

Electrocaloric effect in Pb0.3CaxSr0.7-xTiO3 ceramics near room temperature

Liuyang Han, Shao-Bo Guo, Shi-Guang Yan, Denis Remiens, Gen-Shui Wang,

Xian-Lin Dong

► To cite this version:

Liuyang Han, Shao-Bo Guo, Shi-Guang Yan, Denis Remiens, Gen-Shui Wang, et al.. Electrocaloric effect in Pb0.3CaxSr0.7-xTiO3 ceramics near room temperature. JOURNAL OF INORGANIC MATERIALS, 2019, 34 (9), pp.1011-1014. 10.15541/jim20180551. hal-03133862

HAL Id: hal-03133862 https://hal.science/hal-03133862

Submitted on 20 Aug 2021 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electrocaloric Effect in Pb_{0.3}Ca_xSr_{0.7Dx}TiO₃ Ceramics Near Room Temperature

HAN Liu-Yang^{1,2,3}, GUO Shao-Bo¹, YAN Shi-Guang¹, RÉMIENS Denis³, WANG Gen-Shui¹, DONG Xian-Lin¹

(1. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Université Polytechnique Hautsde-France, Valenciennes 59313, France)

Abstract: The electrocaloric (EC) effect is strongly related to interaction of polarization and temperature changes, showing great potential in high-efficient solid state refrigeration. This work focuses on the Pb_{0.3}Ca_xSr_{0.7-x}TiO₃ (PCST(*x*), x = 0.00, 0.05, 0.10, 0.15) ceramics in which the influence of Ca content on dielectric and ferroelectric property under electric field was studied, and the EC temperature change was calculated through indirect method. Substitution of Ca largely modifies the diffused phase transition behaviors of PCST ceramics, which the diffusion exponent of PCST(0.05) increases with electric field up, indicating a promising wide temperature range of large electrocaloric effect. Thus, the largest adiabatic temperature change (1.71 K) is obtained near the room temperature in PCST(0.05) by indirect method. With an electric field of 8 kV/mm, PCST(0.05) ceramic shows good EC effect in a wide temperature range that the adiabatic temperature change is larger than 1 K from 5 °C to 70 °C.

Key words: electrocaloric effect; ferroelectrics ceramics; diffused phase transition

When an electric field is applied or removed, there is a reversible temperature change in dielectric materials that can be exploited as promising solid-state refrigeration candidates to replace vapor-compression systems^[1-3]. In 2006, the giant EC response with an adiabatic temperature change (ΔT) of 12 K was demonstrated in

Pb($Zr_{0.95}Ti_{0.05}$)O₃ (PZT) antiferroelectric films near the Curie temperature ($T_{\rm C}$) for a huge polarization change^[4]. From then on, a booming development of EC effect started, and many advancements have been achieved^[3,5-7].

The pyroelectric and EC effects of ferroelectrics are strongly correlated with each other. The EC effect is the thermodynamically reverse process of pyroelectric effect due to Maxwell relationship. Thus many pyroelectrics can also be good EC materials for solid-state refrigeration, such as PZT, Ba_xSr_{1-x}TiO₃ (BST) and PbSc_{1/2}Ta_{1/2}O₃ (PScT)^[5, 8-11]. Much attention has been especially paid on BST and PScT for its large pyroelectric effect near the room temperature^[5, 8, 10-11]. Recently, Pb0.3Ca_xSr_{0.7-x}TiO₃ [PCST(*x*), *x* = 0.00, 0.05, 0.10, 0.15] was reported to show high pyroelectric coefficient near room temperature^[12], and the maximum of pyroelectric coefficient is obtained under a very low electric field of 200 V/mm. The diffused phase transitions occur in PCST(*x*) ceramics, which may lead to

a wide EC temperature span. The enhanced pyroelectric properties and the low induced-electric-field of PCST(x) ceramics predict high EC effect in PCST(x) ceramics, indicating great potential in electrocaloric solid-state refrigeration devices.

This work focuses on the EC effect of Pb_{0.3}Ca_xSr_{0.7-x}TiO₃ (PCST(*x*), *x*=0.00, 0.05, 0.10, 0.15) ceramics. The PCST(*x*) ceramics experience typical diffused phase transition, thus good EC effects were observed in a wide temperature span. The optimized EC effect was obtained in 0.05 Ca-doped ceramic, and the indirect EC method was carried out to verify ΔT values.

