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[1] Quantitative knowledge of external climate forcing is
required for accurately attributing past climatic changes.
Information on volcanic activity over the past millennium
has primarily been drawn from high-latitude ice cores. A
few large events with distinct signatures in the ice are well
known and they are commonly used as marker events to
synchronize time scales in individual ice cores. Over the
past decade different efforts have been undertaken to
systematically identify lesser known eruptions and to
develop time series of past volcanic forcing. Here we
mathematically quantify the distribution of the magnitude of
volcanic events that have a climatic relevance during the
past millennium. Volcanic sulfate magnitudes of such events
clearly exhibit a ‘‘heavy tailed’’ extreme value distribution.
Indeed, the climatically relevant eruptions are only the
extremes of global volcanic activity. This characterization of
volcanic amplitude is a fundamental step in detection and
attribution studies of past natural forcing and of its effects
on climate. Citation: Naveau, P., and C. M. Ammann (2005),

Statistical distributions of ice core sulfate from climatically

relevant volcanic eruptions, Geophys. Res. Lett., 32, L05711,

doi:10.1029/2004GL021732.

1. Introduction

1.1. Motivation

[2] Large explosive volcanic eruptions can play an impor-
tant role in climate [Crowley, 2000]. Their typical spike-like
signature has been found in numerous long climatic time
series, instrumental and proxy alike [Lamb, 1970; Kelly and
Sear, 1984; Bradley, 1988; Briffa et al., 1998]. Statistically,
they can be viewed as pulse-like events, i.e. short and intense
deviations from the background climate, with a somewhat
delayed recovery. Except for the largest events, the signal of
interest is often contaminated by strong noise. In the past,
prior knowledge was often needed to allow in many cases an
identification of these smaller events. Recently, a newmethod
has been proposed for an automatic extraction of pulse-like
signals [Naveau et al., 2003] which offered the advantage of
being an objective procedure to identify the timing of events.
Additionally, a probability associated with each extracted
event provided a measure of confidence in the extracted
pulse-like event. An underlying assumption held in this study

was that the magnitude of the extracted signal would follow
a Gaussian distribution. But, since only the largest of
explosive eruptions inject significant amounts of gases and
aerosol into the stratosphere, spike amplitudes recovered in
ice cores are probably not well characterized by a Gaussian
distribution. They rather follow a skewed distribution and
can take values outside of the range of a Gaussian tail (e.g.
Tambora in 1815/16). Hyde and Crowley [2000] applied an
simple exponential function to describe large events.
Section 2 demonstrates that an analysis within the frame-
work of extreme value theory is required for modeling the
large, climatically relevant volcanic events. In Section 3, the
largest amplitudes distribution is identified as being heavy
tailed. Therefore, the exponential fit proposed by Hyde and
Crowley [2000] does not entirely capture the amplitude of
the largest peaks.
[3] Developing a parameterization of the distribution of

strong volcanic events is important for at least three reasons:
First, it provides a better tool to compare various recon-
structions that might differ somewhat in their resolution of
individual events [Robock and Free, 1995; Zielinski, 1995;
Crowley, 2000; Robertson et al., 2001]. Second, a better
description of this forcing is important for detection and
attribution of natural climate variability over the past
centuries and millennia. Finally, a parameterization can be
used to generate realistic forcing series for climate model
simulations with statistically appropriate forcing scenarios
[Hyde and Crowley, 2000].

1.2. Data Sets

[4] The volcanic data considered here include three very
different data sources of volcanic activity of the past
Millennium. For summaries of commonly used data, see
Zielinski [2000] and Robock [2000]. The first series from
the Crete ice core of South-Central Greenland [Hammer et
al., 1980] is the result of an electric conductivity measure-
ment (ECM) that records the concentration of highly con-
ducting substances such as acids (see the top panel in
Figure 1). These include sulfuric acid, the major aerosol
produced by large volcanic eruptions. In addition, the signal
might be dependent on other acids or dust deposition as well
as other factors [Wolff et al., 1997]. Consequently, this Crete
signal is strongly tainted by noise. In comparison, our
second dataset, the sulfate record from the Greenland Ice
Sheet Project - 2 (GISP2) [Zielinski et al., 1994] (see the
third panel in Figure 1), is more appropriate for the
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detection of volcanic input. This ice core obtained near the
summit in Greenland was biannually sampled and actual
sulfate, SO4

2�, was measured. We use the original noisy
sulfate data, not the volcanic sulfate series by Zielinski et
al. [1994]. Finally, the analysis is applied to a composite
time series used in climate model simulations (C. Ammann
et al., Constraining the range of solar irradiance changes
during the last millennium, submitted to Journal of Climate
Letters, 2005, hereinafter referred to as Ammann et al.,
submitted manuscript, 2005), referred here as the CSM
record and shown in the fifth panel of Figure 1. This data
series was developed in an attempt to isolate volcanic
sulfate from the noise using many ice cores. An ideal series
of this type should reflect the statistical properties found in
the individual ice cores. Since it does not contain noise, any
extraction procedure should be able to essentially capture
the full series.

