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The dynamics of a thin elastic sheet lubricated by a narrow layer of liquid is relevant to
various situations and length scales. In the continuity of our previous work on viscous
wakes (Ledesma-Alonso et al. (2016)), we study theoretically the effects of an external
pressure disturbance moving at constant speed along the surface of a thin lubricated
elastic sheet. In the comoving frame, the imposed pressure field creates a stationary
deformation of the free interface that spatially vanishes in the far-field region. The
shape of the wake and the way it decays depend on the speed and size of the external
disturbance, as well as the rheological properties of both the elastic and liquid layers.
The wave resistance, namely the force that has to be externally furnished in order to
maintain the wake, is analyzed in detail.
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Interfacial phenomena lead to qualitatively different behaviours from those encountered
in bulk materials. In fluid mechanics and soft matter, this includes in particular the
existence of surface waves. As an example, water waves have fascinated a large number
of physicists and mathematicians for many decades. Among them, Lagrange derived
the equation of water waves (Darrigol (2005)), and Kelvin described the wake behind a
ship (Kelvin (1887)) – characterized by the universal angle of 19.7 ◦. This observation
continues to trigger fundamental questions (Rabaud & Moisy (2013); Darmon et al.
(2014)). Moreover, in the context of atomic-force microscopy and thin viscous films, the
surface wake might directly be used as a new kind of nanorheological probe (Alleborn
et al. (2007); Wedolowski & Napiórkowski (2015); Ledesma-Alonso et al. (2016)). It may
as well play a crucial role in biolocomotion, as demonstrated by the case of water striders
that propel themselves using surface waves (Hu et al. (2003)). For all the phenomena
introduced above, and in fact many more (Démery & Dean (2010)), the disturbance
creates waves and thus radiates energy. As a consequence, the operator experiences a force
opposing its motion, called the wave resistance (Havelock (1932); Raphaël & De Gennes
(1996)). This aspect is crucial in the naval industry, through optimal design of boat
shapes and recycling of the radiated energy for ecological purposes.

When a thin viscous film is coupled to an elastic layer, several interesting phenomena
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Figure 1. Schematic of the elastohydrodynamic wake. The top elastic film reacts to an external
disturbance ψext(x− vt, y) moving at constant speed v > 0 along the x direction and time t.

may happen. Classical hydrodynamic results have been revisited in this perspective, such
as the capillary rise (Duprat et al. (2011)), and the Saffman-Taylor viscous fingering
(Pihler-Puzović et al. (2012); Al-Housseiny et al. (2013); Stone & Duprat (2015)) for
which the added compliance can prevent the instability. Exploring the physics of painting,
the propagation of the peeling front in a plastic sheet atop a glycerine layer has been
studied (Hosoi & Mahadevan (2004)), as well as the flexible scraping of viscous fluids
(Seiwert et al. (2013)). Besides, an emergent lift force exerted on a moving object near
a brush (Sekimoto & Leibler (1993)), a soft (Skotheim & Mahadevan (2004); Snoeijer
et al. (2013); Salez & Mahadevan (2015)) or viscoelastic (Pandey et al. (2016)) boundary
was predicted and confirmed experimentally (Saintyves et al. (2016)). Adhesive contact
between a wet elastic sheet and a substrate also appears in a lot of physical and biological
applications, and was shown to lead to patterns reminiscent of classical dewetting
(Carlson et al. (2015); Carlson & Mahadevan (2016)). Measurements on small-scale
systems using surface-force apparatus revealed striking substrate deformations (Villey
et al. (2013)), with obvious implications on the accuracy of nanorheological experiments.
Finally, Brownian motion may be impacted as well by the inclusion of soft boundaries
(Daddi-Moussa-Ider et al. (2016)).

The combination of both the wake and elastohydrodynamic physics introduced above
naturally leads to a new class of interesting problems (Blyth et al. (2011); Guyenne
& Părău (2014)), with a broad range of applications in geophysics, biophysics, wave
propagation, and engineering. For instance, seminal studies on elastohydrodynamic wakes
were motivated by the waves generated by landing planes in Antarctica (Părău & Dias
(2002); Părău & Vanden-Broeck (2011)). We note that the inertia of the fluid is a
dominant ingredient in these works.

