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Abstract Due to the expension of High Dynamic Range (HDR) imaging ap-
plications into various aspects of daily life, an efficient retrieval system, tailored
to this type of data, has become a pressing challenge. In this paper, the reliabil-
ity of Convolutional Neural Networks (CNN) descriptor and its investigation
for HDR image retrieval are studied. The main idea consists in exploring the
use of CNN to determine HDR image descriptor. Specifically, a Perceptually
Uniform (PU) encoding is initially applied to the HDR content to map the lu-
minance values in a perceptually uniform scale. Afterward, the CNN features,
using Fully Connected (FC) layer activation, are extracted and classified by
applying the Support Vector Machines (SVM) algorithm. Experimental eval-
uation demonstrates that the CNN descriptor, using the VGG19 network,
achieves satisfactory results for describing HDR images on public available
datasets such as PascalVoc2007, Cifar-10 and Wang. The experimental results
also show that the features, after a PU processing, are more descriptive than
those directly extracted from HDR contents. Finally, we show the superior per-
formance of the proposed method against a recent state-of-the-art technique.
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1 Introduction

HDR imaging has received a lot of attention in modern computer graphic
applications. Its success is mainly due to its ability to capture an extremely
wide range of the illumination in real-world scenes and to produce images that
are more realistic. Numerically, the HDR image is encoded by three floating-
point numbers related to the physical luminance in the scene; typically with
96 bit per pixel (bpp) instead of 24 bpp in its Low Dynamic Range (LDR)
version.

Over the past decades, HDR imaging [1] has received significant recogni-
tion in several computer vision tasks [2,3]. As a result, the subject of HDR
image acquisition [4,5] has attracted the attention of researchers and raised
the challenge of storing the generated HDR images in specific formats. In this
context, various compression methods have been proposed to represent the
floating-point numbers in an efficient and compact way. Several formats sup-
port these types of data like RGBE [6], LogLuv [7], and OpenEXR [8] formats.
However, the use of these formats is hampered by difficulties in rendering the
HDR content on standard display devices that are designed for conventional
images. This problem has been tackled by using tone mapping operators [9],
which aim at reducing the high dynamic range while preserving the image
content such as contrast, brightness, and colors. On the other hand, some
researchers [10,11,12,13,14,15,16] are interested in developing reverse tone
mapping (rTM) methods to expand LDR content to HDR. The principle of
rTM is to estimate, from the LDR image, the real-world luminance values as
faithfully as possible.

In accordance with the development of HDR imaging, it is expected that
the number of HDR images will grow rapidly and that collections of this type
of images will become available in different application domains. Therefore,
the development of effective HDR image indexing and retrieval methods is
becoming extremely important. In the literature, many works have focused on
LDR image retrieval using different methods. In the last few years, deep learn-
ing approaches have become foremost choice to address most problems in the
fields of computer vision and image processing like Image Dehazing [17,18],
Recommender System [19], Object Detection [20], Visual Captioning[21] and
Image retrieval [22,23,24,25,26,27]. The latter is a fundamental task in many
computer vision applications. It gained the interest of the scientific commu-
nity to access, search or browse effectively the images from databases. Several
CNN based methods have been developed in this field to supply a high-level
description of image content. In section 2, we introduce some of them.

The CNN architecture provides an attractive solution for different tasks
thanks to its high performance, discriminative power, and compact represen-
tation, allowing for a large-scale data modeling. However, to the best of our
knowledge, no CNN-based scheme has been proposed yet for the purpose of
HDR image retrieval. In this paper we aim to shed light on this issue. Specif-
ically, we propose a query-by-example HDR image retrieval method that uses
the Fully Connected (FC) layer activation to define the relevant features of



Query-by-example HDR image retrieval based on CNN 3

HDR images. Before passing through the descriptor computation stage, the
HDR pixels are modified by using a Perceptually Uniform (PU) encoding [28]
to map the luminance values in a perceptually uniform scale. The originality
of our approach lies in extracting and testing the CNN features on the HDR
contents. To this end, we selected the method that has powerful descriptors
and high HDR retrieval accuracy. The novel contributions of this work are
listed as follows:

– Design an algorithm for HDR image retrieval based on CNN.
– Apply PU encoding [28] to HDR content and evaluate its influence on the

retrieval accuracy.
– Build an HDR image database for the purpose of retrieval performance

evaluation.
– Analyse the efficiency of CNN descriptor and report the performance of

Visual Geometry Group Network (VGGNet).
– Evaluate the effectiveness of the proposed retrieval algorithm according to

the number of layers in CNN.
– Demonstrate the competitiveness of conventional and FC layers for LDR

and HDR datasets.
– Present experiments showing significant accuracy improvements on recent

state-of-the-art method.

