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Partially Linear Spatial Probit Models*
M.S Ahmect, S Dabo-Niang* and G Geninï and A.A Hassan^

Abstract: A partially linear probit model for spatially dépendent data is con-
sidered. A triangular array setting is used to cover various patterns of spatial
data. Conditional spatial heteroscedasticity and non-identically distributed ob-
servations and a linear process for disturbances are assumed, allowing various
spatial dependencies. The estimation procedure is a combination of a weighted
likelihood and a generalized method of moments. The procedure first fixes the
parametric components of the model and then estimâtes the non-parametric
part using weighted likelihood; the obtained estimate is then used to construct
a GMM (Generalized Method of Moments) parametric component estimate.
The consistency and asymptotic distribution of the estimators are established
under sufficient conditions. Some numerical results are provided to investigate
the finite sample performance of the estimators.

Introduction

Agriculture, économies, environmental sciences, urban Systems, and epidemiology
activities often utilize spatially dépendent data. Therefore, modelling such activities
requires one to find a type of corrélation between some random variables in one lo-
cation with other variables in neighbouring locations; see for instance [30]. This is a

significant feature of spatial data analysis. Spatial/Econometrics statistics provides
tools to perform such modelling. Many studies on spatial effects in statistics and
econometrics using many diverse models hâve been published; see [10], [2], [3] and
[4] for a review.
Two main methods of incorporating a spatially dépendent structure [see for instance
10] can essentially be distinguished as between geostatistics and lattice data. In the
domain of geostatistics, the spatial location is valued in a continuous set of RN,
N > 2. However, for many activities, the spatial index or location does not vary

continuously and may be of the lattice type, the baseline of this current work. In
image analysis, remote sensing from satellites, agriculture etc., data are often re-
ceived as a regular lattice and identified as the centroids of square pixels, whereas
a mapping often forms an irregular lattice. Basically, statistical models for lattice
data are linked to nearest neighbours to express the fact that data are nearby.
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Two popular spatial dependence models hâve received substantial attention for lat-
tice data, the spatial autoregressive (SAR) dépendent variable model and the spatial
autoregressive error model (SAE, where the model error is an SAR), which extend
the régression in a time sériés setting to spatial one.
From a theoretical point of view, various linear spatial régression SAR and SAE
models as well as their identification and estimation methods, e.g., two-stage least
squares (2SLS), three-stage least squares (3SLS), maximum likelihood (ML) or

quasi-maximum likelihood (QML) and the generalized method of moments (GMM),
hâve been developed and summarized by many authors such as [3], [16], [17], [9],
[10], [8], [19], [20], [22], [41], [23], [13], [40]. Introducing nonlinearity into the field
of spatial linear lattice models has attracted less attention; see for instance [32],
who generalized kernel régression estimation to spatial lattice data. [38] proposed a

semi-parametric GMM estimation for some semi-parametric SAR models. Extending
these models and methods to discrète choice spatial models has seen less attention;
only a few papers hâve been concerned with this topic in recent years. This may be,
as noted by [12] (see also [36] and [6]), due to the ”added complexity that spatial de-
pendence introduces into discrète choice models”. Estimating the model parameters
with a full ML approach in spatially discrète choice models often requires solving a

very computationally demanding problem of n-dimensional intégration, where n is
the sample size.
For linear models, many discrète choice models are fully linear and utilize a contin-
uous latent variable; see for instance [36], [39] and [25], who proposed pseudo-ML
methods, and [30], who studied a method based on the GMM approach. Also, others
méthodologies of estimation are emerged like, EM algorithm [27] and Gibbs sampling
approach [21],

When the relationship between the discrète choice variable and some explanatory
variables is not linear, a semi-parametric model may represent an alternative to fully
parametric models. This type of model is known in the literature as partially linear
choice spatial models and is the baseline of this current work. When the data are

independent, these choice models can be viewed as spécial cases of the famous gener-
alized additive models [14] and hâve received substantial attention in the literature,
and various estimation methods hâve been explored [see for instance 7, 15, 34].
To the best of our knowledge, semi-parametric spatial choice models hâve not yet
been investigated from a theoretical point of view. To hll this gap, this work ad-
dresses an SAE spatial probit model for when the spatial dependence structure is
integrated in a disturbance term of the studied model.
We propose a semi-parametric estimation method combining the GMM approach
and the weighted likelihood method. The method consists of first fixing the para-
metric components of the model and non-parametrically estimating the non-linear
component by weighted likelihood [37]. The obtained estimator depending on the
values at which the parametric components are fixed is used to construct a GMM
estimator [30] of these components.
The remainder of this paper is organized as follows. In Section 1, we introduce the
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studied spatial model and the estimation procedure. Section 2 is devoted to hypothe-
ses and asymptotic results, while Section 3 reports a discussion and computation
of the estimâtes. Section 4 gives some numerical results based on simulated data to
illustrate the performance of the proposed estimators. The last section présents the
proofs of the main results.

1. Model

We consider that at n spatial locations {si, S2,..., sn} satisfying ||s; — Sj\\ > p with
p > 0, observations of a random vector (Y,X,Z) are available. Assume that these
observations are considered as triangular arrays [32] and follow the partially linear
model of a latent dépendent variable Y*:

(1-1) Yin = xlnPo + 9o{Zin) + Uin, 1 < z < n, n = 1,2,...

with

(1.2) yi„ = I(yi*„>0), l<i<n, n=l,2,...

where I(-) is the indicator function; X and Z are explanatory random variables
taking values in the two compact subsets X C W(p > 1) and Z C Rd(d > 1),
respectively; the parameter (3o is an unknown p x 1 vector that belongs to a compact
subset 0/3 C and go(-) is an unknown smooth function valued in the space
of functions Q = [g G C2(Z) : ||g|| = sup2G2 \9iz)\ < C'}, with C2(Z) the space of
twice différentiable functions from Z to M and C a positive constant. In model (1.1),
(3o and go(-) are constant over i (and n). Assume that the disturbance tenn Uin in
(1.2) is modelled by the following spatial autoregressive process (SAR):

n

(1.3) Uin — Ào ^ ^ WijnUjn T ^ini 1 Z: ^ Z Tb = 1,2,...
3=1

where, we assume that, for ail n = 1,2,..., {^n, 1 < i < n} is independent
of {Xin, 1 < i < n} and {^n, 1 < i < n}, and {.7Qn, 1 < i < n} is independent of
{Zin, 1 < i < n).
Ào is the autoregressive parameter, valued in the compact subset 0^ C M, Wijn, j =