1 Experimental

The Pb_{0.3}Ca_xSr_{0.7-x}TiO₃ (x = 0.00, 0.05, 0.10 and 0.15) ceramics were fabricated by conventional solid-state reaction. The raw materials, Pb₃O₄ (99.26%), SrCO₃ (99%), TiO₂ (99.38%), and CaCO₃ (99%) with 0.5wt% excess of Pb₃O₄ to compensate for Pb volatilization, were well mixed by sufficient ball-milling. Then the mixed raw materials were calcined at 900 °C for 2 h. The calcined PCST(x) powders were shaped into ϕ 15 mm green compact and sintered at 1280 °C for 2 h. The temperature

dependence of dielectric constant was measured by a Hewlett Packard LCR meter at 1 kHz during heating (2 K/min). The polarization versus electric field (*P-E*) hysteresis loops from 5 °C to 90 °C were measured with aixACCT TF Analyzer 2000 at 1 Hz. The densities of the samples were measured using the Archimedes method. The specific heat used in this work is approximated from the specific heat value of PST from Ref.[6, 13-14]. In the EC effect calculation, six fold polynomial fitting was

used to calculated the

$$\left(\frac{\partial P}{\partial T}\right)_E.$$

2 Results and Discussion

2.1 Dielectric properties

The temperature dependence of dielectric permittivity for PCST(*x*) ceramics is given in Fig. 1(a). The ferroelectricparaelectric phase transition of PCST(*x*) ceramics happens near the room temperature. The electric field is believed to stabilize the ferroelectric phase when the temperature is higher than $T_{\rm C}$. Thus the peak value of dielectric permittivity is suppressed with an electric field of 0.5 kV/mm. To reveal it clearly, the diffusion exponent of the phase transition can be characterized by^[8] Eq(1):

$$\frac{1}{\varepsilon_r} - \frac{1}{\varepsilon_{\max}} = \frac{(T - T_C)\gamma}{2\varepsilon_{\max}\sigma^2}$$
(1)

where ε_{max} and T_{C} are the peak value of dielectric constant

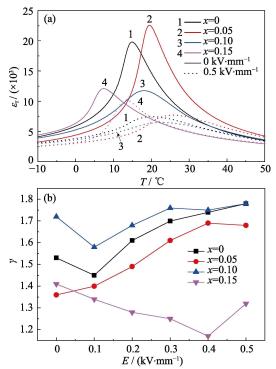


Fig. 1 (a) Temperature dependence of dielectric permittivity for PCST(x) ceramics with and without electric field, and (b) diffusion exponent *versus* electric field curves of PCST(x) ceramics

and the corresponding temperature, γ the diffusion exponent, and σ the variance. The diffusion exponent of samples with electric field were given in Fig. 1(b). As it was reported, the phase transition of $PCST(x \le 0.10)$ is second-order transition, while the phase transition order is first order in PCST(0.15)^[12]. In general, γ increases with electric field when a second order phase transition occurred ($x \le 0.10$). For x=0.15, where the first order phase transition happened, γ firstly decreases then increases with electric field up. The diffusion exponent of PCST(0.05) rises from 1.36 to 1.68 with an electric field changing from 0 to 0.5 kV/mm, indicating an enhanced diffused transition happened with electric field increasing. These diffusion behaviors under electric field give us expectation for a temperaturebroadened EC effect in PCST(x) ceramics with application of large electric field^[13-14].

2.2 Ferroelectric properties

Fig. 2 shows the *P*-*E* loops of PCST(*x*) ceramics at 5 °C, and inset shows the composition-dependent $T_{\rm C}$ in PCST(*x*) ceramics. The samples show the similar slim ferroelectric hysteresis loops with small coercive field. The maximums of the polarization ($P_{\rm max}$) of samples are different and peak at *x*=0.05.

2.3 Electrocaloric properties

Fig. 3(a) shows the *P-E* loops of PCST(0.05) ceramic with an electric field of 8 kV/mm at different temperatures, and the inset illustrates the temperature dependence of the polarization under different electric fields. It is seen that the polarization decreases sharply just above $T_{\rm C}$ under low electric fields but decreases slowly under high electric field. Based on the Maxwell relationship^[15], the adiabatic temperature change (ΔT) of EC effect can be calculated by,

$$\Delta T = -\frac{T}{c\rho} \int_{E_1}^{E_2} \left(\frac{\partial P}{\partial T}\right)_E \mathrm{d}E \tag{2}$$

Where ρ is the density and c is the specific heat (426 J/(kg·K)).

