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Abstract

Structural topology optimization aims to design mechanical structures by seek-

ing the optimal material layout within a given design space. Within this frame-

work, this paper addresses the minimization of the structural mass under stress

and buckling constraints, formulated as a nonlinear combinatorial optimization

problem. An algorithm is proposed for such a problem, that follows a topological

gradient-based approach. The adjoint method is applied to efficiently compute

the constraint gradients. An iterative algorithm for buckling analysis, featuring

low memory requirements, is also proposed. Numerical results, including a real

application arising in the aeronautical field, illustrate the efficiency of the two

proposed algorithms.
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1. Introduction

Topology optimization plays a prominent role in structural engineering,

where one seeks the optimal distribution of a given material in a given de-

sign space. Applications arise typically in industry and include aircraft (Re-

mouchamps et al. (2011); Zhu et al. (2015)) and automotive (Calvel (2004))5

component design, and civil engineering (Kingman et al. (2015)).

In the context of continuum structures, a mathematical optimization prob-

lem and an associated method to compute the optimal topology are defined

according to two main approaches. The first one consists in associating a de-

sign variable to each element of the mesh defining the design domain. Design10

variables may be continuous, representing the value of the density associated to

each element, or binary, to signify the presence/absence of each element (where

the values 1 and 0 can be interpreted as extreme values for densities). Asso-

ciated methods are sometimes referred to as density-based methods (Bendsoe

& Sigmund (2013); Deaton & Grandhi (2014)). The second approach relies on15

implicit functions to define the structural boundaries. Associated methods are

Level-set methods (Wang et al. (2003); Allaire et al. (2004)). In this paper, we

consider an explicit parametrization of the design domain, that is discretized

and meshed, and a binary variable is associated to each element. This yields

to a combinatorial optimization problem. Topology optimization problems are20

characterized by constraints generally related to the inherent mechanical prop-

erties of the material and to the resistance of the structure under applied efforts

in tension and compression. In this paper, we deal with stress and buckling

constraints, and we aim at minimizing the structural mass.

Stress constraints are related to the integrity of the material under the ap-25

plied external loads. Buckling constraints are related to the failure of a me-

chanical structure under instable phenomena due to compressive loads. From a

mechanical point of view, these constraints play a crucial role in the behavior of

the structure and have to be taken into account as soon as possible in the design
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process and so in the topological optimization (Duysinx et al. (2008); Shanglong30

et al. (2020)). However , these kind of constraints, while of most importance in

real applications, are difficult to handle in an optimization process, especially

due to their non-linear nature.

Considering stress constraints, another difficulty is related to the fact that

one of such constraints is associated to each of the elements of the discretized35

domain, so that there are as many design variables as there are constraints.

Thus, the computational cost to handle such constraints may become critical for

large-scale problems. To overcome this difficulty, aggregation techniques have

been proposed, such as those based on the Kreisselmeier-Steinhauser function

(Kreisselmeier & Steinhauser (1980)), the P-norm (Duysinx & Sigmund (1998))40

or a unified aggregation and relaxation approach (Verbart et al. (2017)). In

this paper, we consider the formulation proposed by Verbart et al. (2017) and

propose an efficient method to compute the derivatives of stress constraints.

Considering buckling phenomena in the context of topological optimization

brings two kinds of difficulties: one related to the computational cost of the45

buckling analysis (Bian & Fang (2017)) and the other one to the poor conver-

gence of some optimization processes (Bruyneel et al. (2008); Gao et al. (2020)).

Buckling analysis of a structure is carried out through solving first a linear

system to evaluate the structural displacements, and then a generalized eigen-

value problem implying two matrices. The first one is the stiffness matrix related50

to the structure, while the second one is the geometric stiffness matrix related

to the deformations caused by the loading. The generalized eigenvalues repre-

sent the load factors of buckling, while the associated eigenvectors, related to

displacements of the structure, are referred to as buckling modes. The smallest

positive eigenvalue is called critical buckling load. For large scale problems, the55

buckling analysis can become highly memory and time consuming. Then, one

challenge lies in an efficient method to solve the generalized eigenvalue problem.

Krylov sub-space methods (Lehoucq et al. (1998)) and the Block Jacobi Conju-

gate Gradient method (Ovtchinnikov (2008)) lead to a very slow convergence due

to the poor conditioning of the two involved matrices. Based on a shift-invert60
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technique and a matrix factorization, Dunning et al. (2016) improved the rate of

convergence of the Block Jacobi Conjugate Gradient method, but their aproach

is highly memory consuming. The authors of Bian & Fang (2017) proposed an

assembly-free iterative solver to efficiently estimate the critical buckling load.

Their solver is based on the inverse iteration method, coupled with an efficient65

matrix-blocks computation that leads to low memory requirements.

In the context of structural optimization under buckling constraints, it is

usual to compute only the critical buckling load as it is considered enough

to assess the structural resistance to buckling (Lindgaard & Dahl (2013); Luo

& Tong (2015); Bian & Fang (2017)). However, as highlighted by Bruyneel70

et al. (2008), as the topology of the structure changes during optimization, the

buckling mode associated to the critical buckling load may also change, leading

to a slow convergence or to divergence of the optimization process. Several

works (Bruyneel et al. (2008); Browne et al. (2012); Dunning et al. (2016); Gao

et al. (2020)) showed that using a set of several eigenvalues in the optimization75

problem may overcome this difficulty. In this paper, building on the the inverse

iteration method of Bian & Fang (2017), we propose an extension of such a

method that is able to efficiently compute multiple buckling modes.

Another difficulty of handling buckling constraints is related to the com-

putation of their derivatives. By construction, the geometric stiffness matrix80

depends on the decision variables and on the stress of elements. In order to

reduce the computational cost, the partial derivatives with respect to the stress

are often neglected (Neves et al. (1995); Bruyneel et al. (2008)). However, this

approach affects the convergence of the optimization process. Although an ex-

plicit formulation of the derivatives of the geometric stiffness matrix has been85

proposed by Browne et al. (2012), their computation is highly computational

expensive, thus untractable for large problems.

Most of topology optimization methods fall in the category of density-based

methods. The most common one is the Solid Isotropic Material with Penal-

ization (SIMP), based on a continuous relaxation of binary decision variables.90

For problems under buckling constraints, the continuous relaxation implies ill-
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conditioning of the stiffness and the geometric stiffness matrices involved in

the generalized eigenvalue problem, that may strongly impact the convergence

of an iterative method (such as the inverse iteration method) for solving the

generalized eigenvalue problem (Suresh (2013)). Moreover, the continuous re-95

laxation may introduce undesirable buckling modes, called spurious buckling

modes (Neves et al. (1995)).