2. Statistical Methodology

2.1. Extracting the Volcanic Signal

[5] Before quantifying the amplitude of pulse-like events,
we first need to identify the timing of such events and to
extract their intensities from the noise and the possible low
frequency part of the signal (trends, cycles, etc).

[6] Using prior knowledge of the volcanic activity during
the last 400 years [Lamb, 1970; Newhall and Self, 1982;
Simkin and Siebert, 1994], one can visually associate a
number of cooling events in any given climatic time series
to known volcanic events [Briffa et al., 1998]. To move
from visual devices to automatic identification procedures, a
variety of extraction methods has been studied during the
1990’s [Crowley et al., 1993; Zielinski et al., 1994]. More
recently, Naveau et al. [2003] proposed a global and
automatic extraction procedure for detecting pulse-like
events such as abrupt volcanic coolings. The same tech-
nique can also be applied to other time series containing
spikes, namely volcanic records in ice cores. The main
advantage of this automatic procedure over past methods is
that it provides a probability associated with each detected
pulse (see solid lines in Figure 1) and thus a measure of
confidence for a more accurate selection of the events. The
distribution of their intensities, however, was not clearly
characterized. The main goal of the following section is to
provide a mathematically sound model for evaluating the
distribution of such intensities.

2.2. Extreme Value Theory

[7] Extreme value theory has long been applied to a
variety of problems in finance [Embrechts et al., 1997]

Figure 1. Panels 1, 3, and 5: Crete-ECM, GISP2-Sulfate and a composite series used in climate model simulations (CSM),
see text for details and units. Panels, 2, 4, and 6: Probabilities of having a peak. In all panels, the x-axis shows the time in
year, the solid, respectively dashed, lines correspond to events with a probability greater, respectively lower, than 0.800.
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and hydrology [Katz et al., 2002]. In recent years, the
statistical methodology for extremes has also been used
for a wide range of problems in climate studies [see Smith,
1992; Kharin and Zwiers, 2000; Coles, 2001; Naveau and
Moncrieff, 2003]. To learn more about extreme value theory
and their applications, the books by Coles [2001] are
recommend.
[8] Probability theory for extremes indicates that the

distribution of the exceedances can be asymptotically
approximated by the Generalized Pareto distribution (GPD)

P X � xð Þ ¼ 1� 1þ x
x� t

s

� ��1=x
ð1Þ

where X represents the random variable of interest (ex-
ceedances). Both the x and the fixed threshold t are real
numbers for which x has to satisfy 1 + xx�t

s > 0 with s > 0 and
x � t has to be positive because it is the exceedance above
such a threshold. While s is a simple scale parameter, x
guides the tail behavior of the distribution, and thus is
responsible for representing the extremes. For example, the
classical exponential distribution corresponds to x = 0. If x >
0 (Fréchet type) then the distribution is ‘‘heavy tailed’’. This
means that large values are more likely to occur than with
classical ‘‘light tailed’’ distributions such as the Gaussian and
Gamma distributions. For example, the variance is infinite if
x > 0.5. If x < 0 (Weibull type), it has a bounded upper tail.
Hence, the sign and value of the shape parameter are very
important when modeling the behavior of exceedances. At
this juncture, we stress that the distribution of exceedances is
not chosen arbitrarily; rather the GPD is the unique
distribution derived theoretically for modeling exceedances
[e.g., see Embrechts et al., 1997]. It is important to note that
the GPD fits exceedances not only from a Gaussian sample,
but also from any continuous distribution (e.g., exponential,
uniform, Cauchy, etc.). Hence, the methodology is general
and independent of specific numerical values. Analogous to
the Central Limit Theorem that deals with sample averages,
this result concerning exceedances distribution is asymptotic,
i.e. the approximation by the GPD gets better as the sample
size increases.
[9] After applying the extraction procedure described by

Naveau et al. [2003] to our three time series (see Figure 1),
we select pulse-like events for which the posterior proba-
bility is greater than 0.8 (see panels 2, 4 and 6 in Figure 1),
i.e. with a high confidence that these peaks do not belong to
the background noise. The next step is to apply the classical
extreme value technique called Peaks Over Threshold [e.g.,
see Katz et al., 2002]. As described above, if a sufficiently
high threshold t is applied (see Table 1), exceedances above
this threshold have to follow a GDP. Classically, finding an
optimal threshold is a difficult problem. A value of t too

high results in too few exceedances and consequently high
variance estimators. For t too small estimators become
biased (the theory works only asymptotically). For our
cases, the pre-selection step of only keeping pulse-like
events with a posterior probability of greater than 0.8 has
been equivalent to remove lower values. Consequently, we
are already working in the tail of the distribution and the
threshold selection is less important, the approximation of
the exceedances by a GPD being reasonable at this stage.
Still, to optimize the threshold choice, we implement
classical threshold selection methods: mean excess function,
qq-plots, thresholds versus parameters. See Embrechts et al.
[1997, section 6.5] for more details on these techniques.
For each time series, Table 1 shows the selected threshold t
after implementing such procedures and the number of
observations above t.
[10] Finally, we estimate the GPD parameters (s and x)

by using the GPD density, i.e. the first derivative of
equation (1):

