27) 4.76 (1.66) 
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Generally, intermediate LDA scores had smaller mean values, i.e. a faster convergence, than 

intermediate LR scores. However, the worst performing intermediary process was the LDA process 

AS100P50 applied on Adult2. In most cases, the mean criterion value for the final 𝑆 score was 

between those of the two intermediate scores 𝑆𝐿𝐷𝐴 and 𝑆𝐿𝑅. For some couples of processes applied 

on some datasets (for instance AS100Call-AS100C on Adult2 or AS100C-AS100P200 on 

HOSPHF30D), this led to a convergence towards the reference of the final score while one of the 

intermediate scores had not yet converged according to the criterion. 

When studying the rankings of the couples of processes over the 50 replications, the best couple of 

processes overall was AS100P50all-AS100P50. This couple was consistently among the three best 

couples, and had the best performance for three datasets. Note that the three best couples of 

processes across all datasets were those using all observations until the current step for the LDA 

intermediary scores.  

The observed differences in the average criterion were greater between datasets rather than between 

couples of processes (Table 4). Indeed, the means of each couple of processes were the lowest for 

Twonorm and Ringnorm compared to the other datasets. Conversely, all couples had their worst 

results for HOSPHF30D. Generally, all couples of processes performed better when applied on 

simulated data (Twonorm and Ringnorm) rather than on observed data (Quantum, Adult2, 

HOSPHF30D). This was also true when comparing the standard deviations and RSDs. 

When comparing the overall variability of the rankings between the couples, AS100P50all-

AS100P50 and AS100Call-AS100P200, the two best performing couples of processes on average, 

also had the lowest standard deviations for the mean overall rank (1.17 and 1.12 respectively), 

while the couple with the largest standard deviation was CS100Vall-CS100V (1.72).  
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3.2.2 Convergence analysis for 100𝑁 observations 

When studying the couples of processes after using 100𝑁 observations (i.e. N iterations) in order 

to assess the “long-term” convergence, the final online 𝑆 score was very similar (criterion value 

< 0.05) to the reference “batch” score for all of the couples on four of the five datasets tested 

(Table 5).  

Only the AS100P50-AS100P50 couple applied to the Adult2 dataset did not converge after 100𝑁 

iterations (criterion = 1.697). More precisely, the result for the LDA part of this couple differed 

substantially from its batch counterpart (criterion = 2.756), whereas the LR part appeared to 

converge to the batch LR part (criterion = 0.035). 

Table 5. Criterion value after 100𝑁 observation used for intermediary and final scores 

Processes Twonorm Ringnorm Quantum Adult2 HOSPHF30D Mean rank 

AS100C-AS100P200 SLDA 0.0006* 0.0007* 0.0028* 0.0066* 0.0165* 

2.8 

SLR 0.0007* 0.0007* 0.0033* 0.0069* 0.0206* 

S 0.0006* 0.0007* 0.0030* 0.0067* 0.0190* 

AS100Call-AS100P200 SLDA 0.0006* 0.0007* 0.0046* 0.0153* 0.0060* 

2.4 

SLR 0.0007* 0.0007* 0.0033* 0.0069* 0.0206* 

S 0.0005* 0.0007* 0.0039* 0.0120* 0.0149* 

AS100P50-AS100P50 SLDA 0.0006* 0.0007* 0.0027* 2.756 0.0176* 

3.4 

SLR 0.0006* 0.0007* 0.0032* 0.0346* 0.0203* 

S 0.0005* 0.0007* 0.0029* 1.6968 0.0192* 

AS100P50all-AS100P50 SLDA 0.0006* 0.0007* 0.0046* 0.0100* 0.0060* 

1.8 

SLR 0.0006* 0.0007* 0.0032* 0.0346* 0.0203* 

S 0.0005* 0.0007* 0.0039* 0.0193* 0.0147* 

CS100V-CS100V SLDA 0.0010* 0.0020* 0.0073* 0.0076* 0.0165* 

5.2 

SLR 0.0033* 0.0009* 0.0168* 0.1002 0.0566 

S 0.0015* 0.0014* 0.0083* 0.0414* 0.0289* 

CS100Vall-CS100V SLDA 0.0005* 0.0006* 0.0033* 0.0287* 0.0153* 

5.4 

SLR 0.0033* 0.0009* 0.0168* 0.1002 0.0566 

S 0.0017* 0.0007* 0.0090* 0.0281* 0.0290* 

Average (for S scores) 0.0009 0.0008 0.0052 0.3007 0.0210  

* denote criteria values < 0.05. 

First abbreviation: LDA process; Second abbreviation: LR process. 

Type of processes: C for classical SGD, A pour ASGD. 

Data: R for raw data, S for online standardization of the data (1st number: number of new data per step). 

Step-size: V for continuously decreasing, C for constant, P for piecewise constant (2nd number: size of the steps of the 

piecewise constant step-size). 

 

For each couple of processes, the best performances were achieved for the Twonorm and Ringnorm 
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datasets, which consist of simulated data. The worst performances were obtained for Adult2 and 

HOSPHF30D datasets, which contain observed data. 

Although these results are not directly comparable with the average results using 10𝑁 observations 

presented in the previous subsection (since there was only one replication using 100𝑁 

observations), it should be noted that the criterion values of all couples of processes on all datasets 

were lower after 100𝑁 observations than the mean values after 10𝑁 observations, except for the 

LDA and global scores of AS100P50-AS100P50 applied on Adult2. 

When the couples of processes were ranked from best to worst for each dataset and the average 

ranks were calculated across all datasets (Table 5), the two worst performing couples were 

CS100Vall-CS100V and CS100V-CS100V, i.e. the only two couples using classical processes and 

a continuously decreasing step-size. The best couple was again AS100P50all-AS100P50. 

4 Conclusion 

This study presented the constructing of an online ensemble score obtained by aggregation of two 

rules of classification, LDA and LR, and bagging. The online ensemble score was constructed by 

using Poisson bootstrap and by associating stochastic approximation processes with online 

standardized data of different types, averaged or not, using either a mini-batch of data at each step 

or all observations up to the current step in the case of LDA, and different choices of step-sizes, 

whose convergence has already been theoretically established. The convergence of this overall 

online score towards the “batch” score was studied empirically and the superiority of certain 

choices in the definition of the processes was observed, in particular the use of averaged processes 

and of a piecewise constant step-size. Other experiments could be carried out using randomly 

selected variables as opposed to all variables. 
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