A recent approach, which combines the SIMP method with the Non-Uniform

Rational Basis Spline (NURBS) hyper-surfaces framework (Costa et al. (2018,

2019b)), allows one to describe the topology of a continuum structure through100

a geometrical entity. The number of design variables is reduced with respect to

density-based methods, yielding an interesting advantage to address large-scale

problems. This approach has recently been proved to efficiently handle con-

straints such as minimum and maximum length scale (Costa et al. (2019a,c)),

structural displacements (Rodriguez et al. (2020)) or eigenfrequencies (Costa &105

Montemurro (2020)); it has also been applied to multi-material topology opti-

mization problems (Gao et al. (2020a,b)). Thanks to the geometrical properties

of NURBS hyper-surfaces, it is possible to implicitly include in the problem

formulation mechanical requirements such as buckling constraints. However, as

this method is based on the SIMP approach, buckling analysis is still impacted110

by ill-conditioning of the stiffness and the geometric stiffness matrices.

Another optimization approach, that is receiving an increasing attention

(Suresh & Takalloozadeh (2013); Deng & Suresh (2015)), relies on topological

gradients. Unlike the SIMP method, this kind of approach is not based on a

problem relaxation, thus overcoming the problem of ill-conditioning of matrices115

in the generalized eigenvalue problem.

In this paper, a new algorithm, based on topological gradients, for solving

topology optimization problems under stress and buckling constraints is pre-

sented. Our contributions are also related to the way stress and buckling con-

straints are handled. As regards to stress constraints, the formulation proposed120

by Verbart et al. (2017) is considered and a method to compute constraint

derivatives by introducing an adjoint state is proposed. Concerning buckling
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analysis, the method based on the iterative inverse (Bian et al. (2015)) is ex-

tended to compute a broader spectrum of eigenvalues. From the formulation of

the buckling constraint of Browne et al. (2012), we propose a method based on125

adjoint states to compute efficiently the associated buckling derivatives.

The article is organized as follows. In Section 2, the optimization problem

formulation is presented. In Section 3, an extension of the iterative inverse

method is proposed to perform the buckling analysis. Section 4 presents the

optimization method proposed for the considered problem. Numerical results130

are presented in Section 5. Finally, Section 6 concludes the article.

2. Optimization problem modeling

In this section, we present the formulation of the topology optimization

problem for continuous structures addressed in this paper. The design space,

i.e., the design domain of the structure, is discretized in a regular grid of N135

cube elements in a three-dimensional space. Vertices of the cube elements are

called nodes, and the total number of nodes is denoted by M . A binary variable

xi is associated to each element i of the mesh meaning its presence or absence.

These decision variables will also be referred to as design variables.

We aim at optimizing the structural design in such a way that the mass

of the structure is minimized. The structural mass is defined by the material

density ρ multiplied by the sum of the design variables, each multiplied by the

volume ω of the corresponding element. As in our model all the elements have

equal volume, we can define the objective function, to be minimized, as follows:

ρω

N∑
i=1

xi (1)

As for the constraints, let us formulate the stress and the buckling con-

straints that characterize the problem under investigation. The evaluation of

the structural stress and buckling first requires the solution of the following

linear system:

Ku = f (2)
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where K ∈ R3M×3M is the stiffness matrix, u ∈ R3M is the displacement vector

of the M nodes (each node has 3 possible displacements along the axes of the

space, noted as x, y and z), f ∈ R3M represents the loads applied on the struc-

ture. Note that one actually solves a system whose size is lower than 3M ×3M .

It is indeed easy to see that, for example, in order to keep fixed a portion of

the structure, the associated nodal displacements have to be given a value of

0. More generally, boundary conditions on some nodal displacements must be

imposed, thus reducing the size of (2). Once the vector u has been computed,

the stress components {σix, σiy, σiz, σixy, σixz, σiyz} of a structural element i can be

evaluated in its midpoint as follows (the explicit dependence of each component

from x and u being omitted for the sake of readability):

[σix, σ
i
y, σ

i
z, σ

i
xy, σ

i
xz, σ

i
yz]
> = HBiui (3)

where ui corresponds to the displacements of the nodes of the element i, H140

is the Hooke’s matrix computed from the problem data (material property)

and Bi is a matrix related to the geometry of the element i resulting from the

discretization (Cook et al. (1974)).

From equation (3), the Von Mises stress σVMi of an element i can then be

expressed, as a function of x = {x1, . . . , xN} and u, as follows:

σVMi (x,u) =
1√
2

√
(σix − σiy)2 + (σix − σiz)2 + (σiy − σiz)2 + 6((σixy)2 + (σixz)

2 + (σiyz)
2) (4)

Following Verbart et al. (2017), we finally formulate the stress constraint as:

Gσ(x,u) :=
1

P
ln

(
1

N

N∑
i=1

ePgi(x,u)

)
≤ 0, where gi(x,u) = xi

(
σVMi (x,u)

σ̄
− 1

)
(5)

where σ̄ is a constant inherent to the considered material, referred to as limit

stress, and P represents an aggregation parameter (Verbart et al. (2017)). When145

P goes to infinity, this function converges to the maximal value of gi.

From the stress components in (3), the geometric stiffness matrix Kσ ∈ Rn×n

can be assembled taking into account the blocks corresponding to each element
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i, through the following expression:

Kσ =

N∑
i=1


∫

Ωi

G>


σi 0 0

0 σi 0

0 0 σi

G dxdydz

 where σi(x,u) =


σix σixy σixz

σixy σiy σiyz

σixy σiyz σiz

 (6)

where Ωi represents the volume of element i and G is a matrix whose com-

ponents can be computed from the discretization of the meshed domain (Cook

et al. (1974)), and [ ] represents the block assembly process. Thus, we are able

to define the generalized eigenvalues problem related to buckling:

(K + λKσ)v = 0 (7)

where λ are scaling factors (critical loads) of the applied forces f, and the asso-

ciated eigenvectors v represent the corresponding deformations of the structure

(buckling modes).

To ensure that the structure resists to buckling, one needs to ensure that

the critical buckling load λcr is larger than a safety coefficient cs. Although

using the critical buckling load λcr is enough to assess the structural stability,

several works (Bruyneel et al. (2008); Browne et al. (2012); Dunning et al.

(2016); Gao et al. (2020) showed that using a set of several buckling modes

allows one to avoid oscillations and slow convergence of the optimization process.

In Browne et al. (2012), the authors use the positive semi-definite property of

the stiffness matrix to formulate a unique buckling constraint which takes into

account several buckling modes. Following Browne et al. (2012), we formulate

the buckling constraint as follows:

Gλ :=
1

m

m∑
j=1

v>j (K + csKσ)vj ≥ 0 (8)

where the vectors vj are the m buckling modes of the generalized eigenvalue150

problem (7) and cs is the safety coefficient.

The problem of mass minimization under stress and buckling constraints

can finally be summarized as the following nonlinear combinatorial optimization

problem:
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min
x=(x1,...,xN )

ρω

N∑
i=1

xi

s.t.
1

P
ln

(
1

N

N∑
i=1

eP.gi(x,u)

)
≤ 0, where gi(x,u) = xi

(
σVMi (x,u)

σ̄
− 1

)
1

m

m∑
j=1

v>j (K + csKσ)vj ≥ 0

Ku = f

(K + λKσ)v = 0

xi ∈ {0, 1} ∀i = 1, . . . , N.