1,..., n are the éléments in the z-th row of a non-stochastic nxn spatial weight matrix
Wn, which contains the information on the spatial relationship between observations.
This spatial weight matrix is usually constructed as a function of the distances (with
respect to some metric) between locations; see [30] for additional details. The nxn
matrix (In — AoWn) is assumed to be non-singular for ail n, where In dénotés the
nxn identity matrix and {sjn, 1 < i < n} are assumed to be independent random
Gaussian variables; E(£jn) = 0 and E(s^n) — 1 for i — 1,..., n n = 1,2,.... Note
that one can rewrite (1.3) as
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(1.4) Un = (In-XoWn) 1 en, n = 1,2,...

where Un = (Uni,..., Unn)T and en = (sni:..., enn)T. Therefore, the variance-
covariance matrix of Un is

(1.5) K»(A0) = Var([/„) = (/„ — AoW„)-1 j(4» - A0W„)T| \ n = l,2,...
This matrix allows one to describe the cross-sectional spatial dependencies be-

tween the n observations. Furthermore, the fact that the diagonal éléments of 14 (Ao)
dépend on Ào and particularly on i and n allows some spatial heteroscedasticity.
These spatial dependences and heteroscedasticity dépend on the neighbourhood
structure established by the spatial weight matrix Wn.
The éléments w>ijn of Wn are usually considered as inversely proportional to the dis-
tance between spatial units i and j with respect to some metric [physical distance,
social network or économie distance, see for instance 30]. The matrices Wn are usu-

ally classified into two groups: Weights Based on Distance and Weights Based on
Boundaries. For Weights Based on Distance, the distance d^ between each pair of
spatial units (régions, cities, centroids,...) i and j are basically considered.

Wü =

k-Nearest Neighbor weights
1 if je iVfc(z),
0 Otherwise

régions to i for k G {1, ...,n — 1}
Power Distance Decay weights

where Nk(i) is the set of the k closest units or

D
0

a — 1 or a -

Wij —

if 0 < dij < ô
if

2.
d^ > 6

where a is any positive exponent, typically

For Weights Based on Boundaries, spatial contiguity is often used to specify neigh-
boring location in the sense of sharing a common border. There are different type
of spatial contiguity but the classical cases are those referred to Rook contiguity
(with only common boundaries), Bishop contiguity (with only common vertices)
and Queen contiguity (with both Rook and Bishop contiguity).

1 if i and j are contiguity
0 Otherwise

In general, we can rewrite the last équation as:

Win

Wi
> 0
= 0

with iij dénotés the length of shared boundary.
Before proceeding further, let us give some particular cases of the model.
If one consider i.i.d observations, that is, Vn(Ao) = cr2In: with a depending on Ào,
the obtained model may be viewed as a spécial case of classical generalized par-

tially linear models [e.g. 34] or the classical generalized additive model [14]. Several
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approaches for estimating this particular model hâve been developed; among these
methods, we cite that of [34] based on the concept of the generalized profile likeli-
hood [e.g 35]. This approach consists of first fixing the parametric parameter /3 and
non-parametrically estimating go(-) using the weighted likelihood method. This last
estimate is then used to construct a profile likelihood to estimate fo.
When go = 0 (or is an affine function), that is, without a non-parametric compo-
lient, several approaches hâve been developed to estimate the parameters (3q and
Ao- The basic difficulty encountered is that the likelihood function of this model
involves an n-dimensional normal intégral; thus, when n is high, the computation
or asymptotic properties of the estimâtes may présent difficulties [e.g. 31]. Various
approaches hâve been proposed to addressed this difficulty; among these approaches,
we cite the following:

• Feasible Maximum Likelihood approach: this approach consists of replacing
the true likelihood function by a pseudo-likelihood function constructed via
marginal likelihood functions. [36] proposed a pseudo-likelihood function ob-
tained by replacing Vn (Ào) by some diagonal matrix with the diagonal éléments
of K(À0). Alternatively, [39] proposed to divide the observations by pairwise
groups, where the latter are assumed to be independent with a bivariate nor-
mal distribution in each group, and estimate (3q and Ao by maximizing the
likelihood of these groups. Recently [25] proposed a pseudo-likelihood func-
tion defined as an approximation of the likelihood function where the latter is
inspired by some univariate conditioning procedure.

• Generalized Method of Moments (GMM) approach used by [30]. These authors
used the generalized residuals defined by Uin(/3} A) = E (Uin\Yin,/3, A), 1 <
i < n, n = 1,2,... with some instrumental variables to construct moment
équations to define the GMM estimators of fio and Ao-

In what follows, using the n observations (Xjn, Yin, Zin), i = l,...,n, we propose
parametric estimators of fto, Ao and a non-parametric estimator of the smooth func-
tion g0{-).
We give asymptotic results according to increasing domain asymptotic. This consists
of a sampling structure whereby new observations are added at the edges (bound-
ary points) compare to the infill asymptotic, which consists of a sampling structure
whereby new observations are added in-between existing observations. A typical ex-

ample of an increasing domain is lattice data. An infill asymptotic is appropriate
when the spatial locations are in a bounded domain.

1.1. Estimation Procedure

We propose an estimation procedure based on a combination of a weighted like-
lihood method and a generalized method of moments. We first fix the parametric
components (3 and A of the model and estimate the non-parametric component using
a weighted likelihood. The obtained estimate is then used to construct generalized
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residuals, where the latter are combined with the instrumental variables to propose
GMM parametric estimâtes. This approach will be described as follow.

By équation (1.2), we hâve
(1.6)
E0 (Yin\Xin, Zin) = $ ((nin(A0))_1 (X?n/3o + go(Zin))^ , 1 < i < n, n = 1,2,...

where Eo dénotés the expectation under the true parameters (i.e., /?o, Ao and go(-))?
d>(-) is the cumulative distribution function of a standard normal distribution, and
(^m(Ao))2 = Van{Ao), 1 < i < n, n = 1,2, • • • are the diagonal éléments of Vn(Xo).
For each /3 E Qp, X E ©x, z £ Z and g E M, we define the conditional expectation
on Zin of the log-likelihood of Y{n for 1 < i < n, n — 1,2,..., as

(1.7) H(mP, a, z) = E0 (7 ($ (fenfA))-1 (r, + Xjj)) ; Yin)
with C{u\ v) = log (uv( 1 — u)l~v). Note that H{r}\ /3, A, z) is assumed to be constant
over i (and n). For each hxed /3 E Qp, X E Q\ and z E Z, gp,\{z) dénotés the
solution in r] of

(1.8) £-H(r,;P,\z) = 0.