In the present article, we study the displacement of an external pressure field above
a thin elastic sheet covering a narrow viscous film. In the lubrication approximation,
we compute the elastohydrodynamic waves and wake, as well as the wave resistance,
in the continuity of our previous work on the viscocapillary case (Ledesma-Alonso et al.
(2016)). An equivalent of the Bond number where elasticity replaces capillarity – hereafter
called the elastic Bond number – appears to be a central dimensionless parameter of the
problem. The elastohydrodynamic wake is plotted for a large range of speeds and elastic
Bond numbers. Finally, in the low-speed and high-speed regimes, we provide analytical
asymptotic results for the wave resistance.
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1. Elastohydrodynamic lubrication model
Let us consider a thin viscous film of thickness h0 placed over a flat horizontal substrate,

and covered by a thin elastic sheet of constant thickness d� h0. As depicted in Fig. 1, an
external pressure field ψext(x− vt, y), moving along the horizontal direction x and time
t with a constant speed v > 0, is applied on the elastic sheet. A resulting non-constant
profile h (x, y, t) of the liquid-elastic interface, with respect to the substrate, is created.
We note that the total two-layer profile h+ d has the same spatiotemporal variations as
h, and we thus focus on the later only – with no loss of generality.

Invoking the incompressible Stokes equation and volume conservation, and considering
no slip at both the substrate-liquid and the liquid-elastic interfaces, the following equation
is yielded in the lubrication approximation (Lister et al. (2013); Al-Housseiny et al.
(2013); Carlson et al. (2015); Carlson & Mahadevan (2016)):

∂h

∂t
=

1

12µ
∇ ·
(
h3∇Ptot

)
, (1.1)

where µ is the dynamic viscosity, ∇ is the gradient operator in 2D Cartesian coordinates,
and Ptot(x, y, t) is the total pressure in the liquid. The latter is given by the addition of
the bending stress, the hydrostatic pressure, and the external moving pressure field, and
thus reads:

Ptot = B∇4h+ ρgh+ ψext , (1.2)

where B = Ed3/[12(1−ν2)] is the bending stiffness, E and ν are respectively the Young’s
modulus and Poisson’s ratio (Landau & Lifshitz (1986)), g is the acceleration of gravity,
and ρ is the density of the liquid. Note that we assumed the bending stresses to be
dominant over the stretching ones.

Taking h0 and the gravito-elastic length κ−1el = [B/ (ρg)]
1/4 as the characteristic

length scales in the vertical z-direction and in the xy plane, respectively, the time
τ = 12µ/

(
ρgκ2elh

3
0

)
as the characteristic time scale, and Pext = κ 2

el
∫∫

dx dy ψext as
the characteristic pressure scale, we introduce the following dimensionless variables:
X = κelx, Y = κely, H = h/h0, T = t/τ , Ψ = ψext/Pext, Γel = Pext/ (ρgh0) and the
reduced speed V = κel τ v. In the limit of weak driving where ΓelΨ � 1, and associated
small deformation where F = H − 1� 1, eqs. (1.1) and (1.2) can be linearized and lead
to the dimensionless elastohydrodynamic thin-film equation (Flitton & King (2004)) on
the field F (X,Y, T ):

∂F

∂T
= ∆3F +∆F + Γel∆Ψ , (1.3)

where ∆ denotes the Laplacian operator in 2D Cartesian coordinates.
We restrict ourselves to stationary surface profiles in the comoving frame. Therefore,

we introduce the new variable U = X − V T , and we define F (X,Y, T ) = ζ (U, Y ). In
this context, eq. (1.3) becomes:

[
∂2

∂U2
+

∂2

∂Y 2

]3
ζ +

[
∂2

∂U2
+

∂2

∂Y 2

]
ζ + V

∂

∂U
ζ = −Γel

[
∂2

∂U2
+

∂2

∂Y 2

]
Ψ . (1.4)

Finally, let us introduce the two relevant dimensionless parameters of the problem: the
elastic Bond number Bel = (a κel)

2, where a denotes the characteristic horizontal size
of the external pressure field. We note that the vertical amplitude of the dimensionless
disturbance field ΓelΨ is a trivial dimensionless number in linear response theory, and we
thus avoid discussing it further.
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2. Wake
By definition, the wake is the solution ζ (U, Y ) of eq. (1.4), for a given disturbance field