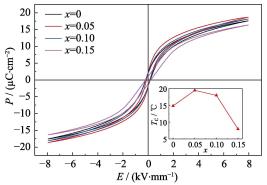


Fig. 2 *P-E* loops of PCST(*x*) ceramics at 5 $^{\circ}$ C with inset showing the composition dependence of Curie temperature in PCST(*x*) ceramics

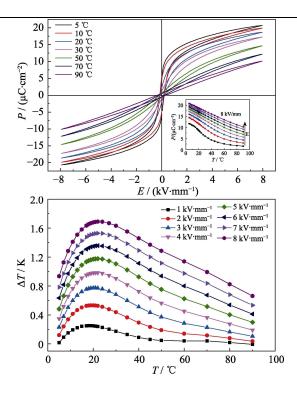
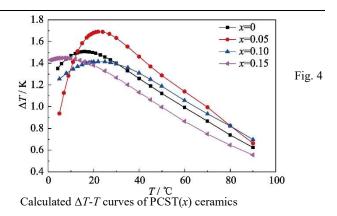



Fig. 3 (a) *P-E* loops under different temperatures, and (b) calculated ΔT -T curves under different electric fields of PCST(0.05) sample

The temperature dependence of the ΔT for PCST(0.05) under different electric fields is given in Fig. 3(b). The maximum ΔT is obtained at the temperature slightly higher than $T_{\rm C}$ and increases gradually with the increase of the electric field.

The indirect ΔT as a function of temperature in PCST(*x*) ceramics is shown in Fig. 4. The maximum of ΔT reaches 1.71 K under an electric field of 8 kV/mm in PCST(0.05) ceramic at 22 °C, and the diffused phase transition contributes to a wide temperature range, where the ΔT of PCST (0.05) ceramic is higher than 1 K even at 70 °C. The span from 5 to 70 °C is the main operating temperature range for many devices, as well for cooling applications.

In Table 1, the EC properties of PCST(*x*) are listed, and other EC materials that show good EC effect are given for comparison. Since the practical cooling devices work at room temperature to a large extent, PCST(0.05) ceramic exhibits good performance at room temperature compared to other EC materials. Meanwhile, the ΔT of PCST(0.05) ceramic larger than 1 K from 5 °C to 70 °C. All these superior performances demonstrate that PCST (0.05) is a good EC material with high cooling efficiency.

3 Conclusions

In summary, the dielectric diffusion behaviors of PCST(x) ceramics under electric field were

systematically studied, all samples show the increasing diffusion exponent with high electric field applied. When Ca substitution is 0.05, the sample shows the largest P_{max} . The enhanced EC effect near the room temperature with the broadened range is obtained by the indirect method based on the Maxwell relationship. The EC response of PCST(0.05) reaches 1.71 K at 20 °C , and it is larger than 1 K in a wide temperature range from 5 °C to 70 °C. Therefore the EC effect near the room temperature with the wide range exhibits great potential for practical cooling applications.

Material	Form	$T_{\rm C}/^{\circ}{\rm C}$	$\Delta T/K$	$\Delta E/(\mathrm{kV}\cdot\mathrm{mm}^{-1})$	$(\Delta T/\Delta E)/(\times 10^{-6}, \text{K} \cdot \text{m} \cdot \text{V}^{-1})$	Method	Ref.
PCST(0.00)	Ceramic	14.9	1.52	8.0	0.19	Indirect	This work
PCST(0.05)	Ceramic	19.5	1.71	8.0	0.21	Indirect	This work
PCST(0.10)	Ceramic	18.0	1.43	8.0	0.18	Indirect	This work
PCST(0.15)	Ceramic	8.0	1.49	8.0	0.19	Indirect	This work
PbZr0.95Ti0.05O3	Film	226.0	12.00	77.6	0.15	Indirect	[4]
PbMg1/3Nb2/3O3	Ceramic	67.0	2.50	9.0	0.27	Direct	[16]
0.75PMN-0.25PT	Single crystal	110.0	0.66	2.5	0.26	Direct	[17]
PMN-30PT	Ceramic	145.0	2.60	9.0	0.29	Direct	[16]
Ba _{0.94} Dy _{0.04} TiO ₃	Ceramic	138.0	1.04	3.0	0.35	Direct	[18]
BaZr _{0.2} Ti _{0.8} O ₃	Ceramic	39.0	4.50	14.5	0.31	Direct	[19]
BaTiO ₃	Single crystal	129.0	0.90	1.2	0.75	Direct	[7]