Then, we hâve gp0,\0(z) = go(z) for ail z E Z.

Now, using gp,\(-): we construct the GMM estimâtes of /3o and Ao as in [30]. For
that, we define the generalized residuals, replacing go{Zin) in (1.1) by gp,\(Zin):

(1.9) t4,(/?,A,g^) = E(Utn\YinJ,\)
(f) (Gini/3, A, gp'X)) (Yin - $ {Gjn{p, A, gp,x)))
4>(Gin(/3,A,9ftA))(l-<H(Gm(/3,A,5ftA))) ’

where 4>(-) is the density of the standard normal distribution and
Gin{l3:X,gp,x) = MX))-1 (Xlp + gp,x(Zin)).
For simplicity of notation, we write 6 = (/3T, X)T E Q = ©p x when possible.
Note that in (1.9), the generalized residual Uin{-, •) is calculated by conditioning
only on Yin and not on the entire sample {Yin, i = 1,2,..., n, n — 1,...} or a subset
of it. This of course will influence the efficiency of the estimators of 9 obtained
by these generalized residuals, but it allows one to avoid a complex computation;
see [31] for additional details. To address this loss of efficiency, let us follow [30]’s
procedure, which consists of employing some instrumental variables to create some
moment conditions, and use a random matrix to define a criterion function. Both
the instrumental variables and the random matrix permit one to consider more
information about the spatial dependences and heteroscedasticity characterizing the
dataset. Let us now detail the estimation procedure. Let

n.in'i S„(9.na) = n lfTfZ(0.cia).
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where Ün(9,go) is an n x 1 vector, composed of Üin(9,go), 1 < i < n and is an
n x q matrix of instrumental variables, whose zth row is given by the 1 x q random
vector £in. The latter may dépend on ge(-) and 9. We assume that (in is cr(Xin, Zin),
measurable for each i = 1,..., n, n = 1,2,.... We suppress the possible dependence
of the instrumental variables on the parameters for notational simplicity. The GMM
approach consists of minimizing the following sample criterion function:

(1.11) Qn{9,ge) = S%(9,ge)MnSn{9,ge),
where Mn is some positive-definite q x q weight matrix that may dépend on the
sample information. The choice of the instrumental variables and weight matrix
characterizes the différence between GMM estimator and ail pseudo-maximum like-
lihood estimators. For instance, if one takes

(1.12) £,in{9i go)
dGin(9,rn) dGin(9,r)i) dge

d9 drj d9 (%ir

with T)i = ge{Zin), Gin(0, ru) = (vin{\)) 1 (X?nP + ru), and Mn = Iq with q = p+ 1,
then the GMM estimator of 9 is equal to a pseudo-maximum profile likelihood
estimator of 0, accounting only for the spatial heteroscedasticity.
Now, let

(1.13) S{6,ge) = fini Eo(5„(^,^)),
n—>oo

and

Q(6,ge) = ST(e,ge)MS(e,ge),
where M, the limit of the sequence Mn, is a nonrandom positive-definite matrix.
The functions 5n(-, •) and Qn(v) are viewed as empirical counterparts of 5(-, •) and
Q(v), respectively.
Clearly, go(-) is not available in practice. However, we need to estimate it, particu-
larly by an asymptotically efficient estimate. By (1.8) and for fixed 9T = (/3r, A) E 0,
an estimator of gg(z), for z e Z, can be given by ge(z), which dénotés the solution
in g of

(1.14) ^d£(<l>(Gin(e,v))-,Yin)K^-ZZj=0,
where K(-) is a kernel from Rd to R+ and bn is a bandwidth depending on n.

Now, replacing gg(-) in (1.11) by the estimator gg(-) permits one to obtain the
GMM estimator 9 of 9 as

(1.15) 9 = argmin0e0Qu(6>, ge).
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A classical inconvenience of the estimator ge{z) proposed in (1.14) is that the bias
of ge(z) is high for z near the boundary of Z. Of course, this bias will affect the esti-
mator of 9 given in (1.15) when some of the observations Zin are near the boundary
of Z. A local linear method, or more generally the local polynomial method [11], can
be used to reduce this bias. Another alternative is to use trimming [34], in which
the function Sn(9,ge) is computed using only observations associated with Z{n that
are away from the boundary. The advantage of this approach is that the theoretical
results can be presented in a clear form, but it is less tractable from a practical point
of view, in particular, for small sample sizes.

2. Large sample properties

We now turn to the asymptotic properties of the estimators derived in the previous
section: 9T — ((3T, A) and §§(-). Let us use the following notation: -^S(9,ge) means
that we differentiate 5(.,.) with respect to 9, and S(9,ge) is the partial dérivative
of 5(-,-) w.r.t the first variable. The partial dérivative of Sn(9,g) w.r.t g, for any
function v £ G-, is

9Sn ( . -i\Tc dÜin ( \ (7 \-^-(0, 9){v) = n 2^ ViMZin).dg

1 /O
Without ambiguity, |[a|| dénotés supt |a(i)| when a is a function, (Xlaf) 7 when a

is a vector, and f Y, Y aij ) when a is a matrix.
Let the following matrices be needed in the asymptotic variance-covariance matrix
of 9:

Bi(90) = lim E0 (nSn (90,go) {90,go)),

S2<flo)= )TesT{e'9e) 0=6o

with

(2.1)

and

d dS dS
\ d

~d9S ,9e^~~d0^i9^ + 'dg^ ’9o)qq96,

SÎ(«o) = ^o)}-1 \-^ST{9,ge) MBi(6o)M < —S(0,gg)
e=e0 )

meo)}-

The following assumptions are required to establish the asymptotic results.
Assumption Al. (Smoothing condition). For each fixed 9 £ O and z £ Z, let
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go(z) dénoté the unique solution with respect to 77 of

Jur(7j;0,z) = 0-
For any £ > 0 and g E G, there exists 7 > 0 such that

(2.2) sup
9ee,z£Z

d_
dr] H{g{z)-,e,z) < 7 sup |<?(z)— go(z)\

0£O,z€Z

Assumption A2. (Marginal distributions). The density /*„(•) of Z*
continuous on Z uniformly on i and n and satisfies

< e.

exists, is

(2.3)
1 "

liminf inf - fin(z) > 0.
n—>00 zez n '

Z=1

The joint probability density fijn(., •) of (Z*n, Zjn) exists and is bounded on Z x Z
uniformly on i 7^ j and n.

