
HAL Id: hal-03133908
https://hal.science/hal-03133908

Submitted on 7 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decomposition of arrow type positive semidefinite
matrices with application to topology optimization

Michal Kočvara

To cite this version:
Michal Kočvara. Decomposition of arrow type positive semidefinite matrices with application to topol-
ogy optimization. Mathematical Programming, 2020, �10.1007/s10107-020-01526-w�. �hal-03133908�

https://hal.science/hal-03133908
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Decomposition of arrow type positive semidefinite matrices
with application to topology optimization

Michal Kočvara

Received: date / Accepted: date

Abstract Decomposition of large matrix inequalities for matrices with chordal sparsity
graph has been recently used by Kojima et al. [8] to reduce problem size of large scale
semidefinite optimization (SDO) problems and thus increase efficiency of standard SDO
software. A by-product of such a decomposition is the introduction of new dense small-size
matrix variables. We will show that for arrow type matrices satisfying suitable assumptions,
the additional matrix variables have rank one and can thus be replaced by vector variables of
the same dimensions. This leads to significant improvement in efficiency of standard SDO
software. We will apply this idea to the problem of topology optimization formulated as
a large scale linear semidefinite optimization problem. Numerical examples will demon-
strate tremendous speed-up in the solution of the decomposed problems, as compared to the
original large scale problem. In our numerical example the decomposed problems exhibit
linear growth in complexity, compared to the more than cubic growth in the original prob-
lem formulation. We will also give a connection of our approach to the standard theory of
domain decomposition and show that the additional vector variables are outcomes of the
corresponding discrete Steklov-Poincaré operators.

Keywords Semidefinite optimization · Positive semidefinite matrices · Chordal graphs ·
Domain decomposition · Topology optimization

Mathematics Subject Classification (2010) 90C22 · 74P05 · 65N55 · 05C69

1 Introduction

General purpose algorithms and software for semidefinite optimization (SDO) are domi-
nated by interior point and barrier type methods. Any such software exhibits two bottle-
necks regarding computational complexity, and thus CPU time, and memory requirements.

This work has been supported by European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement 813211 (POEMA).

Michal Kočvara
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK and Institute of Informa-
tion Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věžı́ 4, 18208
Praha 8, Czech Republic, E-mail: m.kocvara@bham.ac.uk

2 Michal Kočvara

The first one is the evaluation of the system matrix (Schur complement matrix or Hessian
of augmented Lagrangian) in every step of the underlying Newton method. The second one
is then the solution of a linear system with this matrix. For problems with large matrix in-
equalities, it is often the first bottleneck that dominates the CPU time and that prevents the
user from solving large scale problems.

To circumvent this obstacle, the technique of decomposition of a large matrix inequal-
ity into several smaller ones proved to be efficient, at least for certain classes of problems.
Decomposition of positive semidefinite matrices with a certain sparsity pattern was first in-
vestigated in Agler et al. [1] and, independently, by Griewank and Toint [4]. An extensive
study has been recently published by Vandenberghe and Andersen [13]. We will call this
technique chordal decomposition. It was first used in semidefinite optimization by Kojima
and his co-workers; see [3,10] and, more recently, [8]. The group also developed a pre-
processing software for semidefinite optimization named SparseCoLO [2] that performs the
decomposition of matrix constraints automatically.

The goal of this paper is twofold. Firstly, we introduce a new decomposition of arrow
type positive semidefinite matrices called arrow decomposition. Unlike the chordal decom-
position that generates additional dense matrix variables, arrow decomposition only requires
additional vector variables of the same size, leading to significant reduction of number of
variables in the decomposed problem. The second goal is to apply both decomposition tech-
niques to the topology optimization problem. This problem arises from finite element dis-
cretization of a partial differential equation. We will show that techniques known from do-
main decomposition can be used to define the matrix decomposition. In particular, we will be
able to control the number and size of the decomposed matrix inequalities. Even when using
the chordal decomposition, this will allow us to gain tremendous speed-up when compared
to approaches based on automatic chordal completion as in [2]. We will also give a connec-
tion of the arrow decomposition with the theory of domain decomposition and show that
the additional vector variables are outcomes of the corresponding discrete Steklov-Poincaré
operators.

To solve all semidefinite optimization problems, we will use the state of the art solver
MOSEK [9]. Numerical examples will demonstrate tremendous speed-up in the solution
of the decomposed problems, as compared to the original large scale problem. Moreover,
in our numerical examples the arrow decomposition exhibits linear growth in complexity,
compared to the higher than cubic growth when solving the original problem formulation.

Notation Let Sn be the space of n × n symmetric matrices, A ∈ Sn, and I ⊂ {1, . . . , n}
with s = |I|. We denote

– by (A)i,j the (i, j)-th element of A;
– by (A)I the restriction of A to Ss, i.e., the s × s submatrix of A with row and column

indices from I ;
– by Om,n the m × n zero matrix; when the dimensions are clear from the context, we

simply use O.

A matrix is called dense if all its elements are non-zeros. Otherwise, the matrix is called
sparse. A matrix-valued function A(x) is called dense if there exists x̄ such that A(x̄) is
dense.

Let A ∈ Sn. The undirected graph G(N,E) with N = {1, . . . , n} is called sparsity
graph of A (or just graph of A) when (i, j) ∈ E if and only if (A)i,j 6= 0.

Decomposition of arrow type positive semidefinite matrices 3

For an index set I ⊂ {1, . . . , n} we define

Sn(I) := {Y ∈ Sn | (Y)i,j = 0 if (i, j) 6∈ I × I}
Sn+(I) := {Y ∈ Sn(I) | Y � 0} .

Furthermore, let G(N,E) be an undirected graph with N = {1, . . . , n} and edge set E ⊆
N ×N . We define

Sn(G) := {Y ∈ Sn | (Y)ij = 0 if (i, j) 6∈ E ∪ {(i, i)}}

and analogously Sn+(G).
Let Gs(Ns, Es) be an induced subgraph of G(N,E). Notice the difference between

Sn(Gs) and Sn(Ns). If A ∈ Sn(Ns) then its restriction (A)Ns
is a dense matrix. This is

not true for A ∈ Sn(Gs), the sparsity pattern of which is given by the set of edges Es. In
particular, Sn(Gs) = Sn(Ns) if and only if Gs is a maximal clique.

Finally, for functions from Rd → R we will use bold italics (such as u or u(ξ)), while
for vectors resulting from finite element discretization of these functions, we will use the
same symbol but in italics (e.g. u ∈ Rn).

2 Decomposition of positive semidefinite matrices

2.1 Matrices with chordal sparsity graphs

We first recall the well-studied case of matrices with chordal sparsity graph. The following
theorem was proved independently by Grone, et al. [5], Griewank and Toint [4] and by Agler
et al. [1]. A new, shorter proof can be found in [7].

Theorem 1 Let G(N,E) be an undirected graph with maximal cliques C1, . . . , Cp. The
following two statements are equivalent:

(i) G(N,E) is chordal.
(ii) For any A ∈ Sn(G), A � 0, there are matrices Yk ∈ Sn+(Ck), k = 1, . . . , p, such that

A = Y1 + Y2 + . . .+ Yp .

Notice that this decomposition is not unique. However, Kakimura [7] has shown that there

exist matrices Y ∗k minimizing
p∑
k=1

rankYk subject to
p∑
k=1

Yk = A and Yk ∈ Sn+(Ck)

(k = 1, . . . , p) and that
p∑
k=1

rankY ∗k = rankA.

2.2 Matrices embedded in those with a chordal sparsity graph

Let A ∈ Sn, n ≥ 3, with a sparsity graph G = (N,E). Let the set of nodes N =
{1, 2, . . . , n} be partitioned into p ≥ 2 overlapping sets

N = I1 ∪ I2 ∪ . . . ∪ Ip .

Let Ik,` denote the intersection of the kth and `th set, i.e.,

Ik,` := Ik ∩ I` , (k, `) ∈ Θp

with
Θp := {(i, j) | i = 1, . . . , p− 1; j = 2, . . . , p; i < j} .

4 Michal Kočvara

Assumption 1. Let 1 ≤ k ≤ p. There exists at least one index ` with 1 ≤ ` ≤ p, ` 6= k,
such that Ik ∩ I` 6= ∅.