The paper is structured as follows: In Section 2, we give a brief overview
on the related works regarding HDR image retrieval and the use of CNN
methodology. In Section 3 we present the commonly used CNN architecture.
In Section 4, we describe the proposed CNN-based scheme for HDR image
retrieval. In the experimental section 5 we compare our method to other ones
in the literature and assess their accuracy. Finally, conclusions are drawn in
Section 6.

2 Related work

In the last few years, some works have focused on HDR image retrieval. In [29],
the authors proposed to use histogram intersection to define an HSV color de-
scriptor. The results of the experiments have revealed that HSV histograms
can be efficiently used as a global descriptor for HDR image retrieval task.
To ameliorate their method, the authors in [30,31] combined the HSV color
histograms with color moments. Despite their practical use, these approaches
[30,31,29] seem to be very limited compared to the abilities of local descrip-
tors that have been proved to be very effective for indexing applications. Some
researchers [32,33,34] turned their attention to the detection of key-points in
HDR images, under changing illumination conditions, varying camera view-
points, camera distances and scene lighting. Experimental results, reported in
[32,34], demonstrated that the direct use of HDR image in a linear scale is
inappropriate for key-points detection. In [35], the authors introduced a new
retrieval method based on LDR expansion. They improved the feature extrac-
tion by using reverse tone mapping and applying a tone mapping operator
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to determine the Scale Invariant Feature Transform (SIFT) descriptor. The
experimental results showed the potential of the tone-mapped HDR content
for detecting the local descriptors and demonstrated that the selected features
are more descriptive than those extracted from LDR and HDR versions. The
authors in [35] also established that the use of local SIFT descriptors is not
appropriate for HDR images.

Recently, to achieve a higher level of robustness, researchers have success-
fully used machine learning approaches in many imaging applications. Gener-
ally speaking, deep learning systems allow building rich features with hierar-
chical representation, resulting is an effective classification [40]. Particularly,
CNN architecture becomes one of the most interesting topics that revolu-
tionized the field of computer vision like segmentation and object detection
[36,37]. It is characterized by its ability to capture different patterns while
achieving a high classification accuracy. In literature, several systems, based
on CNN, have been investigated to effectively describe LDR images. Among
these, some methods use the activations of fully connected or convolutional lay-
ers as image descriptors [23,24,25,26,27]. In [37], authors propose off-the-shelf
CNN features. They extract generic features from OverFeat network using the
fully connected (FC6) of AlexNet and demonstrate that this approach clearly
outperforms local features methods. Various works use the activations of max-
pooling from convolutional layers like [54]. To obtain compact descriptors, a
number of dimensionality reduction methods are applied like Principal Com-
ponent Analysis (PCA) [25,27], Bag-of-Words [55], VLAD [42] and Fisher
Vectors [56]. Authors in [57] propose to use a trainable Generalized-Mean
(GeM) pooling layer. The idea consists in adding a new pooling layer with
learnable parameters after the convolutional layers. Then, a whitening is ap-
plied to reduce the descriptor dimensionality. In [57], the authors introduce a
new weighted query expansion. The work presented in [58] consists in building
a descriptor based on the regional maximum activations of convolutions (R-
MAC) descriptor [27] and learn CNN weights in an end-to-end method, and
applying the siamese network with three streams and a triplet loss for train-
ing. Regional network is proposed to select the relevant regions of the image,
using image scaling to extract local features. Other solution consists in adding
a new layer named NetVLAD that can be applied in any CNN architecture. It
is trainable through backpropagation for an end-to-end manner. The obtained
features are reduced using PCA. In [22], authors introduce a spatial pyramid
pooling (SPP) of CNN features which is an extension of the BoW. It generates
a fixed-length representation regardless of image size/scale. Recently, authors
in [59] introduce an end-to-end trainable network using multiscale local poling
based on NetVLAD and a triplet mining. In [60], the authors present global
descriptors REMAP based on a hierarchy of deep features using multiple CNN
layers.