Assumption A3. (Spatial dependence). Let /q^(-|-, •) dénoté the conditional
log likelihood function of Y{n given (Xin,Zin), where ru — g(Zin). Let Tin be the
vector (Yin, X{n, Zin), i = 1,..., n, n — 1,2..p — p + 1, and assume that for ail
i,l = l,...,n,

(2.4) |Cov0 (t/>(T;„), i>(Tin))\ < {Varo (</>(!*,)) Var0 (</-(Tin))}1/2 a,ln,

with

^Tin) = Ki~^) or
(z — Z- \ 8n+-+jp+r

Mn) = K 1 m —: T he^(Ym\Xin, Zin = z),1 '
V K J d^...d^drf m

for ail ^ G Z, 9 G @,7 = g(z) with g E G, and for ail nonnegative integers
ji,..., jp = 0,1,2 and r = 0,..., 4, such that j 1 -f b jp + r < 6.
We assume that

(2'5)
COV0 (^itnÙini^) 9(i)i £,jsnÜjn(@i 9o)'j | T ^Vâp) (^itnÙini^ -, 9o)^ Varo ([9tjsnUjn{9-! 9o)^j | &ijn -,

for ail 9 G @, i, j = 1,... ,n, n — 1,2,... and for any s,t = 1,... ,q,
and

(2.6)
Cov0 (Çin{0o,'ni),Çjn(dO’rlOj)) < {varo (tin (Oo,Vif) Varo (çfj(60,77°))}

1/2
HJ715

with

éniOorfi
dGi

w~ ’ÇiA (Gin(0o,r,i)) <t>(Gin(0o,>7) -^(È>o,>ï°)
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where rf) — go(Zi) for each w G I9 such that \\w\\ = 1.
In addition, assume that there is a decreasing (to 0) positive function (/?(•) such

that the ”mixing” numbers verify — 0((/?(||si — Sj||)), r2ip(rr*)/(p(r*) = o(l),
as r —> 0, for ail fixed r* > 0, where s; and Sj are spatial coordinates associated
with observations i and j, respectively.
Assumption A4. The kernel K satisfies J K(u)du = 1. It is Lipschitzian, i.e.,

there is a positive constant C such that

\K(u) — K(v)\ < C\\u — v\\ for ail u,v Eld.

Assumption A5. The bandwidth bn satisfies bn -4 0 and nb^d+1 —oo as n —>■ oo.

Assumption A6. The instrumental variables satisfy sup^ n ||^n|| = Op( 1), where
(in is the i-th colmnn of the n x q matrix of instrumental variables (n.
Assumption A7. 0T — (/3T, A) takes values in a compact and convex set 0 =

0£ x 0a C W x ]R, and 0q = (/3^, Ao) is in the interior of 0.
Assumption A8. 5(-,-) is continuons on both arguments 6 and g, and Q(-,g.)

attains a unique minimum over 0 at 9q.
Assumption A9. The square root of the diagonal éléments of Vn(A) are twice

continuons différentiable functions with respect to A and
d ,,, d?

sup
AG0a

V: '(^) + ~d\Vin(A) d\2 ^m(^) < oo uniformly on i and n.

Assumption A10. Bi(6q) and B2(0q) are positive-definite matrices, and Mn—M =

°p(!)•
Remark 1. Assumption Al ensures the smoothness of H(.;.,.) around its extrema
point ge(-); see [34]. Assumption A2 is a decay of the local independence condition
of the covariates Z{n, meaning that these variables are not identically distributed;
a similar condition can be jïnd in [32]. Condition (2.3) generalizes the classical as-
sumption infz f(z) > 0 used in the case of estimating the density function /(•) with
identically distributed or stationary random variables. This assumption has been used
in [32] (Assumption A7(x), p. 8). Assumption A3 describes the spatial dependence
structure, it is a particular case of the Assumption A in [28] and may be verified
by mixing random variables, see [28] for more details. Note that the processes that
we use are not assumed stationary; this allows for greater generalizability and the
dependence structure to change with the sample size n (see [28] for more discus-
sion). Conditions (2-4), (2.5) and (2.6) are not restrictive. When the regressors and
instrumental variables are deterministic, conditions (2.4) and (2.5) are équivalent
to | CovQ(Yin, Yin)\ < ann. The condition on </?(•) is satisfied when the latter tends to
zéro at a polynomial rate, i.e., ip(t) = 0(t~T), for ail r > 2, as in the case of mixing
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random variables.

Assumption A6 requires that the instruments and explanatory variables be bounded
uniformly on i and n. In addition, when the instruments dépend on 6 and <?(•), they
are also uniformly bounded with respect to these parameters. The compactness condi-
tion in Assumption Al is standard, and the convexity is somewhat unusual; however,
it is reasonable in most applications. Condition A8 is necessary to ensure the identi-
fication ofthe true parameters do. Assumption A9 requires the standard déviations oj
the errors to be uniformly bounded away from zéro with bounded dérivatives. This has
been considered by [30]. Assumption A10 is classic ([30]) and required in the prooj
of Theorem 2.2. Those authors noted that in their model (without a non-parametric
component), when the autoregressive parameter Ào = 0, 82(6*0) is not invertible, re-
gardless of the choice of Mn. This is also the case in our context because for each
gg(z) solution of (1.8), 6 G 0 and z E Z, we hâve

dgo, ,
_ E{Tjn{Q,go(z))Xjn\Zjn = z)

dAZ ~ E(Tjn(8,ge(z))\Zjn = z)
and

dge vjnW E 9o(z)) \ Xjnf3 + ge{z)
al(z) =

Zjn — Z

vjn{A) E(Tjn(6,ge{z))\Zjn = z)

Vjn(f ( ^ qt ®90 ( n^TTV \96{z)-PVjn{\) \ OP
where vjn(X) = jxVjn(X) = vjn{\) [Wn8“1(A)yn(A)]ji,

rjn(.) = A'(Gjn(-)) [Yjn - $(Gj:„(•))] - a (Gjn(-)) 4, (Gjn(-))

and A(-) = 0(-)/(l - $(•))$(•). However

= 0
A=0

because vjn{0) = 0,

then 82(^0) will be singular when Ao = 0.
With these assumptions in place, we are able to give some asymptotic results. The

weak consistencies of the proposed estimators are given in the following two results.
The first theorem and corollary below establish the consistency of our estimators,
whereas the second theorem addresses the question of convergence to a normal
distribution of the parametric component when it is properly standardized.
Theorem 2.1. Under Assumptions A1-A10, we hâve

0-00 = <>,,( 1).
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Corollary 2.1. If the assumptions of Theorem 2.1 are satisfîed, then we hâve

\\9ê-9o\\ = oP(l).
Proof of Corollary 2.1 Note that

9o\ < \9§-9§\\ + \\9§-9o\
< sup 9e II +sup

dgo
de !l»-»oll = Op(l),

since, by the assumptions of Theorem 2.1, sup# \\çjg — ge\\ = op( 1) and sup0
00.