Assumption 2. Ik ∪ I` 6= Ik for all 1 ≤ k, ` ≤ p, k 6= `, i.e., no I` is a subset of any Ik.

Assumption 3. The intersections are “sparse” in the sense that for each k ∈ {1, . . . , p} there
are at most pk indices `i such that Ik ∩ I`i 6= ∅, i = 1, . . . , pk, where 1 ≤ pk � p.

In a typical situation only Ik,k+1, k = 1, . . . , p− 1, are not empty (corresponding to a
block diagonal matrix with overlapping blocks) or Ik has a non-empty intersection with up
to eight other sets (see Section 4).

Denote the induced subgraphs of G(N,E) corresponding to Ik by Gk(Ik, Ek), k =
1, . . . , p. These subgraphs are not necessarily cliques.

Lemma 1 Let A be defined as above and Assumptions 1–3 hold. Then there exist matrices
Qk ∈ Sn(Gk) such that

A =

p∑
k=1

Qk .

The proof of the above lemma is obvious, as the principal submatrices associated with the
subgraphs Gk(Ik, Ek) cover all the nonzeros in A. However, although matrices Qk are
obviously non-unique, in our application in Section 3 they will be specified a priori and will
be, in fact, used for the construction of the matrix A.

For all k = 1, . . . , p, let Ĝk(Ik, Êk) denote a completion of Gk(Ik, Ek), i.e., a clique
in G(N,E). According to Assumption 2, Ĝk(Ik, Êk) are even maximal cliques. Clearly,
Qk ∈ Sn(Ĝk).

Assumption 4. The union Ĝ(N, Ê) :=
p⋃
k=1

Ĝk(Ik, Êk) is a chordal graph.

The graph Ĝ(N, Ê) ⊃ G(N,E) is called a chordal extension of G(N,E); see, e.g.,
[13, Section 8.3].

Notice that the rather restrictive Assumption 4 is satisfied when A is a block diagonal
matrix with overlapping blocks. It may not be satisfied in the application in Section 4; we
will see, however, that it will not be needed in this application.

Theorem 2 Let A be defined as above and Assumptions 1–4 hold. The following two state-
ments are equivalent:

(i) A � 0.
(ii) There exist matrices Sk,` ∈ Sn(Ik,`), (k, `) ∈ Θp, such that

A =

p∑
k=1

Q̃k with Q̃k = Qk −
∑
`:`<k

S`,k +
∑
`:`>k

Sk,`

and
Q̃k � 0 k = 1, . . . , p.

If Ik,` = ∅ or is not defined then Sk,` is a zero matrix.

Decomposition of arrow type positive semidefinite matrices 5

Proof Using the chordal extension Ĝ(N, Ê) of G(N,E), we embed the matrix A into a set
of matrices with chordal sparsity graphs with maximal cliques Ĝk(Ik, Êk), k = 1, . . . , p.
Then we can apply Theorem 1. Hence there exist matrices Yk ∈ Sn+(Ik), k = 1, . . . , p, such
that A = Y1 + . . .+ Yp. Now, Yk must be equal to Qk for the “internal” indices of Ik, i.e.,
for all (i, j) ∈

(
Ik \

(⋃
`:`>k(Ik,`) ∪

⋃
`:`<k(I`,k)

))2. Therefore the unknown elements
of Yk reduce to the overlaps Ik,`.

Having Qk and Yk, k = 1, . . . , p, we will now define the matrices the Sk,` as follows.
Firstly, for k = 1 we select any solution {S1,`}I1,` 6=∅ of the equation

Y1 = Q1 +
∑
`:`>1
I1,` 6=∅

S1,` .

Notice that many elements of matrices S1,` (I1,`6=∅) are uniquely defined by this equation.
Only elements with indices from nonempty intersections I1,` ∩ I1,k are not unique, as they
appear in more than one matrix S•,• in the above equation.

Now, for 1 < k < p, we solve the equation

Yk = Qk −
∑
`:`<k
I`,k 6=∅

S`,k +
∑
`:`>k
Ik,` 6=∅

Sk,` .

All matrices S`,k, ` < k, were defined in steps 1, . . . , k − 1, hence we are in the same
situation as above and select any solution {Sk,`}`>k,Ik,` 6=∅ of the above equation. Any
selection of the non-unique elements of S•,• will be consistent with the last equation

Yp = Qp −
∑
`:`<p
I`,p 6=∅

S`,p

because we know that A =
∑p
k=1 Yk =

∑p
k=1Qk. Therefore A =

∑p
k=1 Q̃k and the

assertion follows. ut

Theorem 2 allows us to define the decomposition at our will, within the limits of the
assumptions; even for matrices with chordal sparsity graph the decomposition does not have
to be driven by the maximal cliques. This is illustrated in the following example.

Example 1 Consider a 7× 7 five-diagonal matrix as schematically depicted in Fig. 1a; here
crosses represent nonzero real numbers. The sparsity graph of this matrix is shown in Fig. 1b.
This graph is chordal with six maximal cliques corresponding to the six triangles. Following
Theorem 1, the chordal decomposition will use six principal submatrices shown in Fig. 1a.
However, using Theorem 2 we can choose to decompose the matrix to only two principal
submatrices, as shown in Fig. 1c. In this case, I1 = {1, 2, 3, 4, 5}, I2 = {4, 5, 6, 7, 8} and
I1,2 = {4, 5}. The corresponding chordal extension with two maximal cliques is shown in
Fig. 1d. ♦

2.3 Arrow type matrices

Let us now consider a particular type of sparse matrices, the arrow type matrices. Let again
A ∈ Sn, n ≥ 3, and let Ik, Ik,` andGk(Ik, Ek), k = 1, . . . , p, be defined as in the previous
section.

6 Michal Kočvara

(a) (b) (c) (d)

Fig. 1: Decomposition of a five-diagonal matrix by maximal cliques, according to Theo-
rem 1 (a), the sparsity graph of this matrix (b), decomposition to two blocks according to
Theorem 2 (c), and the corresponding chordal extension of the graph with two maximal
cliques (d).

Assume again that A is a sum of matrices associated with Gk:

A =

p∑
k=1

Ak, Ak ∈ Sn(Gk) .

Further, let B ∈ Rn×m, B =
p∑
k=1

Bk with Bk, k = 1, . . . , p, being rectangular matrices

such that
(Bk)i,j = 0 for i 6∈ Ik

and assume that
m < min

k,`=1,...,p
k<`

|Ik,`| . (1)

We also define
Îk = Ik ∪ {n+ 1, . . . , n+m} , k = 1, . . . , p

and
Îk,` = Ik,` ∪ {n+ 1, . . . , n+m} , (k, l) ∈ Θp . (2)

Finally, let C ∈ Sm be positive definite. We define the following arrow type matrix:

M =

p∑
k=1

Mk +

[
0 0
0 C

]
where Mk =

[
Ak Bk
B>k 0

]
, k = 1 . . . , p . (3)

According to the definition of Ak and Bk, we have that

(Mk)i,j = 0 for (i, j) /∈ Îk × Îk, k = 1, . . . , p . (4)

The simplest example of an arrow type matrix is a block diagonal matrix with overlap-
ping blocks and with additional rows and columns corresponding to matrices B and C. The
next example presents another typical situation.

Example 2 Consider a 7× 7 matrix as shown in Fig. 2a. The sparsity graph of this matrix is
shown in Fig. 2b. This graph is not chordal: the cycle 1–2–3–4–5–6–1 does not have a chord.
Let I1 = {1, 2, 3, 4}, I2 = {3, 4, 5, 6}, I3 = {1, 2, 5, 6} and thus Îk = Ik ∪ {7}. Notice
that, due to (1), I3 must contain at least two nodes from I1. This decomposition satisfies As-
sumptions 1–4. In particular, if we extend all subgraphs associated with the decomposition
to cliques, we will obtain a dense matrix with a complete, i.e., chordal sparsity graph; hence
also Assumption 4 is satisfied. ♦

Decomposition of arrow type positive semidefinite matrices 7

(a)

7

2

3

1 6

5
4

(b) (c) (d)

Fig. 2: An example of an arrow type matrix (a), its sparsity graph (b), and an example of its
decomposition I1, I2, I3 satisfying Assumptions 1–4 (c) and the associated decomposition
Î1, Î2, Î3 (d).