A number of methods have been developed to define binary codes based on
deep learning [53,51]. Recently, a unified framework has been introduced for
image retrieval and compression [51]. This framework applies the deep hashing
method to learn compact binary codes and uses a new loss function to adapt
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the binary representation. For retrieval purpose, VGG network is used with a
specific configuration. For a manifold structure of the training data, K-Nearest
Neighbor (KNN) algorithm is applied to create a neighborhood matrix during
the learning of neural networks, which can be unsupervised or supervised.
Experimental results show that this method outperforms some existing state-
of-the-art ones.

Using CNN features can be global [41,40], local [42,44] or regional [43].
However, the CNN has a common architecture which described in the following
section.

3 CNN architecture

Convolutional Layer: The convolutional (Conv) layer is the main compo-
nent that allows extracting the images features. It is performed on the input
image using a set of kernels (weights) as parameters. The different kernels are
convolved across the width, height, and depth of the input volume using a dot
product for returning the output volume. This layer comprises a rectangular
grid of neurons. Specifically, each block of pixels is stretched into a matrix
column, and the number of columns corresponds to the number of all local re-
gions. As a result, the matrix multiplication is converted to the output volume
with a depth that corresponds to the kernel number for obtaining the compact
description of the input volume.

Pooling Layer: After each convolutional layer, a pooling layer may be
used. The latter is a simple operation that is applied independently on the
input volume. In the kernel, the pooling layer represents the outputs of neigh-
boring groups of neurons. The most common type of pooling is the maximum.
It is used to decrease the size (width and height dimensions) of the feature
map while preserving the relevant information.

Normalization Layer: This layer supports a faster convergence. It allows
adjusting the internal activations by using it before the activation function. In
literature, various models of normalization have been proposed for ConvNet
architectures. The two most commonly types used are the Local Response Nor-
malization (LRN) and Batch Normalization (BatchNorm). The later performs
a more global normalization. However, LRN implements the normalization in
a small local neighborhood for each pixel. This method introduced in [40] and
applied in [39] using the same parameters. The normalized output is given as
following:

Y ix,y = Xi
x,y/

κ+ α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(Xj
x,y)2

β

(1)

where Xi
x,y and Y ix,y are the pixel values at the (x, y) position of the the

kernel i before and after normalization respectively. N is the total number of
feature channels in X. The different constants are used as hyper-parameters
where κ = 2, n = 5, α = 10−4 and β = 0.75.
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Fully-Connected Layer: All neurons in this layer are connected to all
activations in the previous layer, which can be calculated with a matrix mul-
tiplication followed by a bias offset. It takes as input the result of the previous
layers (convolution and pooling) and returns a single vector which describe
the image. However, this layer occupies the major part of CNN memory and
requires high computation cost, due to the large number of parameters.

Correction layer (activation function): To improve the CNN effi-
ciency, a correction layer is incorporated between layers. Its role consists in
using an activation function to make the output nonlinear. The commonly
used activation function is the rectified linear unit (ReLU) that applies an
element wise function (f(x) = max(x, 0)). In addition to its simplicity, the
ReLu activation function does not require any additional parameter and does
not change the size of input volume.

Loss layer: Loss layer is the last layer in the neural network. It specifies
how network training penalizes the gap between expected and actual signal.
Various loss functions, adapted to different tasks, can be employed. In partic-
ular, the Softmax function, also known as normalized exponential function, is
used to predict a single class among K mutually classes. The Softmax function
takes as input a vector of K real numbers and normalizes it into a probability
distribution consisting of K probabilities (σ(.)) proportional to the exponen-
tials of the input numbers. In the case of neural network, given the vector of
the output layer z = [z0, . . . , zK−1], the conventional Softmax function can be
expressed as follows:

σ(z)j =
ezj∑K
k=1 e

zk
(2)

where j the index of the output unit, with j = 1, 2, ...,K.
Many studies [43,25,45] have shown that CNN features can be success-

fully retrieved from traditional LDR images. On the other hand, deep learning
methodology has been previously proposed for companding HDR image from
a single exposed LDR one [14,15,16]. Additionally, the CNN architecture has
been used to reconstruct HDR video using multiple exposures captured over
time [38]. But, to the best of our knowledge, the CNNs have never been inves-
tigated for the purpose of HDR image indexing and retrieval.