The following gives an asymptotic normality resuit of 9.
Theorem 2.2. Under assumptions A1-A10, we hâve

\Jn (§ — 6q] -ïiaw N(0,f^(^o))

dge
de <

Remark 2. In practice, the previous asymptotic normality resuit can be used to
construct asymptotic confidence intervals and build hypothesis tests when a consis-
tent estimate of the asymptotic covariance matrix Q(0o) is available. To estimate
this matrix, let us follow the idea of [30] and define the estimator

9ln{Ô) = \ B2n
~l { d

dO Si (0,ge)
0=6

B2n
-1

with

Bi„(9) = nSn(0,ge)Sl(0,ge) and B2„(0) = M„ {dS„ (0, |.
The consistency ofÇtn{9) will be based on that of Bin{0) and B2n(0), the estimators
of Bi(0q) and B2{0q), respectively. Note that the consistency of B2n{0) is relatively
easy to establish. On the other hand, that of B\n{0) asks for additional assumptions
and an adaption of the proof of Theorem 3 of [30, p.134] to our case; this is of
interest to future research.

3. Computation of the estimâtes

The aim of this section is to outline in detail how the régression parameters /3, the
spatial auto-correlation parameter À and the non-linear function gg can be estimated.
We begin with the computation of gg(z), which will play a crucial rôle in what follows.
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3.1. Computation of the estimate of the non-parametric component

An itérative method is needed to compute the ge(z) solution of (1.14) for each fixed
9 G © and z G Z. For fixed dT = (fi, A) G 0 and z £ Z, let go = g$(z) and ip(g; 9, z)
dénoté the left-hand side of (1.14), which can be rewritten as

(3.1) V’O; ». 2) = Y, MA)J_1 A v)) v))]K
i—1

z Zin \
K )'

Consider the Fisher information:

( d

V=Ve

{(Zin j Zin), 1 A i < n, n F • • •}

z — Z,
- E KnW]'2 A (Gin(6, m)) K

i= 1

+

(3.2) E MA)]-2 A (G(„(«, m)) 1* (Gi„(flo, I*,)) - ï> (Gin(9, i*,))] K
i-1

Z - Zi,

Note that the second term in the RHS (Right Hand Side) of (3.2) is negligible when
9 is near the true parameter 9q.
Because if(g; 9,z) = 0 for g = go(z), an initial estimate g can be updated to rf using
Fisher’s scoring method:

(3.3)
+ ~ #/;M)

The itération procedure (3.3) requests some starting value fj = fjo to ensure conver-
gence of the algorithm. To this end, let us adapt the approach of [34], which consists
of supposing that for fixed 9 G 0, there exists a fjo satisfying Gin (Mo) = $-1(yi„)
for i — 1,..., n. Knowing that Gin(9, fjo) = (vin(X)) 1 (X^fi + fjo), we hâve fjo =
Vin(X)^~l(Yin) —Xjnfi. Then, (3.3) can be updated using the following initial value:

ho = ho-
#7biM)
^(ho ;M)

LU MA)]-1 A(cy0(cy Cin [^m(A)] ~lxfnfi K z Zin |

l J
LUUWU HCin)mn)K

Z ^
bn i

where Cin — 1(Yin), i = 1,... ,n, is computed using a slight adjustment because
y» €{o,i}.
With this initial value, the algorithm itérâtes until convergence.

Sélection of the bandwidth

A critical step (in non- or semi-parametric models) is the choice of the bandwidth
parameter bn, which is usually selected by applying some cross-validation approach.
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The latter was adapted by [38] in the case of a spatial semi-parametric model.
Because cross-validation may be very time consuming, which is true in the case of
our model, we adapt the following approach used in [34] to achieve greater flexibility:

1. Consider the linear régression of C\n on Xjn, i — 1,..., n, without an intercept
terni, and let Rin, • • •, Rnn dénoté the corresponding residuals.

2. Since we expect E(Rin\Zin — z) to hâve similar smoothness properties as

go{-), the optimal bandwidth bn is that of the non-parametric régression of the
{Rin}i=i,- ,n on {^n}i=i,-,td chosen by applying any non-parametric regres-
sion bandwidth sélection method. For that, we use the cross-validation method
in the np R Package.

3.2. Computation of 6

The parametric component (3 and the spatial autoregressive parameter A are com-

puted as mentioned above by a GMM approach based on some instrumental variables
£n and the weight matrix Mn. The choices of these instrumental variables and weight
matrix Mn are as follows.
Because ^(go^z); 0, z) — 0, if we differentiate the latter with respect to (3 and A, we
hâve

Efci MA)]-2 Ai„(0,z)XinK O-z-

and

— g9[Z) =9/3 ~ i:”=i M(A)]-2 A,n(0,z)K^~z‘

d\Mz) =
£"=i [«in(A)] 1 vin(\)Ain(9, z) [Xfj + g0(z)] K

Er=iMA)]-2A.n(«,Z)iï

E"=1 Nu(A)]-2 v'in(X)A (GinVM*))) K» - 4- (G,n(»,ge(z)))} K
+ -

E,11[»m(A)] Aj„(0, z)K
Z Zi

with

Ai„(M = A (Gin(e,ge(z)))[Yin^<S>(Gin(9,ge^M-^(Gni(e,M^))4>(Gi„(6,m(

Then, the previous resuit is used to define the following instrumental variables:

, (û a dGin(9,fji) , dGin{e,fji) d A (r7 ^
kin\v,ge ) — QQ + QQgO\Zin),

with i)i = ge(Zin).
For the weight matrix, one can use Mn = Iq with q = p + 1 as in [30]. Then, the
obtained GMM estimator of 9 with this choice of Mn is equal to the pseudo-profile
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maximum likelihood estimator of 9, accounting only for the spatial heteroscedas-
ticity. Another empirical choice could be the idea of continuons updating GMM
estimator (One step GMM) used in [29]:

-1

(3.4)

with the weights

Mn(0) = <{ n 1 Ç SijÇni(jnÜin(9,ge)Üjn{p,go)
i,j=1

àij ~
Enr=l TriTirj

2 2
Z-^r=l ri Z-/r=1 rj

11/2
for i,j = l,...,n,

where Tÿ is a nmnber depending on wnij such that the nearer location i is to location
j, the larger Tÿ is. For instance, we expect to hâve more efficient estimators with
this matrix.