Notice that the structure of the overlapping blocks can be more complicated and that,
in general, A (the arrow “shaft”) does not have to be a band matrix. Such matrices arise in
the application introduced later in Section 3; see Figure 6 and 7. In this application, we will
havem = 1, so thatB will be an n-vector and C ∈ R. However, in this section we consider
the more general situation which may be useful in other applications.

Before going on, we need the following auxilliary result. It tells us that we do not need
to consider all intersections of the extended sets Îk but only those that are extensions of Ik,`,
i.e., only Îk,` as defined in (2).

Lemma 2 Let G(NG, EG) be a chordal graph with maximal cliques Gk(Ik, Ek), k =
1, . . . , p. Let H(NH , EH) be a complete graph, disjoint with G. Define

Ñ = NG ∪NH , Ẽ = EG ∪ EH ∪ EGH ,

where EGH contains all edges with one vertex in NG and one vertex in NH . Define the
extension of G as G̃(Ñ , Ẽ). Similarly, define G̃k(Ĩk, Ẽk) with

Ĩk = Ik ∪NH , Ẽk = Ek ∪ EH ∪ EkH , k = 1, . . . , p ,

where EkH contains all edges with one vertex in Ik and one vertex in NH . Then G̃(Ñ , Ẽ)

is a chordal graph with maximal cliques G̃k(Ĩk, Ẽk), k = 1, . . . , p.

Proof Obviously, G̃k(Ĩk, Ẽk) are cliques, as all vertices in Ĩk are adjacent, by assumption
(Gk is a clique and H is complete) and by construction. Further, by construction, every
maximal clique Gk(Ik, Ek) is included in some clique in G̃(Ñ , Ẽ). Now suppose that
K(NK , EK) is a maximal clique in G̃; then NH ⊂ NK . We want to show that K \ H
is a maximal clique in G. Assume, by contradiction, that it is not. Then there is a vertex
v ∈ G such that a graph with vertices v ∪ (NK \NH) is a clique in G. Hence a graph with
vertices NK ∪ v is a clique in G̃ which contradicts maximality of K. Finally, G̃ is chordal,
as any newly created cycle with vertices in NH contains a chord in EGH . ut

We can now adapt Theorem 2 to the arrow type structure.

Corollary 1 Let Assumptions 1–4 hold. LetM be defined as in (3). The following two state-
ments are equivalent:

(i) M � 0 .

8 Michal Kočvara

(ii) There exist matrices Sk,` ∈ Sn(Îk,`), (k, `) ∈ Θp, such that

M =

p∑
k=1

M̃k with M̃k = Mk −
∑
`:`<k

S`,k +
∑
`:`>k

Sk,`

and
M̃k � 0 k = 1, . . . , p .

If Ik,` = ∅ or is not defined then Sk,` is a zero matrix.

Proof LetH(NH , EH) be a sparsity graph of the matrixC; this is a complete graph. Recall
that Ĝ(N, Ê) is the chordal extension of G(N,E), the sparsity graph of the matrix A. The
maximal cliques of Ĝ are Ĝk(Ik, Êk). The matrix B is dense and so all vertices from NH
are adjacent to all vertices in N . Then, by Lemma 2, the chordal extension of the sparsity
graph of M has maximal cliques Ĝk(Îk, Êk). The rest is a direct application of Theorem 2

with Qk = Mk for k = 1, . . . , p− 1, and Qp =

[
Ap Bp
B>p C

]
. ut

Under additional assumptions, but leaving out Assumption 4, we can strengthen the
above corollary as follows.

Theorem 3 Let Assumptions 1–3 hold. Assume that Ak � 0, k = 1, . . . , p, A � 0 and
C � 0. Let M be defined as in (3). The following two statements are equivalent:

(i) M � 0 .
(ii) There exist matrices Dk,` ∈ Rn×m such that (Dk,`)i,j = 0 for (i, j) /∈ Ik,` ×
{1, . . .m}, (k, `) ∈ Θp, and matrices Ck ∈ Sm, k = 1, . . . , p, such that

M =

p∑
k=1

M̃k, with M̃k = Mk −
∑
`:`<k

[
0 D`,k

D>`,k 0

]
+
∑
`:`>k

[
0 Dk,`

D>k,` 0

]
+

[
0 0
0 Ck

]
and

M̃ � 0, k = 1, . . . , p .

If Ik,` = ∅ or is not defined then Dk,` is a zero matrix.

Proof We will prove the theorem by constructing matricesDk,k+1 and Ck. By assumption,
A is positive definite, so that we can define

X = A−1B , i.e.,
p∑
k=1

AkX =

p∑
k=1

Bk . (5)

Then

(AkX)i,j = (Bk)i,j for i ∈ Ik \

(⋃
`:`>k

(Ik,`) ∪
⋃
`:`<k

(I`,k)

)
, j = 1, . . . , p . (6)

We define Dk,k+1 and Ck as follows. For k = 1, we solve the equation

A1X −B1 =
∑
`:`>1
I1,` 6=∅

D1,` .

Decomposition of arrow type positive semidefinite matrices 9

As in the proof of Theorem 2, some elements of thus defined D1,` may not be unique; in
this case, we just select a solution. Then, for any 1 < k < p, we solve the equation

AkX −Bk = −
∑
`:`<k
I`,k 6=∅

D`,k +
∑
`:`>k
Ik,` 6=∅

Dk,`

to defineDk,`, ` > k, analogously to Theorem 2. Any selection of the non-unique elements
of D•,• will be consistent with the last equation

ApX −Bp = −
∑
`:`<p
I`,p 6=∅

D`,p

because of (5). From (4) and (6) we see that Dk,` is only non-zero on Ik,`, (k, `) ∈ Θp, as
required.

Define further

Ĉk = X>AkX, k = 1, . . . , p,

Ck = Ĉk, k = 1, . . . , p− 1 and Cp = C −
p−1∑
k=1

Ck .

Now the matrices defined for k = 1, . . . , p by

M̂k = Mk−
∑
`:`<k
I`,k 6=∅

[
0 D`,k

D>`,k 0

]
+
∑
`:`>k
Ik,` 6=∅

[
0 Dk,`

D>k,` 0

]
+

[
0 0

0 Ĉk

]
=

[
Ak AkX

X>Ak X
>AkX

]

are clearly positive semidefinite with (at least) m zero eigenvalues. We set M̃k = M̂k,

k = 1, . . . , p − 1, and M̃p = Mp −
∑

`:`<p
I`,p 6=∅

[
0 D`,p

D>`,p 0

]
+

[
0 0
0 Cp

]
. By construction,

M =
p∑
k=1

M̃k.

It remains to show that M̃p =

 Ap ApX

X>Ap C −
p−1∑
k=1

Ck

 � 0 whenever M � 0. As

Ap � 0 by assumption, positive semidefiniteness of M̃p amounts to

C −
p−1∑
k=1

Ck −X>ApA−1
p ApX = C −

p∑
k=1

X>AkX � 0

which, by (5), is the same as
C −B>X � 0 .

By the Schur complement theorem, the last inequality is equivalent to M � 0. This com-
pletes the proof. ut

We will call the decomposition of arrow type matrices using Corollary 1 chordal decom-
position and the one using Theorem 3 arrow decomposition.

10 Michal Kočvara

Complexity remarks Let Assumptions 1–4 hold. Let r be the number of non-empty sets
Ik,`, (k, `) ∈ Θp. Comparing Corollary 1 with Theorem 3 we see that both provide us with
a replacement of a “large” matrix inequality M � 0 to a number of smaller ones M̃k � 0,
k = 1, . . . , p. However, while in Corollary 1 we have to introduce r additional matrix
variables of sizes |Îk,`| × |Îk,`|, in Theorem 3 we only have r additional matrix variables
of sizes |Ik,`| ×m and p matrix variables of size m×m. Recall that m < min

k,`=1,...,p
k<`

|Ik,`|

and, in our application below, m = 1, so the additional variables in Theorem 3 are vectors
instead of matrices of the same dimension in Corollary 1, offering thus significant reduction
in the dimension of the additional variables.