In this work, we attempt to exploit the many advantages of the CNNs to
design an HDR image retrieval system. The proposed method is discussed in
detail in the following section.

4 Proposed method

To determine the adequate descriptor, we model an HDR image as a collec-
tion of features using the VGG19 architecture [28]. Figure 1 summarizes the
main steps that constitute the proposed scheme for Query-by-example HDR
image retrieval. The database is divided into training and testing sets. Firstly,
a perceptually uniform (PU) encoding [28] is applied on HDR images. This
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Fig. 1 Block diagram of the proposed HDR retrieval method.

encoding procedure is defined by a specific transfer function that prepares the
HDR content to the feature extraction. Notably, the PU encoding is used to
make sure that the distortion visibility is perceptually uniform through the
coded pixels. For example, it can decrease the color sensitivity when the lu-
minance is low. Secondly, a CNN descriptor is performed by extracting the
rich features using FC layer activation. Doing so, each image in the dataset
(training data and test data) will be indexed by a CNN feature vector (DTr

(Descriptors of traing data) and DTs(Descriptors of testing data)). Finally, the
sought HDR images are retrieved according to the Support Vector Machines
(SVM) classification. We note that the model of SVM classifier is determined
according to the features of training samples.

4.1 Extraction of CNN features

VGGNet [39] is a widely known network that encompasses 19 layers (convo-
lutional and fully-connected). It is recognized by its simplicity and the large
feature maps. Conforming to its architecture, each hidden layer uses the acti-
vation function ReLU. Depending on the training data, the size of RGB image
is fixed to 224 × 224. A stack of convolutional layers is applied to the image
using 3× 3 filters, with very small sizes, for capturing the different left/right,
up/down and center details like mentioned in [39]. For example, 1×1 convolu-
tion filters are used as linear transformation. The stride of convolution equals



8 Raoua Khwildi et al.

to 1 pixel and the spatial padding is 1 pixel for 3 × 3 convolutional layers.
Concerning the pooling layer, the operation is applied on 2× 2 pixel window
and stride 2. In total, five max-pooling layers are used after some convolu-
tional ones. The convolutional layer is designated by Convm n, where m and
n refer to the order of the convolutional layer in the stack and the order of
the stack, respectively. For example, Conv1 1 is the first convolutional layer
in the first stack whereas Conv5 4 is the deepest layer in this network. In the
top level of this architecture, there are three FC layers. The latter are applied
after a set of convolutional layers that are characterized by the same archi-
tecture. The first and the second FC layers are of size 4096 channels; while
the third one comprises only 1000 channels. As illustrated in Figure 2, the
global network architecture uses 19 weight layers: 16 convolutional and 3 FC
layers. It is worth noting that the VGG16 architecture uses a configuration
with decreasing depth. Only 16 layers are implemented without using Conv3 4,
Conv4 4 and Conv5 4 layers. In this network, each layer has different feature
maps that can be applied as local descriptor with a specific dimension. Previ-
ous work established that the use of FC features improves the image retrieval
accuracy[46,26]. This is mainly due to their high generalization and semantic
descriptive ability. In this work, we propose to extract the 4096 dimensional
output of the second FC layer. Then, replace the softmax layer with a linear
SVM model which is recognized by its very good practical results. The next
section gives an overview of the linear SVM.

Fig. 2 The VGGNet architecture used for CNN features extraction
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4.2 Linear SVM

SVM is one of the commonly used algorithms in machine learning applications,
thanks to its powerful discriminative classifier. A hybrid approach which com-
bines CNN and linear SVM has been proposed in some works such as [47,
48,49]. The latters have concluded that CNN architecture can achieve an im-
pressive performance if it is combined with linear SVM instead of Softmax.
As demonstrated in [48], the linear SVM algorithm can be used for each layer
with no additional fine-tuning of hidden representation.