1

s
1þ x

x� t

s

� ��1=x�1

ð2Þ

Table 1. Estimated Generalized Pareto Distribution Parameters Obtained From a Maximum Likelihood

Estimationa

Data First Year Last Year Threshold t Number Above t s x

Crete 553 1972 150 20 87.85 (37.79) 0.56 (0.37)
GISP2 950 1985 35 36 29.60 (7.42) 0.24 (0.19)
CSM 850 1999 0.1 19 0.04 (0.02) 0.59 (0.49)

aSee equation (1) and Section 2.2. Numbers inside the parentheses represent the standard errors (the standard error is an
asymptotic estimate). The threshold was chosen by implementing classical threshold selection methods: mean excess function,
qq-plots, thresholds versus parameters. See Section 2.2 and Coles [2001] for more details on these techniques.

Figure 2. Panels A–C: Comparison between the histo-
gram and the fitted GPD (see equation (2)). Panel D: Log
display of the densities for the renormalized observations,
see equation (1) and Section 2.2.
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To obtain these parameters, we implement a maximum
likelihood procedure, i.e. the probability of observing our
data is maximized relative to the GPD parameters. We refer
to Coles [2001] for a detailed presentation of maximum
likelihood techniques for extremes.
[11] To assess the quality of fit, the GPD distributions

with respect to our data, the GPD density (see equation (2))
is superimposed to the histogram of the exceedances in the
three panels of Figure 2. Comparing densities with histo-
grams indicates the fit is good overall. In addition, it shows
that the largest values of the distribution are captured by the
fitted densities. This will not be the case with a simple
exponential function, and even less with a Gaussian fit.
Other diagnostic tools to assess the GPD fit quality (mean
excess function, qq-plots, thresholds versus parameters,
profile-likelihood, etc.) have also been used. These graphs
are available upon request from the authors. Note that the
number and width of the histograms in Figure 2 were
chosen in order to emphasize the three following points:
(1) exceedances do not have a symmetric distribution (in
contrast with the Gaussian case), (2) the GDP fit is
reasonable for our data and (3) the largest values are well
captured by the fitted GDP.

3. Volcanic Distribution Comparisons

[12] The GPD model allows us to compare the strength of
extreme events among the three records. Table 1 summa-
rizes the GPD characteristics of each record. For all three
time series, the shape parameter is clearly positive (see the
standard errors associated with x in Table 1). This indicates
that, overall, the distributions of exceedances are clearly
heavy tailed, although the GISP2 tail (x around 0.24
compared to while for Crete and CSM a value of around
0.6 is found, Table 1). This difference is also illustrated in
the lower-right panel of Figure 2. After rescaling each time
series by subtracting the threshold t and dividing by the
scale parameter s (because the data do not have the same
unit), the difference among the tails can be observed on a
log-scale. Crete and CSM event magnitudes are essentially
the same while the GISP2 data exhibits a somewhat less
heavy tail (though still with significantly positive x). This
result might arise because the GISP2 record is a biannual
record with a mean of the sulfate loading spread over time.
This way the peak of volcanic spikes will be somewhat
underestimated. Additionally, the location of GISP2 is
further north compared to the Crete site. Particularly the
Icelandic events (see AD 1783) are much less pronounced
in the GISP2 data.

4. Conclusion and Future Work

[13] It has been shown that the magnitudes of volcanic
eruptions as represented by different parameters in polar ice
cores are best described by a Generalized Pareto Distribu-
tion (GPD). As expected from extreme value theory, this
GPD class is universal (mathematically derived), as long as
large extremes are the object of interest. This generality of
the GDP class is illustrated by studying three time series
with different signal to noise ratios. The GPD shape
parameter becomes one of the most important indicators
when comparing the intensity of volcanic spikes and it

emphasizes the heavy tailed aspect of the explosive volcanic
signal in these three time series.
[14] The natural next step would be to test if and how the

extreme value distribution of the volcanic sulfate is preserved
in the forcing and ultimately in the climate response signals.
There is some indication that the resulting radiative forcing
might not linearly scale with the sulfate mass [Pinto et al.,
1989]. This analysis will be performed in a forthcoming
study.
[15] Finally, we would like to conclude with a note of

caution. Modeling extreme event distributions in time series
is by nature associated with a large margin of error. By
definition, extreme events are rare and therefore very few
large values are available to estimate the appropriate param-
eters. Extreme value theory helps by providing a theoreti-
cally sound model such as the GDP. Still, the estimation
procedure is generally performed on a very small sample
and it is important that the largest values retain the most
important weight in the analysis. Without this attention, the
important structure of the heavy tail can be lost.
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