The example below shows that the arrow decomposition does not only lead to a problem
of smaller dimension, it also allows us to use decompositions that do not satisfy Assump-
tion 4. In particular, the arrow decompositions can be sparser, with smaller overlaps and
hence leading to sparser and smaller SDO problem.

Example 3 Consider a 13×13 matrix as shown in Fig. 3a. The sparsity graph of this matrix
is shown in Fig. 3b, where the central node corresponds to the last index in the matrix. Let
us compare the arrow decomposition with the chordal decomposition.

Arrow decomposition As in Example 2, we decompose the 12 × 12 leading principal sub-
matrix into six 4×4 principal submatrices, as shown in Fig. 3c; here IA

1 = {1, 2, 3, 4},
IA
2 = {3, 4, 5, 6}, IA

3 = {5, 6, 7, 8}, IA
4 = {7, 8, 9, 10}, IA

5 = {9, 10, 11, 12}, IA
6 =

{1, 2, 11, 12}. Hence, with ÎA

k = IA

k ∪{13}, k = 1, . . . , 6, we get six intersections ÎA

k,`,
all of dimension 3. This decomposition satisfies Assumptions 1–3 but not Assumption 4.
Indeed, if we extend the subgraphs associated with the decomposition to cliques, we ob-
tain the graph shown in Fig. 3d. This graph is, however, not chordal: for instance, the
cycle 1–4–6–7–9–11–1 does not have a chord. Therefore, we cannot apply neither of
the theorems based on chordal decomposition (Theorems 1, 2, Corollary 1); however,
we can apply Theorem 3 above. As a result, we get six additional vector variables of
dimension 3 corresponding to ÎA

k,`.
Chordal decomposition Chordal decomposition must satisfy Assumption 4: the closest one

to the above is IC
1 = {1, 2, 3, 4, 12}, IC

2 = {3, 4, 5, 6, 12}, IC
3 = {5, 6, 7, 8, 12},

IC
4 = {7, 8, 9, 10, 12}, IC

5 = {9, 10, 11, 12} with ÎC

k = IC

k ∪ {13}, k = 1, . . . , 5,
and thus with four intersections ÎC

1,2 = {3, 4, 12, 13}, ÎC
2,3 = {5, 6, 12, 13}, ÎC

3,4 =

{7, 8, 12, 13}, ÎC
4,5 = {9, 10, 12, 13}; see Fig. 3e for the decomposition of the leading

principal submatrix, Fig. 3f for the corresponding extended chordal graph and Fig. 3g
for the matrix associated with the extended graph. In this case, we need five additional
matrix variables of dimension 4× 4. ♦

Two natural questions arise:

1. Are the additional assumptions of Theorem 3 too restrictive? Are there any applications
satisfying them?

2. Is it worth reducing the dimension of the additional variables? Will it bring any signifi-
cant savings of CPU time when solving the decomposed problem?

Both questions will be answered in the rest of the paper using a problem from structural
optimization.

Decomposition of arrow type positive semidefinite matrices 11

(a) (b) (c)

7

2

12

1

(d)

(e)

7

2

12

1

(f) (g)

Fig. 3: An example of an arrow type matrix (a) its sparsity graph (b), its arrow decomposi-
tion satisfying Assumptions 1–3 (c) and the corresponding graph extension (d), its chordal
decomposition (e), the corresponding extension of its sparsity graph to a chordal graph (f)
and, finally, the completion of the matrix corresponding the chordal graph (g).

3 Application: Topology optimization problem, semidefinite formulation

Consider an elastic body occupying a d-dimensional bounded domain Ω ⊂ Rd with a Lips-
chitz boundary ∂Ω, where d ∈ {2, 3}. By u(ξ) ∈ Rd we denote the displacement vector at
a point ξ, and by

eij(u(ξ)) =
1

2

(
∂ui(ξ)

∂ξj
+
∂uj(ξ)

∂ξi

)
, i, j = 1, . . . , d

the (small-)strain tensor. We assume that our system is governed by linear Hooke’s law, i.e.,
the stress is a linear function of the strain

σij(ξ) = Eijk`(ξ)ek`(u(ξ)) (in tensor notation),

where E is the elastic (plane-stress for d = 2) stiffness tensor.
Assume that the boundary of Ω is partitioned as ∂Ω = Γu ∪ Γf , Γu ∩ Γf = ∅ and

that an external load function f ∈ [L2(Γf)]d is given. Define V = {u ∈ [H1(Ω)]d |u =
0 on Γu} ⊃ [H1(Ω)]d. The weak form of the linear elasticity problem reads as:

Find u ∈ V, such that (7)∫
Ω

a(x;u, v) =

∫
Γf

f(ξ) · v(ξ) ds, ∀v ∈ V,

where

a(x;u, v) =

∫
Ω

〈x(ξ)E(ξ)e(u(ξ)), e(v(ξ))〉 dξ . (8)

12 Michal Kočvara

In the basic topology optimization problem, the design variable is the multiplierx ∈ L∞(Ω)
of the elastic stiffness tensorE which is a function of the space variable ξ. We will consider
the following constraints on x:∫

Ω

x(ξ) dξ = V, x ≤ x ≤ x a.e. in Ω

with some given positive “volume” V and with x,x ∈ L∞(Ω) satisfying 0 ≤ x ≤ x and∫
Ω
x(ξ) dξ < V <

∫
Ω
x(ξ) dξ.

The minimum compliance single-load topology optimization problem reads as

inf
x∈L∞

∫
Γf

f(ξ) · u(ξ) dξ (9)

subject to

u solves (7)∫
Ω

x(ξ) dξ = V

x ≤ x ≤ x a.e. in Ω .

The objective, the so called compliance functional, measures how well the structure can
carry the load f .

Problem (9) is now discretized using the standard finite element method; the details can
be found, e.g., in [6,11]. In particular, we use quadrilateral elements, element-wise constant
approximation of function x and element-wise bilinear approximation of the displacement
field u. After discretization, the variables will be vectors x ∈ Rm and u ∈ Rn, where
m is the number of finite elements and n the number of degrees of freedom (the number
of finite element nodes times the spatial dimension). With every element we associate the
local (symmetric and positive semidefinite) stiffness matrix Ki and (for elements including
part of the boundary Γf) the discrete load vector fi, i = 1, . . . ,m. Now we can formulate
the discretized version of the linear elasticity problem (7) as the following system of linear
equations

K(x)u = f (10)

where K(x) =
m∑
i=1

xiKi is the global stiffness matrix and f =
m∑
i=1

fi is the finite element

assembly of the load vector.
The topology optimization problem (9) becomes

min
u∈Rn, x∈Rm, γ∈R

γ (11)

subject to

K(x)u = f

f>u ≤ γ
m∑
i=1

xi ≤ V

xi ≤ xi ≤ xi , i = 1, . . . ,m .

Decomposition of arrow type positive semidefinite matrices 13

Using the Schur complement theorem, the compliance constraint and the equilibrium
equation can be written as one matrix inequality constraint:

Z(x) :=

[
K(x) f

f> γ

]
� 0 . (12)

The minimum compliance problem can then be formulated as follows:

min
x∈Rm, γ∈R

γ (13)

subject to

Z(x) � 0
m∑
i=1

xi ≤ V

xi ≤ xi ≤ xi , i = 1, . . . ,m .

For ease of notation, in the rest of the paper we will restrict ourselves to the planar case
d = 2. Generalization of all ideas to the three-dimensional case is straightforward.

4 Decomposition of the topology optimization problem (13)

Let Ωh ⊂ R2 be a polygonal approximation of Ω discretized by finite elements. Assume
that Ωh is partitioned into p non-overlapping subdomains Dk, k = 1, . . . , p, whose bound-
aries coincide with finite element boundaries. In our examples Ω = Ωh is a rectangle, the
underlying finite element mesh is regular and so is the partitioning into the subdomains.
Confront Figure 4 that shows typical decomposition of Ωh into Nx ×Ny subdomains.

.

1

1 xi

Ny

j

N

.

... ...

.

.

.

.

Fig. 4: Regular partitioning of the computational domain into subdomains coinciding with
groups of finite elements.

Let Ik be the index set of all degrees of freedom associated with the subdomain Dk,
k = 1, . . . , p. The intersections of these index sets will include the degrees of freedom on
the respective internal boundaries and will be again denoted by

Ik,` = Ik ∩ I`, (k, `) ∈ Θp .