4. Finite sample properties

In this section, we study the performance of the proposed model based on some
numerical results, which highlight the importance of accounting for both the spatial
dependence and the partial linearity. Random datasets from the following spatial
semi-parametric models are generated and first we investigate the estimation quality
of the proposed procedure which accounts both the spatial dependence and the
partial linearity. The influences of the spatial dependence and the partial linearity
are investigated by comparing the behavior of our model to that of the non-spatial
partially linear probit (NSPLP) model and the fully linear SAE probit (LSAEP)
model, respectively. The GAM and ProbitSpatial [24] R packages will be used to
provide the estimâtes associated to NSPLP and LSAEP models respectively. We
generate observations from the following spatial latent partial linear model:

Y*n = fkX\y+foX^ + g(Zin) + Uin-, Yin = l(Y*n > 0), i =

Un = (in-wnylen
where Un ~ A/*(0, In) and Wn is the spatial weight matrix associated to n locations
chosen randomly in a 60 x 60 regular grid and with éléments constructed in such
way that each location lias at least 6 neighbors. The explanatory variables A-L
and Xare generated as pseudo Æ(0.7) and U[—2,2], respectively, and the other
explanatory variable Z is equal to the sum of 48 independent random variables,
each uniformly distributed over [—0.25,0.25]. Here, we use the non-linear function
g(t) = t+2cos(0.57r£) and parameters /3i = —1, = 1. Different spatial dependence
parameters A; 0.2 (weak spatial dependence) 0.5 and 0.8 (strong spatial dependence)
are considered. Finally, the sample size effect is observed by considering n equals to
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200,400 and 800 with 300 réplications of each simulation.
Our estimation procedure is applied with a Gaussian kernel K(t) = (27t-1/2) exp(—t2,
and optimal bandwidth bn selected by [34]’s approach detailed previously.
We consider the trivial instrumental variables and two choices of matrix Mn = In
which leads to the pseudo-maximum profile likelihood estimators (named PLSP 1)
and a second choice Mn given in (3.4) with components Tq- = u>nÿ, the estimâtes ob-
tained with this matrix choice are denoted PLSP 2. The second choice of the weight
matrix allows to incorporate more information about the spatial dépendance.
The results are given in Table 1, the columns titles Mean, Médian and SD give the
average, médian and standard déviation, respectively, over these 300 réplications
associated with each estimation method.

In one hand, when we compare the estimators (PLSP 1 and PLSP2) based on
our approach (PLSPM) with those based on the LSAEP model, we notice that the
latter yields more biased estimators of the coefficients (3\ and fo- It makes sense
that ignoring the partial linearity (see also Figure 1) weakens the quality of the
estimation of the coefficients /3\ and /?2-

On the other hand, note that the LSAEP and PLSP 1 estimâtes are similar in case

of low spatial dependence (A = 0.2) compare to large spatial dependence (À = 0.8)
framework. It makes sense that ignoring a high spatial dependence does not allow
a model that does not account any spatial structure to find consistent estimâtes of
the coefficients and and the smooth fonction g(-) (see Figure 1) .

Note that the second choice of the weight matrix (estimâtes PLSP 2 ) allowed to
improve the efficiency of the proposed estimâtes particularly in case of high spatial
dependence (see PLSP 2 estimâtes in case of A = 0.8). In contrast, it is less ap-
propriate in case of low spatial dépendance. However, one may think of testing the
intensity of the spatial dependence before applying the proposed model with a non

identity weight matrix, using for instance Moran’s test [18].

Discussion

In this manuscript, we hâve proposed a spatial semi-parametric probit model for
identifying risk factors at onset and with spatial heterogeneity. The parameters in-
volved in the models are estimated using weighted likelihood and generalized method
of moment methods. A technique based on dépendent random arrays facilitâtes the
estimation and dérivation of asymptotic properties, which otherwise would hâve
been difficult to perform due to the complexity introduced by the spatial depen-
dence to the model and high-dimensional intégration required by a full maximum
likelihood approach. Moreover, the technique yields consistent estimâtes through
proper choices of the bandwidth, weight matrix, and instrumental variables. The
proposed models provide a general framework and tools for researchers and prac-
titioners when addressing binary semi-parametric choice models in the presence of
spatial corrélation. Although they provide significant contributions to the body of
knowledge, additional investigations need to be done.
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Table 1

The mean, médian and standard déviation (SD) of the parameters and A estimâtes, over
the 300 réplications