(P)

3. Linear buckling analysis

In this section, we propose an extension of the inverse iteration method devel-

oped by Bian & Fang (2017) to compute the m buckling eigenvectors associated

to equation (8) (defining buckling constraints of the optimization problem (P)).

Let us first briefly recall the main elements of the method. For further details,

please refer to Bian & Fang (2017). The method aims at avoiding assembly

of the stiffness and of the geometric stiffness matrices, K and Kσ, in order to

reduce memory cost. The main operation, relying on a matrix-vector multipli-

cation, is performed as a matrix-blocks computation (Hughes et al. (1983)). As

an example, considering the stiffness matrix K and the structural displacement

vector u, the matrix-vector multiplication Ku is performed as:

Ku =

N∑
i=1

[
Kiui

]
(9)

where Ki is the elementary stiffness matrix of element i, ui are the displacements

of the nodes of element i and [ ] represents the block assembly process of the155

Kiui vectors in the Ku vector. In the case of a regular mesh grid, meaning

that all finite elements are identical (as it is in our case), the matrices Ki are
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identical for all i. Thus, for a stiffness matrix-vector multiplication, only the

stiffness matrix Ki of an element needs to be stored, leading to low memory

requirements (Yadav & Suresh (2014)).160

The computational cost is also reduced through the application of the de-

flated conjugate gradient method (Saad et al. (2000)) that appears to be par-

ticularly efficient to solve the (sparse) linear systems in the considered context.

More precisely, Bian & Fang (2017) used the deflated conjugate gradient method

within an inverse iteration method (Ipsen (1997); Golub & Ye (2000)), that they

adapted to the generalized eigenvalue problem (7) to determine the critical buck-

ling load λcr and its associated eigenvector vcr. The method consists in solving

iteratively the following linear system starting from an initial approximation v0:

vk+1 = −K−1Kσvk (10)

where the vector vk is normalized at each iteration. Once the sequence vk has

converged to an eigenvector v, we can compute the associated eigenvalue λ by

the Rayleigh quotient functional (Timoshenko & Gere (1960)) related to the

generalized eigenvalue problem (7):

R(v) = − v>Kv

v>Kσv
(11)

It is important to note that the eigenvalue λ corresponds to the eigenvalue

with the smallest modulus of the generalized eigenvalue problem (7). If we as-

sume that the geometric stiffness matrix is positive definite, then the eigenvalue

λ always corresponds to the critical buckling load λcr. However, as it is not

necessarily the case, the eigenvalue λ might correspond either to the smallest165

positive eigenvalue or to the smallest negative eigenvalue. Thus, in the context

of structural optimization, this method can be applied only when the smallest

eigenvalue has a positive modulus.

We propose to extend the inverse iteration method to compute a set of m

positive eigenvalues of the generalized eigenvalue problem (7). The method

is based on the minimization of the Rayleigh quotient functional of a set of

vectors. First note that the minimization of the Rayleigh quotient of m vectors
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will converge to the m associated eigenvalues of smallest moduli. However, as

noted above, the geometric stiffness matrix is not necessarily positive definite,

so the associated eigenvalues are not always positive. To overcome this problem,

let us consider the set Λ of the m̃ > m eigenvalues of smallest moduli:

Λ := {λj , ∀j = 1, . . . , m̃ | |λ1| ≤ |λ2| ≤ · · · ≤ |λm̃−1| ≤ |λm̃|}

Assuming that m positive eigenvalues exist for the considered problem (as

is the case with most real-world applications in the field of structural optimiza-

tion), and assuming that the cardinality of set Λ is large enough, we can extract

the subset of m smallest positive eigenvalues. Thus, in order to determine the

m eigenvectors associated with the m smallest positive eigenvalues, we propose

to apply the inverse iteration method on a set V of m̃ vectors of size 3M :

V ∈ R3M×m̃ := {v1, . . . ,vm̃}

When solving the equation (10) for each vector of V, it is necessary to main-

tain the K-orthogonality of the vectors (Dunning et al. (2016)), otherwise each

component of V will converge to the eigenvector associated to the eigenvalue of

smallest modulus. In order to maintain the K-orthogonality between the vec-

tors belonging to V, we propose to use the Rayleigh-Ritz procedure (Trefethen

& Bau III (1997)), consisting in solving the generalized eigenvalue problem, of

dimension m̃, as follows:

V>KσVw = λ̄V>KVw (12)

where the vectors v̄ = Vw are called Ritz vectors (where w are the eigenvectors

of (12)) and the eigenvalues λ̄ are called Ritz values. Note that the Ritz vectors170

are K-orthogonal by construction. Moreover the system (12) is much simpler to

solve than the initial problem (7) since m̃ << 3M . This kind of problems can

be solved by standard numerical linear algebra solvers as those implemented in

the LAPACK library (Anderson et al. (1999)).

The procedure that we propose to compute the set of m eigenvalues and175

eigenvectors of system (7) is summarized in Algorithm 1. Note that the Algo-

rithm 1 stops when the m smallest positive eigenvalues have been determined.
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Algorithm 1 Generalized inverse iteration method

Input: Number m of seeked eigenvectors, dimension m̃ of the research space,

and a tolerance ε

1: Initialize V ∈ R3M×m̃ = {v1, . . . ,vm̃}, p = 1, l = 1

2: Solve V>KσVw = λ̄V>KVw

3: V← Vw

4: while l < m do

5: Compute zj = Kσvj , ∀j = 1, . . . , m̃

6: Solve Kyj = zj , ∀j = 1, . . . , m̃

7: Solve Y>KσYw = λ̄Y>KYw , where Y ∈ R3M×m̃ = {y1, . . . ,ym̃}

8: V← Yw

9: Compute λj = −
v>j Kvj

v>j Kσvj
, ∀j = 1, . . . , m̃

10: Compute rj = ‖Kvj + λjKσvj‖2, ∀j = 1, . . . , m̃

11: while rp ≤ ε do

12: p = p+ 1

13: if λp ≥ 0 then

14: l = l + 1

15: end if

16: end while

17: end while

Output: {λj ,vj | λj ≥ 0}

4. Topological gradient-based optimization

In this section, we propose an algorithm for topology optimization of a prob-

lem under stress and buckling constraints, based on the concept of topological180

gradient. After a brief recall of such a concept and of its use within an optimiza-

tion algorithm, we focus the stress and buckling constraints of the optimization

problem formulated in Section 2. In an unified framework, we present a com-

putation of topological gradients for the stress constraints, and of gradients for

the buckling constraints. We finally propose our algorithm.185
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4.1. Topological gradient framework

Topology optimization problems rely on identifying optimal material dis-

tributions. Algorithms for topology optimization of mechanical structures are,

thus, basically based on a principle of iterative material removal, starting from

an initial domain.190

The notion of topological gradient, introduced by Eschenauer et al. (1994),

quantifies the influence, on an optimization criterion, of a perturbation of the

design domain. From the point of view of a mechanical structure, this can be

seen as the insertion of a hole in the structure, corresponding to an elementary

amount of material that would be removed from the initial domain.195

Let us consider a spatial domain Ω and let ΩB ⊂ Ω be the domain obtained

perturbing Ω by the introduction of a ball B(pi, r) of radius r centered in a

point pi ∈ Ω. Given an optimization criterion C : Ω 7→ R, the topological

gradient of C in pi is defined as (Sokolowski & Zochowski (1999); Céa et al.