14 Michal Kočvara

Denote by Dk the index set of elements belonging to subdomain Dk and define

K(k)(x) =
∑
i∈Dk

xiKi . (14)

Matrix K(k)(x) = K(k) can then be partitioned as follows

K(k) =

[
K

(k)
II K

(k)
IΓ

K
(k)
ΓI K

(k)
ΓΓ

]

where the set Γ collects indices of all degrees of freedom corresponding with indices in
one of he sets I`,k or Ik,`, ` = 1, . . . , p; the set I then collects indices of all remaining
“interior” degrees of freedom in Dk.

We are now in a position to apply the theorems from Section 2. Notice that Assump-
tions 1–3 are satisfied, as well as the additional assumptions of Theorem 3. Assumption 4 is
discussed below.

Case A – Chordal decomposition Let us first apply Corollary 1. It says that the matrix
inequality Z(x) � 0 from (13) can be equivalently replaced by the following matrix in-
equalities

Z
(k)
A :=


K

(k)
II (x) K

(k)
IΓ (x) 0

K
(k)
ΓI (x) K

(k)
ΓΓ (x) f (k)

0 (f (k))> 0

+


0 0 0

0 S(k) σ(k)

0 (σ(k))> s(k)

 � 0 (15)

where

S(k) = −
∑
`:`<k
I`,k 6=∅

S`,k +
∑
`:`>k
Ik,` 6=∅

Sk,` (16)

σ(k) = −
∑
`:`<k
I`,k 6=∅

σ`,k +
∑
`:`>k
Ik,` 6=∅

σk,` . (17)

The additional variables are the matrices, vectors and scalars

Sk,` ∈ S|Ik,`|, σk,` ∈ R|Ik,`|, s ∈ Rp, (k, `) ∈ Θp .

Case B – Arrow decomposition Now we apply Theorem 3. In this case, the matrix inequality
Z(x) � 0 from (13) can be replaced by the following matrix inequalities

Z
(k)
B :=


K

(k)
II (x) K

(k)
IΓ (x) 0

K
(k)
ΓI (x) K

(k)
ΓΓ (x) f (k)

0 (f (k))> 0

+


0 0 0

0 0 g(k)

0 (g(k))> γ(k)

 � 0 (18)

where

g(k) = −
∑
`:`<k
I`,k 6=∅

g`,k +
∑
`:`>k
Ik,` 6=∅

gk,` . (19)

Decomposition of arrow type positive semidefinite matrices 15

The additional variables g•,• and γ, respectively, have the same dimensions as the variables
σ•,• and s in Case A.

Recall that Theorem 3 does not use the restrictive Assumption 4 from Section 2. This is
important, because Assumption 4 is not satisfied when the domain Ω contains holes, and so
the decomposition technique would not be applicable to some practical problems. Consider,
for instance, the finite element mesh in Figure 4 and assume that the (i, j)th subdomain
is not part of the domain Ω, it is a hole with no finite elements. Then, even if we assume
all matrices K(k) to be dense, the sparsity graph of K(x) is not chordal, as it contains the
chordless cycle connecting (more than 3) nodes on the boundary of the internal hole.

Before formulating the decomposed version of problem (13) we notice that, according
to Corollary 1 and Theorem 3, Z =

∑p
k=1 Z

(k)
A =

∑p
k=1 Z

(k)
B , which means, in particular,

that

γ =

p∑
k=1

sk =

p∑
k=1

γk .

We will therefore replace the variable γ in the decomposed problems by either sk or γk and
the objective function by one of the above sums.

Case A Using the chordal decomposition approach, the decomposed optimization problem
in variables

x ∈ Rm, s ∈ Rp,

σ = {σk,`}(k,`)∈Θp
, σk,` ∈ R|Ik,`|

S = {Sk,`}(k,`)∈Θp
, Sk,` ∈ S|Ik,`|

is formulated as follows

min
x, s, σ, S

p∑
k=1

sk (20)

subject to∑
i∈D

xi ≤ V

x ≤ x ≤ x

Z
(k)
A � 0 k = 1, . . . , p

with Z(k)
A defined as in (15),(16),(17).

Case B Using the arrow decomposition approach, the decomposed optimization problem in
variables

x ∈ Rm, γ ∈ Rp,

g = {gk,`}(k,`)∈Θp
, gk,` ∈ R|Ik,`|

16 Michal Kočvara

reads as

min
x, γ, g

p∑
k=1

γk (21)

subject to∑
i∈D

xi ≤ V

x ≤ x ≤ x

Z
(k)
B � 0 k = 1, . . . , p

with Z(i,j)
B defined as in (18),(19).

A versus B Consider now the finite element mesh and decomposition as in Figure 4 with
nx × ny finite elements and Nx × Ny subdomains. Instead of (13) we can solve one of
the decomposed problems (20) and (21). In Case A of the chordal decomposition the single
matrix inequality of dimension (n + 1) × (n + 1) is replaced by Nx · Ny inequalities of
dimension of order 2(nx/Nx + 1)(ny/Ny + 1) + 1 and we have to add Nx(Ny − 1) +
(Nx − 1)Ny additional vectors σ•,• of a typical size 2(nx/Nx + 1) or 2(ny/Ny + 1), the
same number of additional (dense) matrix variables S•,• of the same order and Nx · Ny
scalar variables s•. (Recall that the factor 2 stems from the fact that there are two degrees
of freedom at every finite element node.) In Case B of the arrow decomposition, the number
and order of the new matrix constraints is the same as above but we only need the additional
scalar and vector variables; the additional matrix variables are not needed.

Later in Section 6 we will see that these decompositions leads to enormous speed-up in
computational time of a state-of-the-art SDO solver. We will also see that the omission of
the additional matrix variables in the arrow decomposition can make a big difference.

Example 4 The notation used in the above decomposition approaches is rather cumbersome,
so let us illustrate it using a simple example. Figure 5 presents a finite element mesh with 16

7,8

25,26

27,28

29,30

31,32

33,34

35,36

37,38

39,40

1 5 9 13

141062

3 7 11 15

161284

1,2

3,4

5,6

9,10

11,12

13,14

15,16

17,18

19,20

21,22

23,24

3

2 4

1

Fig. 5: Example 4: Problem setting, finite element mesh (left) and decomposition into four
subdomains (right).

elements and 25 nodes. All nodes on the left-hand side are fixed and thus eliminated from

Decomposition of arrow type positive semidefinite matrices 17

the stiffness matrix. Hence the corresponding stiffness matrix will have dimension 40×40
(two degrees of freedom associated with every free finite element node, as depicted in the
figure). The structure of the corresponding stiffness matrix K is shown in Figure 6; here the
elements corresponding to interior degrees of freedom (index sets I) are denoted by circles,
while elements associated with the the intersections Ik,` are marked by full dots.

Fig. 6: Sparsity structure of stiffness matrix K in Example 4.

Thus in the original topology optimization problem (13) we have n = 40 and m = 16
and the matrix constraint Z(x) � 0 is of dimension 41× 41. We now decompose the prob-
lem into four subdomains, containing elements {1, 2, 5, 6}, {3, 4, 7, 8}, {9, 10, 13, 14},
{11, 12, 15, 16}; see Figure 5–right. Then

I1 = {1, . . . , 6, 11, . . . , 16}, I2 = {5, . . . , 10, 15, . . . , 20},
I3 = {11, . . . , 16, 21, . . . , 26, 31, . . . , 36}, I4 = {15, . . . , 20, 25, . . . , 30, 35, . . . , 40},

I1,2 = {5, 6, 15, 16}, I1,3 = {11, . . . , 16}, I1,4 = {15, 16},
I2,3 = {15, 16}, I2,4 = {15, . . . , 20}, I3,4 = {15, 16, 25, 26, 35, 36}.

The structure of the stiffness matrices associated with domains 1–4 is shown, left-to-right,
in Figure 7. Notice that indices 15,16 (marked by red dots in Figures 6,7) are contained in
all six sets I•,•.