A n Methods Pi = --1 /?2 = 1 A

Mean Médian SD Mean Médian SD Mean Médian SD

PLSP 1 -1.06 -1.00 0.40 1.05 0.98 0.26 0.12 0.00 0.40

200
PLSP 2 -1.06 -1.07 0.28 1.06 1.04 0.19 0.24 0.16 0.43

LSAEP -0.65 -0.65 0.20 0.67 0.67 0.10 -0.14 0.01 0.5

NSPLP -1.02 -1.00 0.22 1.02 1.00 0.11

PLSP 1 -1.01 -0.99 0.23 1.01 0.99 0.15 0.05 0,00 0.32

0.20 400
PLSP 2 -1.08 -1.06 0.22 1.06 1.05 0.15 0.21 0.08 0.40

LSAEP -0.64 -0.66 0.15 0.66 0.66 0.06 -0.02 0.09 0.37

NSPLP -1.02 -1.00 0.22 1.02 1.00 0.11

PLSP 1 -0.99 -1.01 0.16 0.99 0.98 0.09 0.05 0.00 0.23

800
PLSP 2 -1.06 -1.06 0.21 1.06 1.04 0.13 0.27 0.24 0.42

LSAEP -0.62 -0.62 0.12 0.65 0.64 0.05 0.01 0.05 0.29

NSPLP -1.01 -1.00 0.16 0.98 0.99 0.07

PLSP 1 -1.10 -1.04 0.42 1.08 1.00 0.34 0.24 0.01 0.43

200 PLSP 2 -1.06 -1.06 0.32 1.12 1.09 0.24 0.33 0.49 0.45

LSAEP -0.62 -0.62 0.12 0.65 0.64 0.05 0.01 0.05 0.29

NSPLP -1.00 -1.00 0.30 0.98 0.97 0.16

PLSP 1 -1.04 -1.01 0.30 1.04 0.98 0.23 0.23 0.01 0.36

0.50 400
PLSP 2 -1.03 -1.01 0.25 1.06 1.03 0.18 0.33 0.42 0.42

LSAEP -0.62 -0.61 0.17 0.65 0.64 0.08 0.15 0.27 0.37

NSPLP -0.96 -0.94 0.24 0.97 0.97 0.11

PLSP 1 -0.96 -0.94 0.16 1,00 0.97 0.13 0.24 0.06 0.29

800
PLSP 2 -1.02 -1.00 0.18 1.05 1.00 0.15 0.36 0.47 0.40

LSAEP -0.62 -0.60 0.12 0.65 0.65 0.05 0.27 0.30 0.19

NSPLP -0.98 -0.98 0.15 0.97 0.96 0.07

PLSP 1 -1.11 -1.03 0.53 1.12 1,00 0.4 0.54 0.79 0.41

200
PLSP 2 -0.99 -1.01 0.31 0.99 0.95 0.23 0.45 0.65 0.44

LSAEP -0.67 -0.67 0.26 0.65 0.65 0.12 0.47 0.54 0.24

NSPLP -0.86 -0.87 0.30 0.85 0.84 0.15

PLSP 1 -1.03 -0.97 0.36 1.06 0.95 0.35 0.52 0.70 0.39

0.80 400
PLSP 2 -0.97 -0.93 0.26 0.98 0.96 0.19 0.54 0.74 0.39

LSAEP -0.62 -0.62 0.19 0.67 0.66 0.08 0.56 0.57 0.11

NSPLP -0.81 -0.81 0.21 0.82 0.81 0.11

PLSP 1 -0.97 -0.95 0.26 1.00 0.92 0.27 0.49 0.60 0.38

800
PLSP 2 -1,00 -0.97 0.23 1,00 0.97 0.20 0.57 0.76 0.39

LSAEP -0.63 -0.61 0.13 0.67 0.66 0.06 0.60 0.60 0.07

NSPLP -0.80 -0.81 0.15 0.83 0.83 0.08



lambda = 0.2

-2-10 1 2

lambda = 0.5

-2-10 1 2

lambda = 0.8

-2-10 1 2

True fonction PLSP estimator with weight matrix
PLSP estimator with identity matrix NSPLP estimator

Figure 1. The true function g(-) and the average of its estimâtes, over the 300 réplications
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As indicated previously, weights are used to improve the efficiency and convergence
of the GMM procedure. For instance, the hnite sample properties section shown that
the kind of weight matrix defined in 3.4 with éléments Tÿ may improve the efficiency
of the proposed estimator but is less appropriate in case of weak spatial dependence.
Then, it would be interesting to develop other choices of weights toward achiev-
ing a better performance. Another topic of future research is to allow some spatial
dependency in the covariates (SAR models) and the response (endogenous models)
for more generality.

A. Appendix section

Proposition A.l. Under Assumptions A1-A6, for 9 G 0 and z 6 Z, the functions
go(z) and ge{z), solutions of (1.8) and (1.14), respectively, satisfy

1. for ail î\j = 0,1,2, i + j < 2,

di+j

d9\d0Jr
9e{z) and

di+j

ddjdOl
9e{z) exist and are finite for ail 1 < l,r < p+1.

2. sup \\ge — yo\\, sup max
eee eee j=1’-,p+i Wi(9«~9e) and sup max

eee i<ûi<p+i

are ail order op{ 1) as n -e oo.

Without loss of generality, the proof of this proposition is ensured by Lemma A.2
in the univariate case i.e., 0, Z C M.

The following lemma is useful in the proof of Lemma A.2. It is an extension of
Lemma 8 in [35] to spatially dépendent data.
Lemma A.l. Let Çe{Yi) dénoté a scalar function of Yin, i = 1,..., n, n — 1,2,...,
depending on a scalar parameter 9 E 0, and for j = 0,1,2, let

CL(Un) cP_
d9i Ce{Yin), i — 1,..., n, n — 1,2,...

Let fi(-) dénoté the density of Zin (given in Assumption A2), and let f(z) =

à ES*/<(*)•
Assume that

dj\Yini < oo for j = 0,...,3.H. 1 sup sup
9 1 <i<n,n

H.2 For ail 9 G 0, j = 0,1,2, and 1 < z, l < n:

(A.l) \Cov(Kin(z),Kin(z))\ < {Vav(Kin(z))Yar(Kin(z))Ÿ/2 p (\\si — sz||),
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<Cov (Cf (Yin)Kin(z), $\Yln)Kln(z]
(A.2)

{Vax {(^\Yin)Kin(z)) Var {$] (Yi„)Kln(z)ff12 V(||Sj - s,||),
with Kin(z) = K ((z- Zin)/b).

dj
Let me(z) = E (Çe{Yin)\Zin — z) for z E Z, and assume that is continuons

06J
on Z, j — 0,1,2.

For eachfixed 9 E 0 and z £ Z, let the kernel estimator rho(z) ofmg(z) be defined

EILiCo(Y,„)Km(z)
by

fne(z) - EL. KM
If Assumptions A2, Af, and A5 are satisfied, then

sup sup
deQ zez

dj cP

dfPe(z) ~ dëimi>(z)
for j = 0,1,2.

Lemma A.l generalizes Lemma 8 in [35] to spatially dépendent data.
Lemma A.2. For each 6 E 0 and z E Z, let

H{rj\ 9: z) = E0 (h9inv(Yin\Xin, Zin)\Zin = z^j , 1 < i < n, n - 1,2,...
w/zere g — g(z), ÿGÇ and 1-, •) zs defined in Assumption A3.

Condition I: For fîxed but arbitrary 9\ E 0 and rji E II with II = go(2), /et

= y ^(yk^)exp(^i,T?1(yk^))^, ^e0, g e n,{x,z) e z x z
where {exp(h^(y\x, 2)), 6 E 0, 77 E 77} dénotés the family of conditional density
functions (indexed by the parameters 9 and g) of Yin given (Xin,Zin) = (æ, z) E
A x 2. For each 9 ^ 9\, assume that

d{9,p) < d{9hr]i).

Condition S: Let p = p+1, and for ail nonnegative integers Ji,..., jp = 0,1,2 and
r — 0,..., 4, sztc/z t/zat ji + • • • + jp + r < 6, assume that the dérivative

Qji+-+jp+r]l?>V

d9{1 ■ • • d9jAdgr
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exists for almost ail y and that

Qjl+-+jp+rjl^Vi
Eo I sup sup sup

\ i,n 9eO geG ddl1 ■ ■ ■ ddÿdrf
{Yin\X-in i Zin) < oo, with rjî = g{Zin).