Table 1	Comparison of EC	properties of common	reported materials
---------	------------------	----------------------	--------------------

References:

- MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions. *Nature Materials*, 2014, 13: 439–450.
- [2] VALANT M. Electrocaloric materials for future solid-state refrigeration technologies. *Progress in Materials Science*, 2012, 57: 980–1009.
- [3] SCOTT J F. Electrocaloric materials. *Annual Review of Materials Research*, 2011, **41(1)**: 229–240.
- [4] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr_{0.95}Ti_{0.05}O₃. Science, 2006, **311**: 1270–1271.
- [5] SHEBANOVS L, BORMAN K, LAWLESS W N, et al. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. *Ferroelectrics*, 2002, 273: 137–142.
- [6] WHATMORE R W, PATEL A, SHORROCKS N M, et al. Ferroelectric materials for thermal Ir sensors state-of-the-art and perspectives. *Ferroelectrics*, 1990, **104(1)**: 269–283.
- [7] MOYA X, STERN-TAULATS E, CROSSLEY S, et al. Giant electrocaloric strength in single-crystal BaTiO₃. Advanced Materials, 2013, 25(9): 1360–1365.
- [8] BAI Y, HAN X, DING K, et al. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba₁₋ xSr_xTiO₃ ceramics. Applied Physics Letter, 2013, 106(16): 162902.
- [9] LIU X Q, CHEN T T, WU Y J, et al. Enhanced electrocaloric effects in spark plasma-sintered Ba_{0.65}Sr_{0.35}TiO₃-based ceramics at room temperature. *Journal of the American Ceramic Society*, 2013, 96: 1021–1023.
- [10] LISENKOV S, PONOMAREVA I. Giant elastocaloric effect in ferroelectric Ba_{0.5}Sr_{0.5}TiO₃ alloys from first-principles. *Physical Review B*, 2012, **86(10)**: 104103.

- [11] SHEBANOV L, BORMAN K. On lead-scandium tantalate solid solutions with high electrocaloric effect. *Ferroelectrics*, 1992, **127**: 143–148.
- [12] HAN L, GUO S, YAN S, *et al.* Enhanced pyroelectric properties of Pb_{0.3}Ca_{0.15}Sr_{0.55}TiO₃ ceramic with first-order dominated phase transition under low bias field. *Applied Physics Letters*, 2017, **110**: 102905.
- [13] JIANG Y, TANG X, LIU Q, *et al.* Dielectric and pyroelectric properties of (Pb_{0.50}Sr_{0.50})TiO₃ ceramics. *Chinese Physics Letter*, 2008, **25(8)**: 3044-3047.
- [14] LEI X, DONG X, MAO C, et al. Dielectric and enhanced pyroelectric properties of (Pb_{0.325}Sr_{0.675})TiO₃ ceramics under direct current bias field. *Applied Physics Letter*, 2012, **101(26)**: 262901.
- [15] ROSE M, COHEN R. Giant electrocaloric effect around T_c. Physical Review Letters, 2012, **109(18)**: 187604.
- [16] ROZIC B, KOSEC M, URSIC H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. Journal of Applied Physics, 2011, 110(6): 064118.
- [17] SEBALD G, SEVEYRAT L, GUYOMAR D, et al. Electrocaloric and of 0.75Pb(Mg_{1/3}Nb_{2/3})O₃-0.25PbTiO₃ single crystals. *Journal* of Applied Physics, 2006, **100**: 124112.
- [18] HAN F, BAI Y, QIAO L, *et al.* A systematic modification of the large electrocaloric effect within a broad temperature range in rareearth doped BaTiO₃ ceramics. *Journal of Materials Chemistry C*, 2016, 4: 1842–1849.
- [19] QIAN X, YE H, ZHANG Y, et al. Giant electrocaloric response over a broad temperature range in modified BaTiO₃ ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305.