The chordal decomposition problem (20) will have four matrix constraints, two of order
13 and two of order 19, and additional variables s ∈ R6, σ1,4, σ2,3 ∈ R2, σ1,2 ∈ R4,
σ1,3, σ2,4, σ3,4 ∈ R6 and S1,4, S2,3 ∈ S2, S1,2 ∈ S4, S1,3, S2,4, S3,4 ∈ S6. The arrow
decomposition problem (21) will have the same number of matrix constraints as (20) and
additional variables γ ∈ R6, g1,4, g2,3 ∈ R2, g1,2 ∈ R4, g1,3, g2,4, g3,4 ∈ R6. ♦

5 Decomposition by fictitious loads

So far, all the reasoning was purely algebraic. There is, however, an alternative, functional
analytic view of the arrow decomposition in Theorem 3. We will present it in this section.
The purpose is to illustrate a different viewpoint and so, to keep the notation simple, we will
only consider the case of two subdomains.

18 Michal Kočvara

Fig. 7: Sparsity structure of stiffness matrices K1, . . . ,K4 associated with subdomains 1–4
in Example 4.

5.1 Infinite dimensional setting

Let us recall the weak formulation (7) of the elasticity problem depending on parameter x:

a(x;u, v) =

∫
Γf

fv ds ∀v ∈ V . (22)

Let Ω be partitioned into two mutually disjoint subdomains Ω1 and Ω2 such that Ω1 ∪
Ω2 = Ω. Denote the interface boundary between the two subdomains by ΓI ; see Figure 8.
We consider the general situation when Γu and Γf may be a part of both, ∂Ω1 ∩ ∂Ω and
∂Ω2 ∩ ∂Ω. Define ai as a restriction of the bilinear form a to Ωi (the integral in (8) is
simply computed over Ωi), f i = f |∂Ωi

,

V(Ωi) = {v ∈ [H1(Ωi)]
2 | v = 0 on Γu ∩ ∂Ωi}, i = 1, 2 ,

and
Vi = {v ∈ [H1(Ωi)]

2 | v = 0 on (Γu ∩ ∂Ωi) ∪ ΓI}, i = 1, 2 .

1

Γ
fΓ

Ω

ΩΓI
2

u

Fig. 8: Partitioning of domain Ω into two subdomains with interface boundary ΓI .

Consider the following “restricted” problems:

Find u ∈ [H1(Ω1)]2 such that u− u∗ ∈ V1 and (23)

a1(x;u, v) =

∫
Γf∩∂Ω1

f1v ds ∀v ∈ V1 ;

Find u ∈ [H1(Ω2)]2 such that u− u∗ ∈ V2 and (24)

a2(x;u, v) =

∫
Γf∩∂Ω2

f2v ds ∀v ∈ V2 .

Decomposition of arrow type positive semidefinite matrices 19

The following theorem forms a basis of our approach.

Theorem 4 Assume thatu∗ solves (22). For allx ∈ L∞(Ω) there exists g ∈ [H−1/2(ΓI)]
2

such that solutions to (23) and (24) are equal to respective solutions of the following prob-
lems

find u ∈ V(Ω1) s.t. a1(x;u, v) =

∫
Γf∩∂Ω1

f1v ds+ 〈g, v〉ΓI
∀v ∈ V(Ω1) , (25)

find u ∈ V(Ω2) s.t. a2(x;u, v) =

∫
Γf∩∂Ω2

f2v ds− 〈g, v〉ΓI
∀v ∈ V(Ω2) , (26)

where 〈·, ·〉ΓI
denotes the duality pairing between [H−1/2(ΓI)]

2 and [H1/2(ΓI)]
2.

Proof The requested function g is the outcome of the respective Steklov-Poincaré operator
applied to u∗; see, e.g., [12]. ut

In the above theorem, function g can be interpreted as a fictitious load applied to either of
the problems (25),(26). The theorem says that there exists such a g that the solutions of
(25),(26) are equivalent to the solution of the “full” problem (22) restricted to the respective
subdomain. Or, in other words, the solutions of (25),(26) can be “glued” to form the solution
of (22).

5.2 Finite dimensional setting

Now assume that the discretization of Ω is such that the interface boundary ΓI is a union of
boundaries of some finite elements. More precisely, we assume that the index set of finite
elements used to the discretization of Ω can be split into two disjoint subsets

{1, 2, . . . ,m} = D1 ∪ D2, D1 ∩ D2 = ∅,

such that Ωi is discretized by elements with indices from Di, i = 1, 2. Define

f (1) =
∑
i∈D1

fi, f (2) =
∑
i∈D2

fi ,

the restrictions of the load vector f on boundaries of Ω1 and Ω2, respectively.
Denote the index set of degrees of freedom associated with finite element nodes on ΓI

by I1,2. Let nΓ be the dimension of I1,2.
Finally, for a vector in z ∈ RnΓ denote by←→z its extension to Rn:

←→zi :=

〈
zi if i ∈ I1,2
0 if i ∈ Rn \ I1,2

.

The discrete version of Theorem 4 can then be formulated as follows. (The following
corollary is, in fact, trivial in the finite dimension; however, we need the above theorem to
understand the meaning of the fictitious load and its existence in the original setting of the
problem.)

20 Michal Kočvara

Corollary 2 Assume that u∗ solves (10). Then for all x ∈ Rm there exists g ∈ RnΓ such
that

(
∑
i∈D1

xiKi)u
∗ = f (1) +←→g (27)

(
∑
i∈D2

xiKi)u
∗ = f (2) −←→g . (28)

Notice that (27), (28) are still systems of dimension n; however, many rows and columns
in the matrix and the right hand side are equal to zero, so they can be solved as systems
of dimensions |N (1)| and |N (2)|, respectively. Hence, if we knew the fictitious load g, we
could replace the large system of equations (10) by two smaller ones which, numerically,
would be more efficient. Of course, we do not know it. However, and this is the key idea
of this section, the linear system (10) is a constraint in an optimization problem, hence we
can add g among the variables and, instead of searching for the optimal design x and the
corresponding u satisfying (10), search for optimal x and for a pair (u, g) satisfying two
smaller equilibrium equations (27) and (28).

We can now formulate a result regarding the decomposition of the discretized topology
optimization problem (11).

Theorem 5 Problem (11) is equivalent to the following problem:

min
x∈Rm, u∈Rn,γ1∈R, γ2∈R, g∈RnΓ

γ1 + γ2 (29)

subject to
m∑
i=1

xi ≤ V

x ≤ x ≤ x

(
∑
i∈D1

xiKi)u = f (1) +←→g

(
∑
i∈D2

xiKi)u = f (2) −←→g

(f (1) +←→g)>u ≤ γ1

(f (2) −←→g)>u ≤ γ2 .

In particular, if (x̃, ũ, γ̃) is a solution of (11) then there is γ̃1 ∈ R+, γ̃2 ∈ R+, g̃ ∈ RnΓ such
that γ̃ = γ̃1 + γ̃2 and (x̃, ũ, γ̃1, γ̃2, g̃) is a solution of (29). Vice versa, if (x̂, û, γ̂1, γ̂2, ĝ) is
a solution of (29) then (x̂, û, γ̂1 + γ̂2) is a solution of (11).

Proof The theorem follows from the comparison of the KKT conditions of both problems.
Assuming that (x̃, ũ, γ̃) solves (11), we define g̃ = (

∑
i∈D1

x̃iKi)ũ− f (1) and γ̃1 = (f (1) +

g̃)>u, γ̃2 = (f (2)− g̃)>u. Then it is straightforward to check that (x̃, ũ, γ̃1, γ̃2, g̃) satisfies
the KKT conditions of (29). Now assume that (x̂, û, γ̂1, γ̂2, ĝ) is a solution of (29). Then
(x̂, û, γ̂1 + γ̂2) is feasible in (11). We know from above that (x̃, ũ, γ̃1, γ̃2, g̃) is a solution
of (29) with the optimal objective value γ̃1 + γ̃2. Because both problems are equivalent to
convex problems (their semidefinite reformulations), then γ̃ = γ̃1 + γ̃2 = γ̂1 + γ̂2 is also
the optimal objective value of (11), hence (x̂, û, γ̂1, γ̂2, ĝ) is also optimal for (11). ut

Decomposition of arrow type positive semidefinite matrices 21

Using again the Shur complement theorem, we finally arrive at the decomposition of the
SDO problem (13).