In the field of image retrieval, the linear SVM algorithm allows to find the
optimal separating hyperplane between classes using training samples. In our
work, the feature vector is normalized used L2. For a given training dataset
xi, yi, with i ∈ 1, . . . , N and N the number of training samples, yi equals +1
and −1 for class ω1 and class ω2, respectively. In the case of linearly separable
descriptors, it is possible to find at least one hyperplane defined by a vector
of weights w with a bias b, if we can separate the classes without error using
the following classification function:

f(x) = w · x+ b = 0. (3)

Therefore, to find an hyperplane, we need to estimate w and b using the
following functions:

yi(w · xi + b) ≥ +1 for yi = +1 (class ω1), (4)

yi(w · xi + b) ≤ −1 for yi = −1 (class ω2). (5)

5 Experimental results

In this section, we present and compare the experimental results on LDR
and HDR datasets. Firstly, we describe HDR databases and valuation criteria
which were used in these experiments. Then, we provide a quantitative eval-
uation of the HDR image retrieval performance compared to LDR one using
the features extracted with the CNN framework. Also, we provide comparative
evaluations to other related methods. Finally, we assess the time complexity.

5.1 Databases and measures

Although there is a growing interest in HDR content, the amount of available
data remains limited to evaluate and test HDR indexing and retrieval systems.
Fortunately, the rapid development of HDR tools has made it possible to
easily generate an HDR image. Thus, in order to create HDR databases, we
used the inverse tone mapping method presented in [13], which provides very
satisfactory results, to build HDR images by expending LDR ones. In the
current work, we consider LDR PASCAL VOC2007, CIFAR-10, and Wang
databases.
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– PASCAL VOC2007 database: It is one of the most widely used bench-
mark for image classification. It contains 9963 RGB images divided into
20 classes (Person, Bird, Cat, Cow, Dog, Horse, Sheep, Airplane, Bicy-
cle, Boat, Bus, Car, Motorbike, Train, Bottle, Chair, Dining table, Potted
plant, Sofa and TV/Monitor) and is available at http://host.robots.

ox.ac.uk/pascal/VOC/voc2007/index.html

– CIFAR-10: It is one of the most popular deep learning dataset. It comprises
60000 natural images of size 32× 32 divided into 10 categories (Airplane,
Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, and Truck). From
the CIFAR-10 collection, 50000 images are devoted to training (5000 for
each class) while the remaining 10000 images are devoted to testing (1000
for each class) https://www.cs.toronto.edu/~kriz/cifar.html

– Wang: It contains 1000 images classified into ten categories (Africa, Beach,
Buses, Monuments, Dinosaurs, Elephants, Flowers, Horses, Mountains, Food).
Each category comprises 100 images. http://wang.ist.psu.edu/docs/

related/

Several performance measures can be used to asset the efficiency of index-
ing/retrieval methods. Specifically, evaluation over different datasets is per-
formed by using testing images (one or more images as the query), and rank-
ing the images from the most similar to the least similar. The performance
for a particular method is estimated by the average of the performances over-
all query images. To asset the efficiency of the test methods we retained the
following measures:

– Precision against recall plot: A curve illustrating the relationship between
precision and recall for retrieval system. The precision represents the abil-
ity of retrieval algorithm to return only images that are relevant whereas
the recall corresponds to the system ability to return all images that are
relevant.

– mAP: The mean Average Precision (mAP) of a set of queries is a common
metric used to evaluate the effectiveness of an image retrieval system. It
is worth noting that among retrieval evaluation measures, mAP has been
shown to have good discrimination and stability.

– Accuracy: It can be defined as the percentage of correctly classified in-
stances

5.2 Image retrieval Results

To evaluate the performance of our HDR image retrieval approach and inves-
tigate the impact of CNN, retrieval experiments are carried out from HDR
and LDR versions of PASCAL VOC2007 database using the mAP scores.
Table 1 shows the retrieval accuracy using SIFT and CNN descriptors for
LDR (LDR-SIFT/LDR-CNN), Expanded-Mapped (EM-SIFT), HDR with lin-

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://wang.ist.psu.edu/docs/related/
http://wang.ist.psu.edu/docs/related/
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ear luminance values (HDR-Lin-CNN) and HDR with PU encoding (HDR-
PU-SIFT/HDR-PU-CNN) representations. We note that both LDR-SIFT and
EM-SIFT [35] methods use a bag of visual words as descriptor.