ΓelΨ and reduced speed V . Invoking the two-dimensional Fourier transforms, defined as:

f̂(Q,K) =

∫ +∞

−∞

∫ +∞

−∞
f(U, Y ) exp (−i [QU +KY ])dY dU , (2.1)

f(U, Y ) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
f̂(Q,K) exp (i [QU +KY ])dQdK , (2.2)

and applying them to the dimensionless profile and the external pressure field, ζ̂ (K,Q)

and Ψ̂ (K,Q), eq. (1.4) becomes:
[
iKV − (K2 +Q2)3 − (K2 +Q2)

]
ζ̂ (K,Q) = Γel(K

2 +Q2) Ψ̂ (K,Q) . (2.3)

Consequently, the solution reads:

ζ (U, Y ) =
Γel

4π2

∫∫
(K2 +Q2) exp [i(KU +QY )] Ψ̂ (K,Q)

iKV − (K2 +Q2) [1 + (K2 +Q2)2]
dKdQ . (2.4)

In order to fix ideas through a canonical example, we introduce the following axisym-
metric Lorentzian pressure field and its Fourier transform:

Ψ (U, Y ) =

√
Bel

2π (U2 + Y 2 +Bel)
3/2

, (2.5a)

Ψ̂ (K,Q) = exp
[
−
√
Bel (K2 +Q2)

]
. (2.5b)

The combination of eqs. (2.4) and (2.5) leads to the surface pattern at stake. A parametric
study has been performed, sweeping a wide range of values for the reduced speed V and
elastic Bond number Bel, as summarized in Fig. 2. This is analogous to the viscocapillary
study presented in the previous article (Ledesma-Alonso et al. (2016)). The three main
differences between the two cases are the order of the partial differential equation (1.4),
and the two dimensionless parameters: the reduced speed V = κel τ v and the elastic
Bond number Bel = (a κel)

2, replacing here the reduced speed V = κ τ v and the Bond
number Bo = (aκ)2 = ρga2/γ, respectively, of the previous study (Ledesma-Alonso et al.
(2016)). At low speed, the profiles are nearly symmetric and show a cavity below the
external pressure field. When the reduced speed reaches V ∼ 1, there is an accumulation
of material at the front (U > 0) and a stretching of the cavity behind the center of the
pressure field (U < 0). At high speed, comet-like shapes surrounded by undulations are
observed, with an overall extent that can largely exceed the size of the pressure field.

A comparison between the main features of the present elastohydrodynamic case and
the ones previously reported for the viscocapillary case (Ledesma-Alonso et al. (2016))
is shown in Figs. 3 and 4. Note that the classical and elastic Bond numbers have been
set to an identical value, in order to observe the differences between these two cases,
for a disturbance with the same ratio between its size and the characteristic length of
the problem. In the transverse cut of Fig. 3(a), although the trends are similar, we
observe that the oscillations are more pronounced in the elastohydrodynamic case. In
the longitudinal cut of Fig. 3(b), it is interesting to notice the existence of oscillations
at the front of the pressure disturbance in the elastohydrodynamic case, which for the
viscocapillary case are damped more quickly. Additionally, at the rear of the disturbance,
a longer decay length of the wake is observed for the elastohydrodynamics case. Also, the
amplitude of the surface deformation is slightly larger for the elastohydrodynamic case.
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Similarly, Fig. 4 highlights the effects of varying the Bond and elastic Bond numbers:
mainly, the smaller the disturbance (i.e. smaller Bond and elastic Bond numbers), the
more oscillations we observe.

3. Wave resistance
As the pressure disturbance moves atop the elastic sheet, it generates the previously-

discussed surface deformation which is intimately coupled to the motion of the underlying
liquid. As a consequence of the viscous nature of the latter, a continuous dissipation of
energy takes place, and the moving disturbance experiences a force opposing its motion.
This so-called wave resistance r is given by Havelock’s formula, usually used in the
inviscid theory of waves (Havelock (1932); Raphaël & De Gennes (1996)), but still valid
for a viscous fluid:

r =

∫∫
ψext

∂h

∂x
dx dy . (3.1)

The power vr must be furnished by the operator in order to maintain a constant
disturbance speed v (Ledesma-Alonso et al. (2016)).