Corollary 3 Problem (13) can be equivalently formulated as follows:

min
x∈Rm, γ1∈R, γ2∈R, g∈RnΓ

γ1 + γ2 (30)

subject to
m∑
i=1

xi ≤ V

x ≤ x ≤ x γ1 (f (1) +←→g)>

f (1) +←→g
∑
i∈D1

xiKi

 � 0

 γ2 (f (2) −←→g)>

f (2) −←→g
∑
i∈D2

xiKi

 � 0 .

Problem (30) is now exactly the same as problem (21) arising from arrow decomposition
applied to two subdomains.

6 Numerical experiments

The decomposition techniques described in the article were applied to an example whose
data (geometry, boundary conditions and forces) are shown in Figure 9–left. We always
use regular decomposition of the rectangular domain; an example of a decomposition into
8 subdomains is shown in Figure 9–right. We have used finite element meshes with up to
160×80 elements.

Fig. 9: Data of numerical examples: geometry, boundary condition and forces (left) and a
sample decomposition into 4×2 subdomains (right)

We tested several codes to solve the SDO problems. Here we present results obtained
by MOSEK, version 8.0 [9]. The reason for this is that MOSEK best demonstrated the
decomposition idea; the speed-up achieved by the decomposition was most significant when
using this software.

22 Michal Kočvara

When solving the SDO problems, we used default MOSEK settings with the exception
of duality gap parameter MSK_DPAR_INTPNT_CO_TOL_REL_GAP that was set to 10−9,
instead of the default value 10−8. We will comment on the resulting accuracy of the solution
later in the section.

We also tried to solve smaller problems by SparseCoLO [2], software that performs
the decomposition of matrix constraints based on Theorem 1 automatically. In particular,
the software checks whether the matrix in question has a chordal sparsity graph; if not, the
graph is completed to be chordal. After that, maximal cliques are found and Theorem 1 is
applied. Because the sparsity graph of the matrix in problem (13) is not chordal, a chordal
completion is performed by SparseCoLO. Such a completion is not unique and may thus
lead to different sets of maximal cliques. And here is the main difference to our approach:
while we can steer the decomposition to result in smaller matrix constraints of the same
size, matrix constraints resulting from application of SparseCoLO are of variable size, some
small, some rather large. This fact has a big effect on the efficiency of SparseCoLO, as we
will see in the examples below.

In all experiments we used a 2018 MacBook Pro with 2.3GHz dual-core Intel Core i5,
Turbo Boost up to 3.6GHz and 16GB RAM, and MATLAB version 9.2.0 (2017a).

Remark 1 (Element-wise decomposition) The above text suggests that we always perform
decomposition of the original finite element mesh into several (possibly uniform) sub-meshes,
each of them having interior points; cf. Figures 4, 5, 9, and the notation used in Section 4.
However, nothing prevents us from associating each subdomain with a finite element. When
every subdomain consist of a single finite element, then the subdomains have no interior
points, apart from those lying on the boundary of Ω and having no neighboring element.
For instance, in Example 1, Figure 5, these would only be degrees of freedom number
31,32,39,40. In the numerical examples below, we will see that the big number of additional
variables makes this option less attractive that other decompositions. However, while not the
most effective of all decompositions, it is still much less computationally demanding than
the original problem. The element-wise decomposition has one big advantage in simplicity
of data preparation: the user can use any standard finite-element mesh generator and does
not have to worry about definition of subdomains. This may be particularly advantageous in
case of highly irregular meshes.

6.1 Computational results

In the following tables, we present results of the Nx×Ny examples using the chordal and
arrow decomposition. In these tables the first row of numbers shows data for the original
problem (13), the remaining rows are for the decomposed problems. The first column shows
the number of subdomains, the next two ones the number of variables and the size of the
largest matrix inequality. After that, we present the total number of iterations needed by
MOSEK before it terminated. The next two columns show the total CPU time and CPU
time per one iteration and are followed by columns reporting speed-up relative to the original
problem formulation, both total and per iteration.

In the final column we see the MOSEK constant MSK_DINF_INTPNT_OPT_STATUS,
a number that is supposed to converge to 1. Let us call this constant µ, for brevity. In our
experience, MOSEK delivers acceptable solution reporting “Solution status: OPTIMAL”
when

0.999 ≤ µ ≤ 1.0009 .

Decomposition of arrow type positive semidefinite matrices 23

When µ is farther away from 1, MOSEK, typically in these examples, announces “Solution
status: NEAR OPTIMAL.” For instance, in the 120×60 example with chordal decomposi-
tion with 800 subdomains, MOSEK finished with µ = 0.9946 and the final objective value
was correct to 3 digits, while with 1800 subdomains MOSEK reported µ = 0.9865 and we
only got 2 correct digits in the objective function.

We first present results for the 40×20 example using the chordal decomposition; see
Table 1. The table shows that while we increase the number of the subdomains (refine the

Table 1: Results obtained by MOSEK for the 40×20 example using chordal decomposition.

no of no of size of no of CPU (sec) opt
doms vars matrix iters total per iter status

1 801 1681 69 1045 15 0.9999

8 3523 243 58 31 0.53 0.9996
32 5489 73 44 9.7 0.22 0.9997
50 6376 51 46 8.8 0.19 0.9995

200 11243 19 37 6.9 0.19 0.9987
800 24529 9 35 12 0.34 0.9980

decomposition), the number of variables increases (those are the additional matrix variables
in chordal decomposition) and the size of the constraints decreases. We can further see from
Table 1 that the total number of iterations needed to solve any of the problem formulations
is almost constant. The main message of Table 1 is in columns 5 and 6; here we can see
tremendous decrease in the CPU time when solving the decomposed problems.

We now solve the same 40x20 example using the arrow decomposition. The results
are presented in Table 2. We have added two more columns showing the speed-up relative
to the undecomposed problem, both total and per iteration. In all examples presented in

Table 2: Results obtained by MOSEK for the 40×20 example using arrow decomposition.

no of no of size of no of CPU speed-up opt
doms vars matrix iters total per iter total per iter status

1 801 1681 69 1045 15 1 1 0.9999

8 1032 243 70 28 0.40 37 38 0.9999
32 1492 73 63 7.6 0.12 138 126 1.0003
50 1764 51 64 7.1 0.11 147 137 0.9999

200 3544 19 51 5.1 0.10 204 151 0.9999
800 9204 9 46 6.9 0.15 150 100 0.9992

Table 2, MOSEK reported Optimal solution status. Comparing result in Table 1 and Table 2,
we can see that the arrow decomposition is not only more efficient than the chordal one,
due to smaller number of variables, but also delivers more accurate solution, i.e., a better
conditioned SDO problem.

For a comparison, In Table 3 we present result for example 40×20 obtained by solving
problems decomposed by the automatic decomposition software SparseCoLO. In this case,
the size of the 34 matrix constraints varied from 11 to 260. The decomposed problem is

24 Michal Kočvara

Table 3: Results obtained by MOSEK for the 40×20 example using SparseCoLO decompo-
sition.

no of no of size of no of CPU speed-up
doms vars matrix iters total per iter total per iter

34 22997 11. . . 260 42 301 7 3 2

still solved more efficiently that the original one but that speed-up is negligible, compared
to either the chordal or the arrow decomposition from Tables 1 and 2.

The next Table 4 presents results for the 80×40 discretization and chordal decompo-
sition, while Table 5 present the results for the same problem using arrow decomposition.
This was the largest problem we could solve by MOSEK in the original formulation (13),
due to memory limitations. As we can see, for a larger problem the speed-up obtained by

Table 4: Results obtained by MOSEK for the 80×40 example using chordal decomposition.

no of no of size of no of CPU (sec) opt
doms vars matrix iters total per iter status

1 3201 6561 104 78813 758 0.9999

8 12583 883 74 1302 18 0.9992
32 17449 243 56 173 3.1 0.9993

128 24265 73 51 62 1.2 0.9990
200 27631 51 46 53 1.2 0.9993
800 46873 19 40 41 1.0 0.9986

3200 100249 9 32 52 1.6 0.9975

Table 5: Results obtained by MOSEK for the 80×40 example using arrow decomposition.

no of no of size of no of CPU (sec) speed-up opt
doms vars matrix iters total per iter total per iter status

1 3201 6561 104 78813 758 1 1 0.9999

8 3632 883 88 1098 12.5 72 61 0.9999
32 4412 243 83 121 1.5 651 520 0.9999

128 6308 73 69 25 0.4 3153 2092 0.9999
200 7424 51 65 18 0.3 4379 2737 0.9999
800 14864 19 62 17 0.3 4636 2764 0.9999

3200 37604 9 44 25 0.6 3153 1334 0.9999

arrow decomposition is even more significant.
Examples with finer discretization cannot be solved by MOSEK in the original formula-

tion (13)(on the laptop we used for the experiments). They can, however, easily be solved in
the decomposed setting. The results are presented in the next tables. In these tables, we also
show estimated number of iterations and CPU time for the original problem; these numbers

Decomposition of arrow type positive semidefinite matrices 25

are extrapolated from the lower-dimensional problems (also those that are not presented
here).