(2000); Novotny et al. (2007)):

TC(pi) = lim
r→0

C(ΩB)− C(Ω)

h(r)
(13)

where h(r) is a positive scalar function such that lim
r→0

h(r) = 0.

Topological gradients can then be used within topology optimization algo-

rithms to define the principle of iterative material removal. Starting from a

design domain that is initially considered full of material, and associated to a

volume α equal to 1, a straightforward approach consists in fixing a threshold200

τ and removing the fraction of volume ∆α corresponding to the elements for

which the topological gradient of the optimization criterion is less than τ . Thus,

the quantity of removed material can be a different one at each iteration, as it

depends on the (fixed) value of τ . Despite its simplicity, this kind of approach is

not generally used in structural optimization, as it leads to a poor convergence205

of the optimization process (Suresh (2010)).

Another approach relies on fixing the fraction of volume ∆α and determining

the threshold τ such that the amount of volume corresponding to the elements

whose topological gradient is less than τ is equal to ∆α (Deng & Suresh (2015)).
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Thus, unlike the previous approach, the value of τ is adapted throughout the210

optimization process. More specifically, given a domain Ω whose volume is α,

and given a fraction ∆α of volume to remove, one has to determine a scalar τ ,

that can be assimilated to a cut-off value, in order to obtain a perturbed domain

Ωτ whose volume is α − ∆α. The value of τ can be determined from a topo-

logical gradient field T by identifying the elements whose associated topological215

gradient is larger than τ , while ensuring that the volume is equal to α − ∆α.

Within an optimization algorithm, the value of the fraction of volume to re-

move is usually iteratively decreased, and iterations are run until a termination

criterion is satisfied. The feasibility of the current topology for the addressed

structure, i.e., the satisfaction of the constraints of the optimization problem,220

is checked at each iteration. This guarantees that a feasible, local albeit not

global optimal solution, is always computed. Note that the value of the fraction

of volume ∆α plays a crucial role, since it leads the entire optimization process.

Indeed, if its initial value is very small (for example, less than 1% of the initial

volume) then the convergence will be slow, while if its value is large (for exam-225

ple, more than 30% of the volume) then the optimization may diverge (Suresh

(2013)).

An algorithmic scheme for structural optimization based on topological gra-

dients is displayed in Figure 1.
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Figure 1: Optimization algorithm based on topological gradients

4.2. Computing gradients for stress and buckling constraints230

Our aim is to devise a topological optimization algorithm for our problem

(P ), in the algorithmic framework presented in the above subsection 4.1. Thus,

in the following we focus on the stress and the buckling constraints Gσ and

Gλ, and we present a computation of gradients of such constraints. For such a

computation, our decision variables xi are relaxed as xi ∈ [0, 1], ∀i, similarly to235

what is done in the framework of BESO methods (Huang & Xie (2009, 2010);

Deaton & Grandhi (2014)).

We compute a topological gradient, Tσ, associated to the constraint Gσ, and

a gradient, Tλ, associated to Gλ. They both will be used to estimate the in-

fluence of a perturbation introduced on the structure whose topology is being240

optimized. The computation of Tσ and Tλ represents one of the contributions of

this paper. Topological gradients have indeed been introduced in the literature

for compliance constraints (Feijoo et al. (2005)) and for the P-norm of stress

constraints (Suresh & Takalloozadeh (2013)), while constraints like Gσ and Gλ

have not been previously addressed in this context. Our approach to determine245
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Tσ and Tλ is based on the adjoint state method (Choi & Kim (2006); Deng &

Suresh (2017); Allaire (2015)), as described below.

4.2.1. Stress constraints

Let us consider the stress constraint Gσ. As it depends on the decision

variables and on the structural displacements u, its derivative according to the

decision variable xi is expressed as:

dGσ
dxi

=
∂Gσ
∂xi

+
∂Gσ
∂u

du

dxi
(14)

The structural displacements are obtained throught the equation Ku = f (see

(2)). Thus by deriving according to xi, we obtain:

K
du

dxi
+
∂K

∂xi
u = 0⇔ du

dxi
= −K−1

∂K

∂xi
u (15)

Then, the derivative of Gσ according to xi can be formulated as:

dGσ
dxi

=
∂Gσ
∂xi

− ∂Gσ
∂u

K−1
∂K

∂xi
u (16)

It is important to note that, to solve equation (16), we need to solve a linear

system involving the stiffness matrix K. Then, computing the derivatives of

Gσ according to the decision variables xi,∀i = 1, . . . , N , requires the solution

of N linear systems, implying a potentially high computational cost. An al-

ternative is represented by the adjoint method, that relies on the fact that the

term −∂Gσ∂u K−1 does not depend on the decision variables and remains constant

regardless of the variable xi in (16). The adjoint method consists in defining an

adjoint variable µ (Choi & Kim (2006)), solution of the following adjoint state:

Kµ = −∂Gσ
∂u

(17)

where K is the stiffness matrix, µ ∈ R3M is the adjoint state and u corresponds

to a vector of displacements. Then, the computation of the derivatives of Gσ250

according to xi,∀i = 1, . . . , N involves only one additional linear system.
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From the formulation of Gσ in the equation (5), the term −∂Gσ∂u can be

expressed as:

−∂Gσ
∂u

= − 1

P

1

1

N

N∑
i=1

eP.gi(x,u)

1

N

N∑
i=1

[
P
xi
σ̄
eP.gi(x,u) ∂σ

VM
i

∂u

]
(18)

where [ ] corresponds to the block assembly operator. From (4), the derivative

of σVMi with respect to a displacement u can be expressed as:

∂σVMi
∂u

=
1

σVMi
√

2

(
(σix − σiy)(

∂σix
∂u
−
∂σiy
∂u

) + (σix − σiz)(
∂σix
∂u
− ∂σiz
∂u

)

+ (σiy − σiz)(
∂σiy
∂u
− ∂σiz
∂u

) + 6(σixy
∂σixy
∂u

+ σixz
∂σixz
∂u

+ σiyz
∂σiyz
∂u

)
) (19)

Note that the derivatives of the stress components σix, σiy, σiz, σ
i
xy, σixz and σiyz

with respect to a displacement u are constant and correspond to :

∂σix
∂u

= F1,:

∂σiy
∂u

= F2,:
∂σiz
∂u

= F3,:

∂σixy
∂u

= F4,:
∂σixz
∂u

= F5,:

∂σiyz
∂u

= F6,:

(20)

where F = HB ∈ R6×24, with H and B matrices introduced in (3). In the case

of a cube element (as those considered in our domain discretization), Bi ∈ R6×24

and the terms Fi,: ∀i = 1, . . . , 6 correspond to to the rows of the F matrix.