Assume that

(A.3) sup sup sup
z e ri

(P_
363

< 00,

ci

for j — 0,1,2 and k — 2,3,4 such that j + k < 4, with
dk

dnf
Let

ff( n 7\ ^i=1 hjn QfinlXjn, z)Kjn(z) _

Lji=l Ein\Z)
then, ge(z) is a solution of H^l\p\9,z) — 0 with respect to g for each fixed 6 G 0
and z E Z.

If we assume that Assumptions A1-A6 are satisfied, then we hâve, for ail j = 0,1,2,

(AA) sup sup
9 z

(Mz) - g9(z)) — Op(1).

The assumptions used in the previous lemma are satisfied under the conditions
used in the main results. Condition I is needed to ensure the identifiability of the
arbitrary parameter 9\ (it plays the rôle of the true parameter do). This condition
is verified when 6fi = Oo by the identifiability of our model (1.1). Condition S
allows intégrais to be interchanged with différentiation; this will be combined with
the implicit function theorem [see 33] to ensure the differentiability of go(z) with
respect to 9.
Knowing that <&(•) is a smooth function on M. and h^(-\ -, •) is

3>(Gm(M>))h^'(Ym\Xm.Zm) = Yin\og -log (1-$((?;„(«, %)))i -<è(Gin(e,ni))
Condition S and Assumption (A.3) are satisfied under the continuity condition of
<&(•) and 0(-), Assumption A9 and the compactness of X and Z.

Let the following notation and Lemmas:

Pi — P (Zin)] Cm = Üin(6 iPi)') ^zn = *^{Crin(8 ï9o))\ Ain = A(Gin(9, g$)),
for ail 9 G 0, 1 < i < n, n = 1,2,..., with A(-) = 0(-)/4>(-)( 1 — <&(•)).
The partial dérivatives of Sn(9,g) with respect to g of order s = 1,2,..., for any
functions v\,..., vs in Q, are given by

3sSr
dgs

3sUh
(9,g)(vi,-- - 1v8) = n 1Y^Çin-ôJp-{9,r)i)vi(Zin) • • •vs(Zin).

i—1
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Lemma A.3. Under Assumptions A3, A6 and A9, we hâve for ail 6 G 0,

(A.5) Sn{0,go)-S{B,go) = op( 1).
In addition, we hâve

(A.6) Qn(0,ge)-Q(0,9e) = op{ 1),
if Mn - M = op(l).

Note that if Assumption A10 is satisfied, then Mn — M — ov{ 1).

Lemma A.4. Under Assumptions A6-A9, we hâve Sn (-,g.) — S (•,#.) is stochasti-
cally equicontinuous on 0.
In addition, ifMn—M = op(l), then we hâve Qn (•, g.) — Q (•, g.) is also stochastically
equicontinuous on 0.
Lemma A.5. Under the assumptions of Proposition A.l and Assumptions A6 and
A9, we hâve

(A.7) sup \\Sn(9,go) — Sn(9,go)\\ = op( 1).
0e©

If in addition Mn — M = op( 1), then we hâve

(A.8) sup|Qn{0,ge) - Qn{0,ge)I = op(l).
0e©

The proof of previous lemmas can be obtained on request from the authors.

Proof of Theorem 2.1

By Lemmas A.3 and A.4, Qn converges to Q in probability uniformly, i.e.,

(A.9)

This resuit allows one to obtain

sup|Qn(0,ge) - Q{0,ge)\ = op( 1).
0e©

(A. 10) Q{Ô,g§) - Q{90,g0) = op{ 1).

Indeed, using | sup a — sup b\ < sup \a — b\, we hâve

Q0,g§) - Wo,<?o) < Qn{9,g§) Q{6}g§) + Qn{9ig§) Q{9oigo)

sup Qn(0, ge) — sup Q{6, go)< sup \Qn{9,ge) - Q{9,ge)\ +
0

< 2 sup \Qn(d, ge) -Q(0,go)\
0

< 2sup\Qn(9, ge) - Qn(0,go)\-\r 2sup \Qn(0, ge) - Q(9,go)\
0 0

= op(1),
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by Lemma A.5, (A.9) and sup0 Q{9,go) — Q{Oo,go) (see Assumption A8).
By Assumption A8, we hâve for a given 9 G 0 that there exists e > 0 and an open
neighbourhood Nq such that

(A.11) inf \Q{0i,gdl) - Q{9o,go)\ > s.
OlENg

This and (A. 10) imply that

(A. 12) 9 E Nq) < Q{Ô,g§) - Q{60,go) > £) -> 0, as n —y oo.

Let Nq be an open neighborhood of 9q, and consider the compact set 0o = Q\Nq.
Let {Nq : 9 E 0, 9 ^ #o} dénoté the open covering of 0o by the procedure given
above (each neighbourhood Nq satisfies (A. 11)). By the compactness of 0o, let
{Nq1 ,..., Nqt} be a finite sub-covering; then,

r

Po ^9 ^ No^j = Po (è E 0o^j A Po (j) € ^Qj^J —> 0, as n —>■ oo,
3=1

by (A. 12). Therefore, we can conclude that

9 - 9q = op( 1), as n —»• oo.

This yields the proof of Theorem 2.1. □

Proof of Theorem 2.2

The proof is based on the following lemmas, proof details can be obtained on request
from the authors.

Lemma A.6. Under the assumptions of Theorem 2.2 and for any 9 such that 9 —

9q = op(l), we hâve

(A. 13) ^(Ô,9})-~(0o,go)=op(l)
and

(A. 14) ^{Ô,g§)gë - ^{0o,go)% = op{ 1),
s'ê(-) = W^Le

Lemma A.7. Under the assumptions of Theorem 2.2, we hâve

«
d dQn
d9 dg

{0,9e) {go - go)
e=e0

°p(1)
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(m)
dQr
dg {0,9e) {%-% ) = oP(1),

where

and
'

/ \
_ ^9e, s%{■) - dQ (•) 6»=6

Proof of Lemma A.7 can be obtained from request to the authors.
Lemma A.8. Under the assumptions of Theorem 2.2, we hâve

Sn{0,ge) - Sn(6,ge) = r£\0),
where

sup
e

— °p{1)5 and sup
9

d2
dmT

4P (0) ~ °p(l)
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