From the results reported in Table 1, we observe that in the case of HDR-
PU-CNN descriptor, the mAP scores reveal the excellent results for the ma-
jority of classes. This may be explained by the fact that PU encoding plainly
improves the effectiveness of the CNN descriptor. Additionally, this encoding
procedure leads to more accurate results than that provided by original LDR
content. On average, PU encoding provides a gain of about 2.71% and 1.11%
for CNN and SIFT features respectively, when compared to the same features
obtained from LDR representation.
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Fig. 3 Retrieval performance using mAP measure for LDR, HDR-Lin and HDR-PU rep-
resentations using VGG16 and VGG19 frameworks on some classes of PASCAL VOC2007
dataset.

Earlier studies have shown that the SIFT descriptor is recognized by its
ability to capture the local object details like edges and corners and, conse-
quently, achieves a good performance for image retrieval. In the case of HDR
images, our experiments prove that the use of PU encoding allows to enhance
the representation of HDR images. On the basis of the results reported in
Table 1, the majority of mAP values of HDR-PU-SIFT are higher than 70%.
However, in some classes like Bottle, Pottedplant and Sheep, the mAP scores
are lower than 50%. In counterpart, by examining the results obtained with
CNN descriptor, it appears that the later entails advantages in terms of re-
trieval efficiency thanks to its capability to learn different images and success-
fully model HDR data. The results of our analysis reported in Table 1 clearly
show that the CNN descriptor systematically outperforms EM-SIFT [35] and
HDR-PU-SIFT ones. Moreover, we remark that the mAP scores obtained by
HDR-PU-CNN method surpass 95% for most classes.

From a more quantitative point of view, we studied the impact of the ex-
tracted features using VGG16 and VGG19 on LDR, HDR-Lin (HDR with
linear luminance values) and HDR-PU (HDR with PU encoding) representa-
tions. For a given HDR-PU content, we extracted features from some layers
(conv5 1 (C5 1), conv5 3 (C5 3), FC1 and FC2) and compared the match-
ing precisions to those obtained for LDR and HDR-PU versions in PASCAL
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Fig. 4 Accuracy results for some classes of CIFAR-10 database, using different layers in
VGG19 framework.

VOC2007 dataset. From Figure 3, we observe that the VGG19 model achieves
higher performance for HDR content (HDR-Lin and HDR-PU) in different
layers. It gives very high precision and outperforms the VGG16 model. We
believe that this is mainly due to the number of layers which strongly influ-
ences the richness of the information in the HDR feature descriptor. However,
in the case of LDR content, the results obtained by using VGG16 and VGG19
are almost similar. Again, one may also conclude that PU encoding improves
the precision of the HDR content and consequently induces an overall retrieval
efficiency gain. For instance, the gain of PU is about 20.92% in Airplane class
using FC2 as descriptor. Moreover, we can clearly notice that when FC layers
are considered, the mAP scores for LDR and HDR-PU contents are very close.
For some classes like Dog, the LDR content exhibits a superior performance
compared to HDR representation. This limitation stems from the high sensi-
tivity of HDR content that badly affects the matching accuracy against the
original dataset. As discussed above, the PU encoding has proven its useful-
ness to alleviate this limitation by adjusting the HDR pixel values and reduce
their sensitivity.
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Table 2 Comparison Accuracy scores with other methods using LDR and HDR represen-
ations on the Wang dataset

Global Method [31] Local Method [35] CNN Method

LDR HDR LDR HDR Expended-mapped HDR LDR

68.49 68.62 92.34 57.78 93.16 100 100

Table 3 Performance comparison (mAP) with other method on the Cifar-10 dataset

Method mAP
Proposed method (LDR) 94.6

Proposed method (HDR-PU) 95.1
BGAN+ [51] 89.4

We have also tested our retrieval method, using VGG19 network, on the
CIFAR-10 database. Figure 4 presents the accuracy results for some classes.
From this figure, we can see that the FC features outperform the convolutional
ones for all the recall values. Specifically, the accuracy of the top layers is
superior to that obtained from the bottom ones. One may also notice that in
the case of C5-1 layer, the PU encoding shows a distinctive improvement for
all the classes. Quantifying the retrieval performance improvements, brought
by PU encoding, a gain in accuracy of about 3.35% and 1.36% is attained for
Automobile and Deer classes, respectively, when compared it to the HDR-Lin
using descriptor FC1.