Thus, the term −∂Gσ∂u can be expressed as:

−∂Gσ∂u = − 1
N∑
i=1

eP.gi(x,u)

∑N
i=1


P
xi
σ̄
eP.gi(x,u) 1

σVMi
√

2



(σix − σiy)(F1,: − F2,:)+

(σix − σiz)(F1,: − F3,:)+

(σiy − σiz)(F2,: − F3,:)+

6σixyF4,: + 6σixzF5,:+

6σiyzF6,:




(21)

Then, the adjoint state µ can be determined by solving the adjoint system (17)

by the deflated conjugate gradient method. Thus, the topological gradient Tσ

of an element xi is expressed as (Feijoo et al. (2005)):

Tσ(xi) = − 4

1 + ν
σ(u(xi)) : ε(µ(xi)) +

1− 3ν

1− ν2
tr(σ(u(xi)))tr(ε(µ(xi))) (22)
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where ν is the Poisson ratio, σ(u(xi)) is the stress matrix, as noted in (6),

according to the vector of displacements u of the element i and ε(µ(xi)) is the

deformation matrix of the µ adjoint vector of the i element. The operator :

corresponds to the sum of the matrix components obtained from the Hadamard255

product. The tr operator is the trace operator of a matrix.

4.2.2. Buckling constraints

Let us now consider the buckling constraint Gλ. First, observe that the

derivative of Gλ with respect to xi can be expressed as:

dGλ
dxi

=
1

m

m∑
i=1

2v>i (K + csKσ)
dvi
dxi

+ v>i (
dK

dxi
+ cs

dKσ

dxi
)vi (23)

The main difficulty in computing (23) lies in the term
dKσ

dxi
. Indeed, the Kσ

matrix depends on the design variables xi and on the stress σi of each structural

element i, that is also depending on the design variables. A computation based

on finite differences, as well as a direct computation using

dKσ

dxi
=
∂Kσ

∂xi
+
∂Kσ

∂σ̂

dσ̂

dxi
, (24)

would be computationally expensive for large problems (the term
∂Kσ

∂σ̂

dσ̂

dxi
requiring the solution of N linear systems involving the stiffness matrices).

Browne et al. (2012) proposed a direct method to compute (24), however this260

method is highly computational expensive, thus not tractable for large problems.

Then, we apply again the adjoint method.

Following the work of Deng & Suresh (2017) on the derivative of one buckling

eigenvalue, we propose to introduce in the expression of Gλ the adjoint variables

γi ∈ R ∀i = 1, . . . ,m, β ∈ R6N and w ∈ R3M , and consider the following265

expression:

Gλ :=
1

m

m∑
i=1

(
v>i (K+ csKσ)vi+γi(1−v>i Kvi)

)
+β>(σ̂−Yu) +w>(f−Ku)

(25)
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where Y ∈ R6N×3M :=
∑N
i=1 [(HB)i] corresponds to the block assembly of the

product of the Hooke’s matrix H and the finite element deformations matrix B

defined for each element i, and σ̂ := {σ1
x, σ1

y, σ1
z , σ1

xy, σ1
xz, σ

1
yz, . . . , σ

N
x , σNy ,

σNz , σNxy, σNxz, σ
N
yz} is the global stress component vector. Note that the two270

formulations of Gλ in (8) and (25) are equivalent. Indeed, the eigenvectors vi

are K-orthoganal vectors, the term σ̂ − Y u corresponds to the computation of

the stress components from equation (3) and the term f −Ku corresponds to

equilibrium equation (2).

Differentiating (25) with respect to xi gives the following expression:

dGλ
dxi

=
1

m

m∑
i=1

(
2v>i (K + csKσ)

dvi
dxi

+ v>i (
dK

dxi
+ cs

∂Kσ

∂xi
+ cs

∂Kσ

∂σ̂

dσ̂

dxi
)vi

− γi(2v>i K
dvi
dxi

+ v>i
dK

dxi
vi)
)

+ β>(
dσ̂

dxi
− dY

dxi
u−Y

du

dxi
)−

w>(
dK

dxi
u + K

du

dxi
)

(26)

Eliminating the terms
dvi
dxi

from equation (26) allows one to compute the adjoint

variables γi ∈ R∀i = 1, . . . ,m:

dvi
dxi

(K + csKσ)vi = γi
dvi
dxi

Kvi, ∀i = 1, . . . ,m

⇔ dvi
dxi

((1− γi)K + csKσ)vi = 0, ∀i = 1, . . . ,m

(27)

Recalling that (K + λiKσ)vi = 0,∀i = 1, . . . ,m, the adjoint variables γi,∀i =

1, . . . ,m are chosen as:

γi = 1− cs
λi
, ∀i = 1, . . . ,m (28)

so that equation (26) becomes:

dGλ
dxi

=
1

m

m∑
i=1

(
v>i (

dK

dxi
+ cs

∂Kσ

∂xi
+ cs

∂Kσ

∂σ̂

dσ̂

dxi
)vi − γiv>i

dK

dxi
vi)
)

+ β>(
dσ̂

dxi
− dY

dxi
u−Y

du

dxi
)− w>(

dK

dxi
u + K

du

dxi
)

(29)

The adjoint variable β is chosen in such a way that the term
dσ̂

dxi
is eliminated
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from the equation (29) :

cs
m

m∑
i=1

v>i (
∂Kσ

∂σ̂

dσ̂

dxi
)vi + β>

dσ̂

dxi
= 0 (30)

After factorization and rearrangement, the adjoint variable β corresponds to

(Deng & Suresh (2017); Bian & Fang (2017)):

β> = −cs
m

m∑
i=1

v>i
∂Kσ

∂σ̂
vi (31)

where
∂Kσ

∂σ̂
corresponds to:

∂Kσ

∂σ̂
=

N∑
i=1

6∑
k=1

∂Kσ

∂σ̂ik
(32)

Equation (29) becomes:

dGλ
dxi

=
1

m

m∑
i=1

(
v>i (

dK

dxi
+ cs

∂Kσ

∂xi
)vi − γiv>i

dK

dxi
vi)
)

− β>(
dY

dxi
u + Y

du

dxi
)−w>(

dK

dxi
u + K

du

dxi
)

(33)

The last adjoint variable w is chosen such that the term
du

dxi
is removed from

the equation (33) :

β>Y
du

dxi
+ w>K

du

dxi
= 0 (34)

It is then the solution of the following system:

Kw = −Y>β (35)

Finally,
dGλ
dxi

becomes:

dGλ
dxi

=
1

m

m∑
i=1

(
v>i (

dK

dxi
+cs

∂Kσ

∂xi
)vi−γiv>i

dK

dxi
vi)
)
−β> dY

dxi
u−w>

dK

dxi
u (36)

Thus, by solving the single additional linear system (35), the derivative275

(36) with respect to each design variable xi can be computed. This derivative

corresponds to the expected variation of the value of the buckling constraint

Gλ in the case of removal of element xi from the structure. Recall that the
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topological gradient allows one to quantify the influence, on a given criterion, of

a perturbation of the structure. Mirzendehdel & Suresh (2015) observe that both280

the gradient and the topological-gradient fields provide equivalent information

up to a scale factor, in the case of the compliance. We assume that such a

relation also holds for buckling constraints. Thus, for the sake of simplicity

of calculation, we consider equation (36) for the buckling constraint Gλ with

respect to xi, and we use the notation Tλ(xi) to refer to such derivative, similarly285

to the notation used for the stress constraint.