With the notations introduced above, the dimensionless wave resistance R reads:

R =
rκel

ρgh20
= Γel

∫∫
Ψ(U, Y )

∂ζ

∂U
dU dY . (3.2)

Then, the substitution of eq. (2.4) within eq. (3.2) yields:

R =
Γ 2

elV

4π2

∫∫ K2(K2 +Q2)
∣∣∣Ψ̂ (K,Q)

∣∣∣
2

K2V 2 + (K2 +Q2)2 [1 + (K2 +Q2)2]
2 dK dQ . (3.3)

Invoking the polar coordinates, K = ρ cos θ and Q = ρ sin θ, and assuming an axisym-
metric pressure field Ψ̂(ρ), allow us to integrate over θ and get the expression:

R =
Γ 2

el
2πV

∫ ∞

0

[
1− ρ(ρ4 + 1)√

V 2 + ρ2(ρ4 + 1)2

] ∣∣∣Ψ̂(ρ)
∣∣∣
2

ρ3dρ . (3.4)

Equations (2.5) and (3.4) allow us to compute numerically the wave resistance. The
results are presented in Fig. 5. At low speed, the wave resistance shows a linear depen-
dence with V ; at high speed, it decreases inversely proportional to V ; and at intermediate
speed, it shows a maximum at the crossover between the two aforementioned regimes. In
addition, the larger Bel, i.e. the wider the pressure field, the lower the wave resistance;
and the smaller Bel, i.e. the narrower the Lorentzian pressure field, the more the wave
resistance approaches the one associated with the Dirac pressure field (Ψ̂ = 1), as
expected. Interestingly, the Dirac case shows a more gentle slope of V −1/5 at high
speed. All these asymptotic behaviors will be recovered analytically and explained in
the following subsections. In addition, we observe that the maximal wave resistance is
bounded by the one of the Dirac case. Indeed, a Dirac pressure field excites all the
wavelengths, whereas a Lorentzian pressure field cuts the large wavelengths off.

3.1. Low-speed regime
As seen in the low-speed regime of Fig. 5, the wave resistance shows a linear rise with

the speed V . Indeed, using the Dirac pressure field, we get the following asymptotic
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Figure 2. Top view of the normalized wake created by a Lorentzian pressure field, computed
from eqs. (2.4) and (2.5), for different values of the elastic Bond number Bel and the reduced
speed V as indicated (log is the natural logarithm). Since we use the comoving-frame variables,
U = X − V T and Y , the pressure field is centered at U = 0 and the two-layer film travels at
constant speed V from right to left in each subfigure.



Elastohydrodynamic wake and wave resistance 7

-15 -10 -5 0 5 10 15
Y

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(!

2
0
;Y

)]

Bel = Bo =1
V =1

U = !20

-15 -10 -5 0 5 10 15
Y

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(!

2
0
;Y

)]

Bel = Bo =1
V =10

U = !20

-15 -10 -5 0 5 10 15
Y

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(!

2
0
;Y

)]

Bel = Bo =1
V =100

U = !20

(a)

-25 -20 -15 -10 -5 0 5
U

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(U

;0
)]

Bel = Bo =1

V =1

Y = 0

-25 -20 -15 -10 -5 0 5
U

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(U

;0
)]

Bel = Bo =1

V =10

Y = 0

-25 -20 -15 -10 -5 0 5
U

-0.9

-0.6

-0.3

0

0.3

0.6

1
=
m

a
x
[!
1
(U

;0
)]

Bel = Bo =1

V =100

Y = 0

(b)

Figure 3. (a) Normalized height profile as a function of the transverse coordinate Y , for a fixed
longitudinal coordinate U = −20 and different values of the reduced speeds V, as indicated. (b)
Normalized height profile as a function of the longitudinal coordinate U = X − V T , for a fixed
transverse coordinate Y = 0 and different values of the reduced speeds V , as indicated. In both
panels, the orange curves correspond to the elastohydrodynamic case of eqs. (2.4) and (2.5) with
Bel = 1, whereas the blue curves correspond to the viscocapillary case (Ledesma-Alonso et al.
(2016)) with a Lorentzian pressure distribution and Bo = 1.

expression from eq. (3.4) as V → 0:

R ∼ Γ 2
elV

32
. (3.5)

Similarly, using the Lorentzian pressure field of eq. (2.5), the wave resistance reads in
the low-speed regime:

R ∼ Γ 2
elV

4π
F(Bel) , (3.6)
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Figure 4. (a) Normalized height profile as a function of the transverse coordinate Y , for fixed
longitudinal coordinate U = −20 and reduced speed V = 10. (b) Normalized height profile as a
function of the longitudinal coordinate U = X−V T , for a fixed transverse coordinate Y = 0 and
reduced speed V = 10. In both panels, the orange curves correspond to the elastohydrodynamic
case of eqs. (2.4) and (2.5) for different values of the elastic Bond number Bel, as indicated,
whereas the blue curves correspond to the viscocapillary case (Ledesma-Alonso et al. (2016))
with a Lorentzian pressure distribution and different values of the Bond number Bo, as indicated.

