Non-linear frequency warping using constant-Q transformation for speech emotion recognition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Non-linear frequency warping using constant-Q transformation for speech emotion recognition

Premjeet Singh
  • Fonction : Auteur
  • PersonId : 1090407
Goutam Saha
  • Fonction : Auteur
  • PersonId : 1090408

Résumé

In this work, we explore the constant-Q transform (CQT) for speech emotion recognition (SER). The CQT-based time-frequency analysis provides variable spectro-temporal resolution with higher frequency resolution at lower frequencies. Since lower-frequency regions of speech signal contain more emotion-related information than higher-frequency regions, the increased low-frequency resolution of CQT makes it more promising for SER than standard short-time Fourier transform (STFT). We present a comparative analysis of short-term acoustic features based on STFT and CQT for SER with deep neural network (DNN) as a back-end classifier. We optimize different parameters for both features. The CQT-based features outperform the STFT-based spectral features for SER experiments. Further experiments with cross-corpora evaluation demonstrate that the CQT-based systems provide better generalization with out-of-domain training data.
Fichier principal
Vignette du fichier
ICCCI_2021_Premjeet.pdf (258.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03134015 , version 1 (08-02-2021)

Identifiants

Citer

Premjeet Singh, Goutam Saha, Md Sahidullah. Non-linear frequency warping using constant-Q transformation for speech emotion recognition. ICCCI 2021 - International Conference on Computer Communication and Informatics, Jan 2021, Coimbatore, India. ⟨10.1109/ICCCI50826.2021.9402569⟩. ⟨hal-03134015⟩
181 Consultations
187 Téléchargements

Altmetric

Partager

More