4.3. Algorithm

We present in the following our algorithm for structural topological opti-

mization. It follows the general idea of topological gradient-based algorithms,

that is to iteratively remove a fraction of the volume of the design domain on

the basis of the values of topological gradients (see subsection 4.1). The specific

character of the algorithm is in the way the gradients of stress and buckling

constraints are computed and combined, as well as in the criteria considered

to iteratively update the topology of the structure. In order to build a sin-

gle topological gradient field Tw, we follow the approach consisting in defining

a weighted sum of the considered fields (Suresh et al. (2012)). For each ele-

ment xi, we propose to combine the values of Tσ and Tλ through the following

weighted sum:

Tw(xi) = Tσ(xi) +

(
cs
λcr

)2

Tλ(xi) (37)

where λcr is the critical buckling load. The factor (cs/λcr)
2 allows us to control

the weight of Tλ. If the value of cs/λcr is close to one, then the optimiza-

tion is driven by both stress and buckling topological gradients; if λ2cr is much290

larger than cs, i.e., the structure features a high resistance to buckling, only

Tσ controls the optimization. Along the iterative process, the topology of the

structure is updated following the approach presented in subsection 4.1, where

the considered topological gradient is Tw.
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The topology is updated at each iteration in such a way that the prob-

lem constraints are satisfied. This ensures that a feasible solution is always

computed. One can however observe (Deng & Suresh (2015)) that removing

fractions ∆α of volume may lead to a divergence of the optimization process.

Hence, we propose a further condition to be satisfied at each iteration in order to

update the topology by removing ∆α. This condition is based on the (relative)

variation of the value of the stress constraint Gσ between the one associated to

the current structure, Ω, and the one associated to the perturbed one, Ωτ :

|Gσ(Ω)−Gσ(Ωτ )|
|Gσ(Ω)|

≤ ∆Gσ (38)

where ∆Gσ is an user-defined threshold. The smaller this threshold is, the295

smaller is the variation of the stress constraint that is accepted to remove a

fraction ∆α.

Note that when an element is removed, it is no longer considered in the

finite element analysis. This implies that, at each iteration, the size of the

linear systems and of the generalized eigenvalues problem decrease, as well as300

the computing time for their solution. Moreover, no penalisation schemes are

required for the stiffness matrix nor for the geometric stiffness matrix. At each

iteration of the optimization process, some of the removed elements can be

reintroduced to allow the process to escape local optima. This corresponds, from

a mechanical point of view, to strengthen some parts of the current structure.305

However, for a deleted element (i.e., xi = 0), the associated values of Tσ and Tλ

are no longer available. Thus, we base their computation on the extrapolation

of the values Tσ and Tλ associated to the elements that are actually present in

the current structure. More precisely, let us consider the topological gradient Tσ

(a similar procedure applies to Tλ). A value of Tσ is considered for each element310

of the meshed domain, assuming that such a value is zero for the elements

which have been removed. Following (Krishnakumar & Suresh (2015)), the

extrapolation process consists first in evaluating, for each node of the mesh,

the mean of the topological gradients Tσ of the elements connected to such

a node, and assigning this value to the node. Then, for each element of the315
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meshed domain, the value of Tσ is recomputed by averaging the values assigned

to its neighboring nodes. Note that this procedure leads to a smoothing of the

topological gradients. This smoothing is usually referred to as a filtering scheme

(Bendsoe & Sigmund (2013)) and allows one to prevent the checkerboard effect

(Sigmund & Petersson (1998)).320

The proposed algorithm is presented in Algorithm 2. Note that the pro-

cedure to compute multiple buckling modes, presented in Sect.III, is nested in

Algorithm 2 (steps 3 and 7).

Algorithm 2 Topological optimization under stress and buckling constraints

Input: ∆α, ∆αmin, ∆Gσ, σ̄

1: Initialisation : α = 1, Ω := {xi = 1, ∀i = 1, . . . , N}

2: Ω∗ ← Ω

3: Solve Ku = f and (K + λKσ)v = 0 for Ω

4: Compute Tσ(xi), Tλ(xi) et Tw(xi) ∀i = 1, . . . , N

5: while ∆α ≥ ∆αmin do

6: Determine τ such that volume(Ωτ ) = α−∆α

7: Solve Ku = f and (K + λKσ)v = 0 for Ωτ

8: if

(
|Gσ(Ω∗)−Gσ(Ωτ )|

|Gσ(Ω∗)|
≤ ∆Gσ

)
& (cs ≤ λcr) &(

σVMi ≤ σ̄ ; ∀i = 1, . . . , N
)

then

9: α← α−∆α

10: Compute Tσ(xi), Tλ(xi) et Tw(xi) ∀i = 1, . . . , N

11: Ω∗ ← Ωτ

12: else

13: ∆α← ∆α

2
14: end if

15: end while

Output: Ω∗
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5. Numerical results

In this section, we first analyze the performance of Algorithm1 to compute325

a set of eigenvalues. Then, numerical results for topological optimization appli-

cations, obtained performing Algorithm 2, are illustrated and discussed.

In all numerical experiments in this section, the material considered is an

aluminium with a Young modulus equals to 72 000 MPa and a Poisson ratio

equals to 0.33. The density of aluminum is 0.00285 g.mm−3. The value of the330

limit stress σ̄ is 510 MPa. The safety coefficient cs is fixed to 1. Recall that

we consider three-dimensional cubic elements to discretize the design domain of

the considered structures.

From numerical experiments, we set the parameter P to 4 in the stress

constraint (5), and the ∆Gσ stress threshold is set to 0.01. The material fraction335

∆α is initialized to 0.1. The threshold ∆αmin is fixed at a value of 1 divided by

the number of elements resulting from the discretization of the design domain.

This ratio corresponds to the volume occupied by an element in the initial

structure. Thus, the solution algorithm stops when it is no longer possible to

remove an element from the structure.340

The proposed algorithms have been implemented in Fortran and parallelized

by using OpenMP commands. In Algorithm 1 the tolerance ε is set to 10−4.

The codes were run on a 32-bit Linux OS computer with an Intel(R) Core(TM)

i7-4710MQ CPU @ 2.50GHz and 16GB RAM.