Table 6 presents results for the 120×60 discretization and chordal decomposition, while
Table 7 shows the results for the same example, this time using arrow decomposition. When

Table 6: Results obtained by MOSEK for the 120×60 example using chordal decomposition.
Iteration count and CPU time in the first row are estimated and marked by the † symbol.

no of no of size of no of CPU (sec) opt
doms vars matrix iters total per iter status

1 7200 14641 139† 1045932† 7524 0.9999

200 51539 19 60 236 3.9 0.9950
800 76977 19 50 129 2.6 0.9946

1800 106903 19 47 114 2.4 0.9865

Table 7: Results obtained by MOSEK for the 120×60 example using arrow decomposition.
Iteration count and CPU time in the first row are estimated and marked by the † symbol.

no of no of size of no of CPU (sec) speed-up opt
doms vars matrix iters total per iter total per iter status

1 7200 14641 †139 †1045932 7525 1 1 0.9999

50 9524 339 96 524 5.5 1996 1379 0.9996
200 12904 99 82 89 1.1 11752 6933 0.9997
450 16984 51 82 55 0.67 19017 11219 0.9997
800 21764 33 71 37 0.52 28268 14439 0.9997

1800 33424 19 65 42 0.65 24903 11645 0.9998
7200 85204 9 55 90 1.6 11621 4598 0.9997

using the chordal decomposition (Table 6), MOSEK had difficulties with convergence to the
optimal solution. In case of 800 subdomains, the final objective value was correct to 3 digits,
while for the 1800 subdomains only to 2 digits. In both cases, the solution status of MOSEK
was “Nearly optimal”. In case of arrow decomposition, all problems finished with ”Optimal”
solution status. Again, the arrow decomposition outperforms the chordal one, so from now
on we will only focus on the arrow decomposition.

From the results presented so far, it seems that the most efficient decomposition is either
the finest or the second-finest one (not counting the element-wise decomposition); in the first
case, each subdomain contains four finite elements, in the second case 16 finite elements. To
get a clearer idea about the relation of the problem size and speed-up, we present the next
Table 8 of results for examples with dimension increasing from 40×20 to 160×80 elements.
For each example we only consider the finest decomposition with four finite elements per
subdomain. So the size of every matrix inequality is always at most 19. The CPU times for
original formulation of the larger problems have been extrapolated and are denoted by the †

symbol.
The last row of Table 8 presents the estimate of computational complexity of each ap-

proach, as a function cνq of problem size ν; in this case, ν is the number of variables of the

26 Michal Kočvara

Table 8: Results obtained by MOSEK using arrow decomposition. Symbol † denotes extrap-
olated CPU times.

ORIGINAL DECOMPOSED speed-up
problem no of size of CPU no of size of CPU opt

vars matrix total vars matrix total status

40×20 801 1681 1045 3544 19 5 0.9999 204
60×30 1801 3721 12468 8164 19 9 0.9999 1370
80×40 3201 6561 78813 14684 19 17 0.9999 4636

100×50 5001 10201 †312560 23104 19 25 0.9999 12502
120×60 7201 14641 †1045932 33424 19 42 0.9998 24903
140×70 9801 19881 †2900382 45664 19 59 0.9994 49159
160×80 12801 25921 †7003213 59764 19 74 0.9984 94638

complexity c·sizeq q = 3.18 q = 1.0006

SDO problem, as reported in the table. The exponent q is estimated from the CPU times. In
case of the original, undecomposed problem, we calculated q ≈ 3.18 which slightly under-
estimates the theoretical complexity of interior point methods for SDO. The decomposed
problem, on the other hand, exhibits linear complexity with q ≈ 1.0006. See also Figure 10
for graphical representation of the complexity of the original problem (top line), single it-
eration of the original problem (middle line) and of the decomposed problem (bottom line).
This, in our opinion, is the principal contribution of the arrow decomposition method.

y = c.x3.1806

y = c.x2.8435

y = c.x1.0006

1

10

100

1000

10000

100000

1000000

10000000

600 6000

C
P

U
 t

im
e

s
in

 s
e

co
n

d
s

Number of variables

CPU original

CPU/iter original

CPU decomposed

Fig. 10: Complexity of the original problem (top graph), of a single iteration in the original
problem (middle) and of the decomposed problem (bottom).

Decomposition of arrow type positive semidefinite matrices 27

Acknowledgment

The author would like to thank Masakazu Kojima for initiating the discussions on chordal
decomposition of the topology optimization problem. The work on this article was initiated
while the author was visiting the Institute for Pure and Applied Mathematics, UCLA. The
support and friendly atmosphere of the Institute are acknowledged with gratitude. Thanks go
also to Allan Lo, University of Birmingham, and two anonymous referees; their comments
lead to significant improvements of the paper. Last but not least, the author wishes to thank
MOSEK ApS for providing him with the academic version of their software.

References

1. Agler, J., Helton, W., McCullough, S., Rodman, L.: Positive semidefinite matrices with a given sparsity
pattern. Linear Algebra and its Applications 107, 101–149 (1988)

2. Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y., Yamashita, M.: User’s manual for SparseCoLO: Con-
version methods for SPARSE COnic-form Linear Optimization. Department of Mathematical and Com-
puting Sciences, Tokyo Institute of Technology, Tokyo, Tech. Rep (2009)

3. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via
matrix completion i: General framework. SIAM Journal on Optimization 11(3), 647–674 (2001)

4. Griewank, A., Toint, P.L.: On the existence of convex decompositions of partially separable functions.
Mathematical Programming 28(1), 25–49 (1984)

5. Grone, R., Johnson, C., Sà, E., Wolkowitz, H.: Positive definite completions of partial Hermitian matri-
ces. Linear Algebra and its Applications 58, 109–124 (1984)

6. Haslinger, J., Kočvara, M., Leugering, G., Stingl, M.: Multidisciplinary free material optimization. SIAM
Journal on Applied Mathematics 70(7), 2709–2728 (2010)

7. Kakimura, N.: A direct proof for the matrix decomposition of chordal-structured positive semidefinite
matrices. Linear Algebra and its Applications 433(4), 819–823 (2010)

8. Kim, S., Kojima, M., Mevissen, M., Yamashita, M.: Exploiting sparsity in linear and nonlinear matrix
inequalities via positive semidefinite matrix completion. Mathematical Programming 129(1), 33–68
(2011)

9. MOSEK ApS: The MOSEK optimization toolbox for MATLAB manual. Version 8.0 (2016)
10. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite pro-

gramming via matrix completion ii: Implementation and numerical results. Mathematical Programming
95(2), 303–327 (2003)

11. Petersson, J.: A finite element analysis of optimal variable thickness sheets. SIAM Journal on Numerical
Analysis 36(6), 1759–1778 (1999)

12. Quarteroni, A., Valli, A.: Theory and application of Steklov-Poincaré operators for boundary-value prob-
lems. In: R. Spigler (ed.) Applied and Industrial Mathematics: Venice–1, 1989, pp. 179–203. Springer
Netherlands, Dordrecht (1991)

13. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Foundations and
Trends in Optimization 1(4), 241–433 (2015)

	Introduction
	Decomposition of positive semidefinite matrices
	Application: Topology optimization problem, semidefinite formulation
	Decomposition of the topology optimization problem (13)
	Decomposition by fictitious loads
	Numerical experiments