where:

F(Bel) =

∫ +∞

0

ρ exp
(
−2√Belρ

)

(ρ4 + 1)
2 dρ . (3.7)

In the limit of a wide pressure field, Bel � 1, one obtains:

F(Bel) ∼
1

4Bel
. (3.8)

3.2. High-speed regime
In the low-speed regime of Fig. 5, one has two distinct scaling behaviours with V .

Indeed, for the Dirac case, using the asymptotic development of eq. (3.4) as V →∞, one
gets:

R ∼ −Γ
2
elΓ (−2/5)Γ (9/10)

20π3/2

1

V 1/5
, (3.9)
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Figure 5. Normalized wave resistance R/Γ 2
el, as given by eqs. (2.5) and (3.4), as a function

of the reduced speed V , for various elastic Bond numbers Bel as indicated. The Dirac limit
(Bel → 0) is indicated. The vertical dashed lines indicate the position of the maximal wave
resistance (see eq. (3.11)), for each value of Bel.

where Γ (z) is the Gamma function, and has no relation with the dimensionless quantity
Γel, which has been defined in section 1.

In contrast, for the Lorentzian pressure field of eq. (2.5), we obtain:

R ∼ 3Γ 2
el

16πB2
el

1

V
. (3.10)

From the comparison of eqs. (3.9) and (3.10), we remark that the wave resistance for a
realistic finite-size pressure field decays much faster than for the singular Dirac pressure
field.

3.3. Maximal wave resistance
As observed in Fig. 5, all the curves show a maximum for a certain speed V ∗(Bel).

An estimation of this speed can be obtained by balancing the low-speed and high-speed
asymptotic expressions of the wave resistance in the Lorentzian case:

V ∗ ∼
√

3

4F(Bel)B2
el
. (3.11)

Therefore, at high elastic Bond number, one finds:

V ∗ ∼
√

3

Bel
, (3.12)

and:

R(V ∗) ∼
√
3Γ 2

el

16πB
3/2
el

. (3.13)
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Figure 6. Computed values of the normalized maximal wave resistance R(V ∗)/Γ 2
el (blue) and

the corresponding speed V ∗ (red), as functions of the elastic Bond number Bel, according to
eqs. (3.7) and (3.11). The dashed lines represent the Dirac limits given in eqs. (3.14) and (3.15).

The limit of the maximal wave resistance as Bel → 0 can be obtained by balancing the
low-speed and high-speed asymptotic expressions of the wave resistance in the Dirac case:

V ∗ ∼
[
−8Γ (−2/5)Γ (9/10)

5π3/2

]5/6
, (3.14)

and thus:

R(V ∗) ∼ Γ 2
el
32

[
−8Γ (−2/5)Γ (9/10)

5π3/2

]5/6
. (3.15)

The asymptotic behaviors for low and high elastic Bond number, given by eqs. (3.12)
and (3.14) for V ∗, and eqs. (3.13) and (3.15) for R(V ∗), are also represented in Figure. 6.

Surprisingly, this behaviour is qualitatively different from the viscocapillary case
(Ledesma-Alonso et al. (2016)) for which the maximal wave resistance diverges in
the Dirac limit. These results are summarized in Fig. 6. Therein, the maximal wave
resistance decreases as B−3/2el at large Bel, and saturates to a finite value in the Dirac
limit. The corresponding speed V ∗ decreases as B−1/2el at large Bel, and saturates as well
in in the Dirac limit.

4. Conclusion
We presented a theoretical investigation of the effects of a moving pressure disturbance

above a thin elastic sheet placed atop a narrow viscous film. From the elastohydrodynamic
lubrication model, we computed both the wake and the associated wave resistance
experienced by the operator. A central dimensionless parameter of this study appeared to
be the so-called elastic Bond number, measuring the ratio of gravity to elastic bending. As
in the viscocapillary case, the wave resistance was observed to have a global maximum – a
point it might be interesting to control for energy-saving purposes. Finally, we conclude
our study by an asymptotic analysis of the low-speed and high-speed regimes. These
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results are relevant to a wide class of geophysical, biological, and engineering problems,
and may have implications in nanorheology, as well as wave propagation in metamaterials.
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