5.1. Buckling analysis results345

Let us first consider the computation of a set of buckling modes on the

L-structure illustrated in Figure 2, through Algorithm 1. The hatched area cor-

responds to the foundation, i.e. clampled displacements. A load F is uniformly

distributed over the red area in Figure 2 and is equal to 35,000 N. The structure

is discretized with cubes of 1 mm in length, leading to 331 776 finite elements350

and 364 429 nodes.

We consider the computation of the first 3 buckling eigenvalues (i.e., m = 3

in Algorithm 1) associated to the considered structure. On the one hand, we
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focus on the importance of considering the dimension m̃ of the set V large

enough to compute the first 3 buckling eigenvalues. On the other hand, we355

investigate the impact of the dimension m̃ of V on the computational cost.

Figure 2: L-shaped structure

Let us recall that, through Algorithm1, the eigenvalues are determined in

ascending order according to their modulus. Thus, the first three eigenvalues

obtained may not correspond to positive eigenvalues. In Table 1, we report the

eigenvalues obtained for values of m̃ varying from three to five.360

Table 1: L-shaped structure: Eigenvalues obtained for different dimensions of the set V

Dimension m̃

of the set V
λ1 λ2 λ3 λ4 λ5

3 -2.222 2.677 7.038 NA NA

4 -2.222 2.677 7.038 -7.577 NA

5 -2.222 2.677 7.038 -7.577 11.352
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For the structure under study, we note that with m̃ equals to three or four,

we are not able to compute the first 3 positive eigenvalues. In the case of m̃

equals to five, we observe that the three smallest positive eigenvalues correspond

to the second, third and fifth eigenvalues of smallest modulus respectively. Thus,

the dimension m̃ of V must be greater than or equal to five in order to compute365

the first three positive eigenvalues. It is important to note that, along a process

of structural optimization, the structural topology changes at each iteration.

Thus, the buckling eigenvalues may switch their positions along the process.

Therefore, the dimension m̃ of V must be large enough to ensure that all the

eigenvalues to be searched for are obtained at each iteration of the optimization370

process. However, if the dimension m̃ of V is too large, then the buckling

analysis may be highly time consuming.

We now investigate the impact of the dimension m̃ of V on the computational

cost. For different values of m̃, we report in Table 2 the computing time, the

number of iterations, and the number of Kv and Kσv products evaluated to375

converge to the seeked buckling eigenvalues.

Table 2: L-shaped structure: Computing time according to the size of the eigenvalue search

space

Dimension m̃

of the set V
Computing time

Number of

iterations

Number of

products Kv

Computing time

of one product Kv

Number of

products Kσv

Computing time

of one product Kσv

5 49min 3s 33 27 777

0.135s

506

0.98s

6 31min 21s 18 28 099 328

8 38min 47s 17 39 117 428

9 44min 21s 15 41 043 422

10 49min 51s 15 45 089 463

We note that the product Kσv is on average 7 times more expensive than the

product Kv. The operation Kσv leads moreover to a larger memory footprint

than Kv, since each geometric stiffness matrix element depends on its own stress

matrix (6) (while K is constituted by equal blocks). Through the proposed380

method, the number of Kσv operations is kept low, thus yielding to important

savings in time and memory consumption. This crucial point about memory

consumption already led the authors in Yadav & Suresh (2014) to develop an
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alternative approach to what is commonly done in standard commercial software

(such as ANSYS - Stolarski et al. (2018)), where sparse direct solvers may385

require huge memory consumption. In such a case, the authors recall that, as an

example, for a matrix with a size of 1 million, 1GB of memory is needed to store

the stiffness matrix and 10 to 20 GB additional memory for the factorization.

The method that we propose follows a similar approach than the one in Yadav

& Suresh (2014) for efficient memory handling, with the additional advantage390

to be able to compute multiple eigenvalues.

Comparing the results obtained for m̃ equals to 5 and 6, we observe a re-

duction of the computing time by a factor of 1.56, although the number of Kv

products remains stable. The number of iterations and the number of Kσv

products decrease when the dimension of the search space is increased. Never-395

theless, for larger values of m̃, computing time increases due to a larger number

of Kv products, although the number of iterations to converge decreases.

We conclude that the choice of the value of m̃ of V in Algorithm 1 should

try to meet the right trade-off between computing time saving and the need

to capture every proper buckling value required throughout the optimization400

process.

5.2. Topological optimization results

In this section, we present numerical results to validate our topology opti-

mization approach and to illustrate its efficiency on real mechanical structures.

We consider two different mechanical structures: a beam under a compressive405

load, and a real application arising in the aeronautic field. The first application

additionally allows us to highlight the interest of considering multiple buckling

eigenvectors in the optimization process, while the second shows the importance

of buckling constraints on the optimization process.

5.2.1. Beam under a compressive load410

The first numerical example of topological optimization is a structure under

a compressive load illustrated in Figure 3. The dimensions of the structure are
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l, equals to 240mm, h, equals to 42mm and e, equals to 6mm. The load F is

18,360 N and is applied uniformly over the red area in Figure 3. The hatched

area corresponds to the fixed area. The structure is discretized with cubes with415

a length of 2mm, leading to 52 920 elements. We report the results obtained

when solving problem (P) by applying the proposed topological optimization

algorithm. Table 3 gives, in terms of the considered number of buckling modes,

the optimal mass (i.e., the value of the objective function of (P)), the final crit-

ical buckling load, the final maximum Von Mises stresses

(
max

i=1,...,N
σVMi (x∗)

)
420

and the computing time.

Figure 3: Beam under a compressive load: Design space
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Table 3: Beam under a compressive load: Mass, Critical buckling load, Maximal Von Mises

stress and Computing time

Number of considered

buckling modes
Mass (g)

Critical buckling

load

Maximal Von Mises

stress
Computing time

1 178.50 1.009 299.25 3h 45 min

4 148.17 1,07 304.94 5h 38 min

6 149.44 1.0001 265.04 8h 55min

Figures 4 and 5 illustrate the evolution, with respect to the number of com-

puted buckling eigenvectors, of the structural mass and the critical buckling

load respectively. As regards the structural mass, when the optimization is run

taking into account only the first buckling eigenvector, the optimized structure425

has a mass of 178.50 g (Figure 6(a)). A reduction of 17% is observed when the

first four buckling modes are considered (Figure 7(a)). From Figure 5, the evo-

lution of the critical buckling load when only one buckling mode is considered,

appears erratic. This is characteristic of buckling mode-switching behaviour.

A smoother evolution of the critical buckling load is observed when multiple430

buckling modes are considered. This is related to a reduced mode-switching

behaviour along the optimization process.