In Table 2, we compare the CNN method for HDR and LDR representations
with other state-of-the-art methods (Global and local) on Wang dataset. 30
images per class are randomly selected for training. From this table, we can
notice that the CNN descriptor offers the best result for both LDR and HDR
content. It achieves good retrieval power for HDR content because the features
are more descriptive than those extracted from [35] and [31]. This is explained
by the fact that CNN descriptor fits well for HDR content. Meanwhile, local
method(SIFT) owns the worst accuracy.

Table 3 shows the CIFAR-10 retrieval results based on the mAP for the
proposed method and BGAN+ [51], a recent state-of-the-art learning-based
hashing method for image retrieval. According to these results, we observe
that the proposed method achieve strong results, and it outperforms BGAN+
in terms of precision.

As a last comparison, we carried out evaluations of the proposed retrieval
method on the whole CIFAR-10 database. Figure 5 illustrates the precision–recall
plots for the whole dataset. From the depicted curves, we observe that the con-
figuration that uses the first and second FC layers owns a higher performance
against the other ones. However, the performance decreases when using the
bottom layers of the CNN framework. One may safely conclude that the selec-
tion of the network architecture and depth are crucial to achieve a successful
HDR content retrieval.
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Fig. 5 Precision vs Recall curves of the tested VGG19 framework (under different config-
urations) using the HDR-PU representation on the whole of CIFAR-10 database.

Query 1
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Query 3

Fig. 6 Some examples of query HDR images from our HDR CIFAR-10 dataset and the
top-9 retrieval results

Figure 6 shows three queries and their corresponding top 9 retrieved HDR
images from CIFAR-10 dataset using the proposed method. Query 1 is from
Automobile class, Query 2 is from Frog class and Query 3 is from Horse class.
The different HDR images are tone mapped using the TMO proposed in [31]
to ensure the rendering on LDR devices. As we can see from this figure, the
retrieved images in the first positions of the rank lists belong to the same
class as their corresponding queries. This proves the effectiveness of the CNN
features in HDR image retrieval despite the large scale difference between
images.

5.3 Complexity evaluation

In order to evaluate the time complexity of the proposed CNN method, execution-
time tests are performed on a machine with an Intel(R) Xeon CPU E5-2640
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v4 Core 10 at 2.40 GHz. For example, for the CIFAR-10 dataset, the running
time for the retrieval of an HDR image takes on average: 400 ms for CNN
Features Extraction, 4 ms for PU encoding, and 78 ms for SVM classifier.

6 Conclusion

We have presented an HDR image retrieval method based on the CNN paradigm.
To ameliorate the accuracy of the proposed approach, the PU encoding is
applied on the HDR pixel values before passing to the computation of the
descriptor components. Through this work, we have reported, for the first
time, results competing with some methods on the challenging HDR PASCAL
VOC2007, CIFAR-10 and Wang datasets. In the same context, we have pro-
vided good practices for extracting features from some layer of the CNN, using
VGG19 pre-trained model. Experimental assessments have demonstrated that
the CNN features exhibit substantial performance improvements over SIFT de-
scriptor. Moreover, the obtained results reveal that the FC layers offer the best
performance among the other CNN intermediate layers. Hence, we can claim
that it is very appropriate for describing HDR images. However, it must be
emphasized that in some layers, especially in VGG16 framework, the accuracy
of our retrieval method, applied on HDR images is lower than its counterpart
applied on LDR images. This discomfort is particularly faced when using a de-
creasing number of layers. As future work, we intend to resolve this problem,
by incorporating additional discriminative cues in the layers to enhance the
HDR features based on CNN descriptor. As another promising line of future
work, we plan to investigate the HDR datasets on deep CNN architecture like
ResNet and adjust it to HDR content.
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