Whatever the number of buckling modes considered, the proposed algorithm

always converges towards an optimized structure. In the specific case of a beam

in compression, the optimized structures, and therefore their masses, change ac-435

cording to the number of buckling modes considered in the constraint (8). From

a mechanical point of view, this influence of buckling modes can be explained by

comparing the two obtained structures (Figure 6(b) and Figure 7(b)). Indeed,

in the case of a beam in compression, its resistance to buckling is characterized

by its moment of inertia with respect to the y and z axes. For the case of four440

buckling modes, we observe that the material is mostly placed in the corners

of the design space and the legs are connected each other by stiffeners in order

to counter the effect of the first buckling mode, generating a better buckling

resistance compared to the structure obtained with only one buckling eigenvec-
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tor. Note that this solution is very interesting from a point of view of structural445

engineering, that would add these stiffeners in a post-processing phase if they

were not automatically generated by the optimization algorithm. In addition,

when four buckling modes are considered, the critical buckling load decreases

less rapidly than in the case of one buckling mode, allowing a better layout of

the material within the structure and generating a lighter structure. Finally,450

comparing the plots of the Von Mises stress in Figures 6(d) and 7(e), one can

note that the stress values are more homogeneous for the structure optimized

by considering 4 buckling modes than the values obtained considering only one

buckling mode.

When six buckling modes are considered, the mass of the obtained optimal455

structure has a value of 149.44 g, that is very close to that obtained in the case

of four modes. Moreover, one can note that the distributions of the Von Mises

stress in Figures 7(e) and 8(f) are also very close. Comparing the structures

obtained in the two cases, displayed respectively in Figures 7(a) and 8(a), one

can remark that they differ with respect to the points where the loads are460

applied. These structures correspond to different local optima.

Figure 4: Beam under a compressive load: Evolution of the mass according to the number of

buckling modes considered
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Figure 5: Beam under a compressive load: Evolution of the critical buckling load according

to the number of buckling modes considered
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(a) Optimized structure

(b) Cutting plane according to the y

and z axes

(c) First buckling mode

(d) Von Mises Stress

Figure 6: Beam under a compressive load: Structure obtained with 1 buckling mode
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(a) Optimized structure

(b) Cutting plane according to the y

and z axes

(c) First and second buckling mode

(d) Third and fourth buckling mode

(e) Von Mises Stress

Figure 7: Beam under a compressive load: Structure obtained with 4 buckling modes
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(a) Optimized structure

(b) Cutting plane according to the y

and z axes

(c) First and second buckling mode

(d) Third and fourth buckling mode (e) Fifth and sixth buckling mode

(f) Von Mises Stress

Figure 8: Beam under a compressive load: Structure obtained with 6 buckling modes
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5.2.2. Gooseneck - aeronautical structure

The second numerical example is an aeronautical application (illustrated in

Figure 9), referred to as gooseneck. Several structures of this type appear on

the landing gear doors of an aircraft. The area in red corresponds to a load of465

-12 128 N along the x axis, -35 N along the y axis, and 3 456 N along the z

axis. The hatched area represents the fixed area. The structure is discretized

by cubic finite elements with a length of 4mm, leading to 31 670 elements.

In this example, numerical experiments show that considering more than one

buckling mode does not modify the final optimal solution. This can also be470

explained from a mechanical point of view, considering the dimensions of the

structure and the direction of the applied loads. Thus, taking into account that

the optimization process for this structure may be associated to high computing

times, we limit the optimization to one buckling mode. We compare the optimal

structure that is obtained with and without buckling constraint, to highlight the475

important role of the buckling constraint on the the optimal structural design.

Table 4 reports the optimal structural mass, the final critical buckling loads,

and the maximal Von Mises stresses, obtained in the two cases corresponding to

the optimization carried out with and without considering buckling constraints.
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Figure 9: Gooseneck: Design space of the structure

Table 4: Gooseneck structure: Optimization results with and without buckling constraint

Number of considered

buckling eigenvectors
Mass (g)

Critical buckling

load

Maximal Von

Mises stress
Computational time

0 199.52 0.743 497.44 30min

1 210.05 1.07 469.18 7h 23min

Optimization without buckling constraint leads to a structure (Figure 11)480

with a mass of 199.52 g, which does not resist to buckling as the critical load is

equal to 0.743. Taking into account the buckling constraint in the optimization

problem leads to an optimized structure (Figure 12) with a mass of 210.05 g,

corresponding to an increase of 5.2%.

In Figure 10, we illustrate the evolution of the critical buckling load during485

the optimization. It can be seen that in the first iterations the values of the crit-

ical buckling load are very high. For the initial structure, the buckling analysis

leads to a critical buckling load of 277.97. Recall that in the optimization al-
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gorithm the global topological gradient Tw is a weighted sum of the topological

gradients Tσ and Tλ. In particular, the topological gradient associated with the490

buckling constraint, Tλ, is multiplied by the inverse of the square of the criti-

cal load (see (37)). Thus, for this application, at the initial iterations only the

topological gradient Tσ related to the stress constraints drives the optimization

process. This explains the similarity of the structures obtained in Figures 11

and 12.495

The major difference is in the buckling load: its value associated to the

later structure is greater than one, meaning that this structure is not subject

to buckling failure. The first and the second buckling modes for the structures

obtained respectively without buckling constraints and with such constraints

are illustrated in Figure 11(c)-(d)-(e) and Figure 12(c)-(d).500

Figure 10: Gooseneck structure: Evolution of the critical buckling load

37



(a) Optimal structure

(b) Side view of the optimal structure (c) First buckling mode

(d) Second buckling mode - First view (e) Second

buckling mode -

Second view

(f) Von Mises Stress

Figure 11: Gooseneck: Structure obtained without buckling constraint
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(a) Optimal structure

(b) Side view of the optimal structure (c) Buckling mode of the optimal struc-

ture - First view

(d) Buckling

mode of the op-

timal structure

- Second view

(e) Von Mises Stress

Figure 12: Gooseneck: Structure obtained with buckling constraint
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6. Conclusion

We address the topological optimization of continuum structures, whose

mass is to be minimized, subject to stress and to buckling constraints.

We propose, for the buckling analysis, a variant of the inverse-iterations algo-

rithm that is devised to compute a set of eigenvalues. It features low memory505

requirements, thus allowing one to handle large-scale problems, that are not un-

common in the context of topology optimization, specially when 3D discretiza-

tions are considered.

To optimize the topology of structures under stress and buckling constraints, we

develop an algorithm that follows a topological gradients-based approach. We510

use aggregation formulations for the two considered constraints, and apply the

adjoint method to efficiently compute their gradients. The proposed algorithm

allows one to handle optimization of structures subject to constraints that are

attracting an increasing attention in the structural engineering community. It

relies on our proposed buckling analysis and gradient computation, that are515

embedded in a simple scheme to iteratively compute the optimized topology for

the targeted structure. Numerical results on mechanical structures, including

a real application arising in the aeronautical field, show the effectiveness of the

proposed optimization algorithm.

The proposed topology optimization algorithm features a flexibility allowing520

one to easily implement further constraints, e.g., the compliance. We consider

this as a perspective for future work. Moreover, the inclusion of additive manu-

facturing constraints, such as the trajectory of the deposition of the material in

the case of the Wire Arc Additive Manufacturing method (Radel et al. (2019)),

will be investigated.525
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